TECHNICAL SUPPORT DOCUMENT: APPENDICES

CARBON MONOXIDE REDESIGNATION REQUEST AND MAINTENANCE PLAN FOR THE DENVER METROPOLITAN AREA

January 4, 2000

Colorado Department of Public Health & Environment Air Pollution Control Division Technical Services Program 4300 Cherry Creek Drive South Denver, Colorado 80246

Table of Contents

1.	INTRODUCTION	1
	.1. BACKGROUND	1
	1.1.1. National Ambient Air Quality Standards for Carbon Monoxide	
	1.1.2. Health Effects of Carbon Monoxide	1
	1.1.3. Denver Carbon Monoxide Area Designation History	1
	1.1.4. Denver Metropolitan Attainment/Maintenance Area	2
	1.1.5. Topography, Climate, and Air Quality Meteorology	4
	.2. REQUIREMENTS FOR REDESIGNATION	7
	1.2.1. Attainment of the Standard	7
	1.2.2. State Implementation Plan Approval	7
	1.2.3. Improvement in Air Quality Due to Permanent and Enforceable Emissions Reductions	7
	1.2.4. CAA Section 110 and Part D Requirements	7
	1.2.5. Maintenance Plan	7
2.	EMISSION INVENTORIES	
	2.1. Emission Inventories Used in the Urban Airshed Model	
	2.2. DEMOGRAPHIC AND TRANSPORTATION DATA	9
	2.3. Residential Woodburning	10
	2.3.1. Fireplaces emissions calculations (grams/household)	10
	2.3.2. 2006 and 2013 Stove Device Emission Calculations	12
	2.4. ON-ROAD MOBILE SOURCES	15
	2.4.1. Control Strategy Recommendations	15
	2.4.2. Vehicle Miles Traveled (VMT)	
	2.4.3. Mobile5b Emission Factor Modeling	
	2.4.4. NLEV Credit Estimate	
	2.4.5. RSD Program	
	2.4.6. Oxygenated Fuel Program	
	2.4.7. Mobile5b Scenario Inputs	
	2.4.8. Carbon Monoxide Emission Factors for 2006 and 2013	
	2.4.9. Emission Inventory Calculations	
	2.5. NON-ROAD MOBILE SOURCES AND AIRPORTS	
	2.5.1. Kevisea Emissions Estimates for Denver International Airport	
	2.6.1 POINT SOURCES	
	2.0.1. POINT SOURCE GROWIN IN 2000 AND 2015	
3.	AIR QUALITY MODELING METHODOLOGY	
	3.1. OVERVIEW OF MODELING PROCESS	
	3.2. MODEL SELECTION	27
	3.3. FLOW CHART OF AIR QUALITY MODELING PROCESS	
	3.4. EPISODE SELECTION	
	3.5. METEOROLOGICAL DESCRIPTION OF MODELING EPISODES	
	3.5.1. Modeling Episode Selection for Maintenance Plan	
	3.5.2. Meteorological Conditions on December 5, 1988 - "High" Episode	
	5.5.5. Meteorological Conditions on January 15, 1988 - "Second-High" Episode	
	0.0. MUDELING DUMAIN	
). /. DIAGNUSTIC WIND MODEL (DWIM)	
	0.0. UKBAN AIKSHED MODEL (UAM) SETUP AND APPLICATION	
	3.0.1. Sumulation Start and End Times (SINICONTROL)	
	3.8.2. Other UAM preprocessors	
	S.O.S. OTHER DEMINISTRATION	
	201 Intersection Selection	20

3.9.3. Receptor Locations	
3.9.4. Vehicle Emission Rates	46
3.9.5. Screening Procedures	46
3.9.6. Refined Modeling Procedures	46
3.9.7. Treatment of Calms	47
3.10. MODEL PERFORMANCE EVALUATION	
3.10.1. Statistical Performance Measures Required by EPA	
3.10.2. Additional Performance Measures	
3.10.3. Graphical Measures	55
3.10.4. Selection of CO Monitors for Use in the Performance Evaluation Required by EPA	55
3.10.5. "High" Episode Performance Measures	63
4. MODELING-BASED MAINTENANCE DEMONSTRATION	
4.1. Design Concentrations	
4.2. CONTROL STRATEGY ASSUMPTIONS	74
4.3. UAM AND CAL3QHC RESULTS	
4.4. 2006 AND 2013 BUDGET RELATED EMISSION INVENTORIES	77
5. MONITORING-BASED ATTAINMENT DEMONSTRATION	
5.1. DENVER AREA HISTORICAL PERSPECTIVE	
5.2. CARBON MONOXIDE MONITORING NETWORK	
5.5. MONITORING-BASED ATTAINMENT DEMONSTRATION	
5.4. QUALITY ASSURANCE PROGRAM	
5.4.1. Internal Quality Assurance Programs	
5.4.2. External Quality Assurance Frograms	
5.4.5. Results of the Deriver Metropolitan Area I recision and Accuracy I rogram	
	105
6. DATA ACCESS	105
 DATA ACCESS REFERENCES 	105
 DATA ACCESS REFERENCES ENDNOTES (AS REFERENCED IN THE APPROVED DENVER "CO SIP TECHNICAL 	105 107 SUPPORT
 DATA ACCESS REFERENCES ENDNOTES (AS REFERENCED IN THE APPROVED DENVER "CO SIP TECHNICAL DOCUMENT") 	105 107 SUPPORT 109
 6. DATA ACCESS 7. REFERENCES 8. ENDNOTES (AS REFERENCED IN THE APPROVED DENVER "CO SIP TECHNICAL DOCUMENT") INDEX	105 107 SUPPORT 109 111
 6. DATA ACCESS 7. REFERENCES 8. ENDNOTES (AS REFERENCED IN THE APPROVED DENVER "CO SIP TECHNICAL DOCUMENT") INDEX 	105 107 SUPPORT 109 111
 6. DATA ACCESS 7. REFERENCES	105 SUPPORT SUPPORT 109 111 CRSION
 6. DATA ACCESS 7. REFERENCES	105 SUPPORT 107 SUPPORT 109 111 ERSION 113
 6. DATA ACCESS	105 SUPPORT
 6. DATA ACCESS	105
 6. DATA ACCESS	

APPENDIX J – TEMPORAL DISTRIBUTION OF EMISSIONS	517
APPENDIX K – SECTION 110 OF THE CLEAN AIR ACT	523
APPENDIX L – DENVER INTERNATIONAL AIRPORT EMISSION INVENTORY	535
APPENDIX M – ANALYSIS OF THE PROBABILITY OF A CARBON MONOXIDE EXCEEDANCE IN DENVER DURING THE FIRST WEEK OF FEBRUARY FOR THE YEARS 2002 THROUGH 2013 AND TWO POSSIBLE LEVELS OF OXYGENATE IN AUTOMOTIVE FUELS BASED ON HISTORICAL CARBON MONOXIDE DATA FOR 1975 THROUGH 1994	N D 539
APPENDIX N – TRANSPORTATION MODELING DOCUMENTATION	545

List of Tables

Table 1. Emission inventories for the Denver carbon monoxide Urban Airshed Modeling. ⁽¹⁾ 8
Table 2. Demographic data used to develop emission inventories (modeling domain)9
Table 3. 2006/2013 Residential woodburning carbon monoxide emission inventory10
Table 4. 2006 Fireplace emission rate variables/results
Table 5. 2013 Fireplace emission rate variables/results
Table 6. 2006 stove device calculations. 13
Table 7. 2013 stove device calculations. 13
Table 8. 2006 Stove emission calculation variables/results14
Table 9. 2013 Stove emission calculation variables/results. 14
Table 10 . Daily VMT totals in the Denver-Boulder carbon monoxide Denver-Boulder Carbon
Monoxide Nonattainment Area15
Table 11 . VMT totals in the Denver-Boulder carbon monoxide Urban Airshed Modeling
domain16
Table 12. Input file in the EPA RSD model to generate the 80% credit file. 18
Table 13. Data used in model year calculations of eligible vehicles. 19
Table 14. On-road mobile source emission estimates in tons per day (tpd) in the Denver-Boulder
carbon monoxide Urban Airshed Modeling domain20
Table 15. On-road mobile source emission estimates in tons per day (tpd) in the Denver-Boulder
Carbon Monoxide Nonattainment Area
Table 16. Revised emission inventory for Denver International Airport
Table 17. Ranking of Denver carbon monoxide episodes - 1988 through 1991 – as determined
for the approved CO SIP
Table 18. Denver metropolitan area Urban Airshed Modeling Domain. 33
Table 19. Comparison of maximum 1-hour and 8-hour average carbon monoxide data at CAMP
and Speer and Auraria between 1993 and 1999.
Table 20. Carbon monoxide monitoring sites used in the UAM and CAL3QHC modeling study
Tor the Denver CO SIP
Table 21. EPA's recommended statistical performance measures for the "high" episode
radie 22. Comparison of modeled vs. observed CO 8-nour average concentrations for the high
Table 22 Comparison of approved emission budgets with emissions estimates that would result
from the Denver carbon monovide maintenance plan
Table 24 Combined UAM and CAL 20HC estimates for "high" enjsede Dun H: Enhanced
Inspection/Maintenance 240 with new vehicles exempted for their first four years: 1.5%
oxygenated gasoline: evaluation of up to 80% of the fleet with Remote Sensing Devices
(80% RSD) 78
Table 25 Combined IJAM and CAI 30HC estimates for "high" enisode - Run I : Enhanced
Inspection/Maintenance 240 with new vehicles exempted for their first four years: 1.5%
oxygenated gasoline: evaluation of up to 80% of the fleet with Remote Sensing Devices
(80% RSD)
Table 26 Combined UAM and CAL3OHC estimates for "high" episode - Run O: Enhanced
Inspection/Maintenance 240 with new vehicles exempted for their first four years: 1.7%
oxygenated gasoline: evaluation of up to 80% of the fleet with Remote Sensing Devices
(80% RSD)
Table 27. 1997 Carbon monoxide data summary for the Denver Metropolitan Area

Table 28. 1998 Carbon monoxide data summary for the Denver Metropolitan Area
Table 29. 1999 Carbon monoxide data summary for the Denver Metropolitan Area
Table 30. Carbon monoxide data during the episode on November 30, 1999
Table 31. Denver metropolitan area carbon monoxide precision and accuracy probability limits
(% difference): Welby, Highland
Table 32. Denver metropolitan area carbon monoxide precision and accuracy probability limits
(% difference): Longmont, Boulder2 - YMCA100
Table 33. Denver metropolitan area carbon monoxide precision and accuracy probability limits
(% difference): Boulder Marine St., Denver CAMP101
Table 34. Denver metropolitan area carbon monoxide precision and accuracy probability limits
(% difference): Denver NJH, Denver Carriage102
Table 35. Denver metropolitan area carbon monoxide precision and accuracy probability limits
(% difference): Denver Speer & Auraria, Arvada103
Table 36. Temporal allocation factors used to distribute AM-Peak, PM-Peak, and Off-Peak on-
road mobile emissions for 2006 and 2013520

List of Figures

Figure 1. Denver metropolitan area carbon monoxide (CO) Urban Airshed Model (UAM)
domain and the Nonalianment Area (NAA) boundary. Once the NAA is redesignated for
boundaries, only the area's descination
Eigure 2. Shaded relief men showing the tenegraphy in the Denver area
Figure 2. Shaded tenet hap showing the topography in the Deriver area
CO SID are the basis of the UAM maintenance also modeling.
Eigure 4. Metaorological observation sites used in developing and evaluating the diagnostic wind
model for the "high" enjoyde used in the maintenance plan
Figure 5. Observed hourly concentration values on November 20, 1000
Figure 5. Observed flourly concentration values on November 50, 1999
occurrence of CO concentrations greater than 3 ppm or 8 ppm, as a function of wind speed
and direction. High CO is largely constrained to the NW quadrant, with wind speeds of 4
mph or less
Figure 7 Wind direction and $II\Delta M$ performance are displayed as a function of time for the
"high" enisode. Model performance is based on the difference between hourly monitored
and modeled CO concentrations: a negative value means the model is under-predicting 60
Figure 8 One-hour (1-hr) time series plots showing observations (boxes) and model estimates
(lines) at CAMP (CMP) and Welby (WBY) 66
Figure 9. One-hour (1-hr) time series plots showing observations (boxes) and model estimates
(lines) at Carriage (CRG) and NIH
Figure 10. Eight-hour (8-hr) time series plots showing observations (boxes) and model estimates
(lines) at CAMP (CMP) and Welby (WBY)
Figure 11. Eight-hour (8-hr) time series plots showing observations (boxes) and model estimates
(lines) at Carriage (CRG) and NJH
Figure 12. UAM 8-hour CO concentration isopleths for the hour during which the maximum
UAM predicted 8-hour concentration occurred during the "high" episode (December 5,
1988)

1
9
1
3
-
б
1
2
3
4
l
5

Appendix A – Mobile Source Emissions Modeling: VMT Summaries by Dispersion Modeling Domain and Nonattainment Area Domain

2006 Dispersion Modeling Domain

ΔM	Peak	VMT	
AM	rear	VIIII	

$ROAD^{x}$	AREA ^y	A	IA M	IA N	M AM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	142,997.3	79,145.0	84,009.3	306,151.7
	3	386,380.9	214,527.3	228,403.9	829,312.1
	4	768,022.5	461,265.8	517,559.4	1,746,847.7
	5	280,792.2	172,080.6	195,697.9	648,570.7
1	-	1,578,192.9	927,018.8	1,025,670.5	3,530,882.2
	2	12,998.9	7,720.1	8,467.1	29,186.1
	3	45,015.6	25,794.0	28,313.4	99,122.9
	4	129,469.0	77,936.2	88,220.2	295,625.4
	5	37,136.3	22,951.0	26,359.0	86,446.3
2		224,619.8	134,401.3	151,359.7	510,380.7
	1	22,246.6	14,062.7	16,151.0	52,460.3
	2	83,933.9	49,246.8	54,672.3	187,853.1
	3	483,848.0	290,234.9	325,607.4	1,099,690.3
	4	595,460.9	360,072.1	409,445.6	1,364,978.6
	5	112,037.2	73,767.0	88,536.9	274,341.1
3	-	1,297,526.7	787,383.5	894,413.2	2,979,323.4
	1	11,702.0	7,234.9	8,341.9	27,278.9
	2	34,690.2	21,946.7	25,567.4	82,204.3
	3	167,842.8	106,098.5	123,273.7	397,214.9
	4	272,393.4	180,134.8	216,887.7	669,416.0
	5	80,773.7	58,049.2	76,090.9	214,913.9
4		567,402.3	373,464.1	450,161.7	1,391,028.0
	1	3,252.5	2,355.4	3,088.2	8,696.1
	2	15,692.3	12,901.7	17,416.2	46,010.1
	3	83,103.8	76,150.7	112,717.1	271,971.5
	4	116,641.3	91,504.0	126,354.3	334,499.6
	5	48,563.4	33,219.1	46,250.6	128,033.1
5		267,253.3	216,130.8	305,826.3	789,210.4
	2	6,416.3	3,777.7	4,310.4	14,504.4
	3	17,162.7	9,758.4	10,817.7	37,738.8
	4	25,384.7	15,066.1	17,200.9	57,651.7
	5	3,008.2	1,912.6	2,207.8	7,128.5
6	-	51,971.8	30,514.8	34,536.8	117,023.3
	1	2,623.5	1,595.6	1,818.2	6,037.3
	2	21,982.8	13,450.7	15,332.9	50,766.3
	3	109,852.6	66,973.8	76,112.0	252,938.4
	4	170,223.0	104,371.3	119,312.4	393,906.7
	5	68,404.1	41,965.9	47,857.2	158,227.1
8	-	373,085.9	228,357.2	260,432.6	861,875.8
	-	4,360.052.6	2,697.270 5	3,122,400 7	10,179.723.9
		1,000,002.0	-, -, -, -, -, -, -, -, -, -, -, -, -, -	2,222,100.1	

^x Road Types: 1=Freeway, 2=Major Regional, 3=Principal Arterial, 4=Minor Arterial, 5=Collector, 6=Ramp, 7=Frontage, 8=Local ^y Area Types: 1=Central Business District, 2=Fringe, 3=Urban, 4=Suburban, 5=Rural

2006 Dispersion Modeling Domain

PM Peak VMT

ROAD ²	AREA ^{a:}	* P.	M P.	M P	PM PM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	418,946.5	158,046.5	83,624.8	660,617.9
	3	1,183,328.0	450,783.7	239,701.1	1,873,812.9
	4	2,314,071.9	1,017,515.7	570,115.3	3,901,702.9
	5	817,987.5	375,493.3	214,655.6	1,408,136.3
1		4,734,333.9	2,001,839.3	1,108,096.9	7,844,270.1
	2	40,058.6	16,722.2	9,204.2	65,985.0
	3	134,883.6	53,203.0	29,058.9	217,145.5
	4	390,740.7	167,205.4	94,810.3	652,756.3
	5	105,013.3	51,549.1	31,272.9	187,835.2
2		670,696.2	288,679.6	164,346.3	1,123,722.0
	1	69,474.3	32,422.8	18,633.7	120,530.8
	2	256,053.1	109,408.5	60,715.5	426,177.1
	3	1,524,929.2	654,964.7	365,569.5	2,545,463.4
	4	1,843,885.9	805,504.9	455,693.1	3,105,083.9
	5	315,502.7	153,073.1	91,946.9	560,522.7
3		4,009,845.3	1,755,373.9	992,558.6	6,757,777.8
	1	37,036.5	16,681.0	9,470.9	63,188.5
	2	111,166.9	51,249.3	29,758.4	192,174.7
	3	521,726.2	247,531.0	141,536.1	910,793.3
	4	859,413.3	429,505.4	255,889.7	1,544,808.4
	5	218,194.7	117,159.5	80,639.0	415,993.2
4		1,747,537.6	862,126.2	517,294.1	3,126,958.0
	1	10,209.8	6,052.4	4,085.3	20,347.5
	2	44,601.5	30,639.5	20,856.1	96,097.2
	3	235,865.1	190,162.1	140,060.6	566,087.8
	4	315,513.8	209,872.5	148,870.5	674,256.8
	5	131,792.0	67,061.2	44,503.7	243,357.0
5		737,982.2	503,787.8	358,376.3	1,600,146.2
	2	22,122.2	8,820.6	4,882.2	35,824.9
	3	53,693.7	21,244.8	11,741.0	86,679.5
	4	75,572.7	31,560.0	18,098.0	125,230.7
	5	8,074.0	3,904.4	2,291.4	14,269.8
6		159,462.5	65,529.8	37,012.7	262,005.0
	1	8,905.8	3,941.3	2,249.5	15,096.6
	2	69,815.1	31,192.0	17,782.9	118,790.0
	3	376,678.9	167,313.1	95,390.6	639,382.6
	4	604,710.7	270,825.3	155,421.5	1,030,957.5
	5	208,258.7	93,022.0	53,371.9	354,652.7
8		1,268,369.2	566,293.7	324,216.5	2,158,879.4
		13,328,226.9	6,043,630.3	3,501,901.4	22,873,758.6

^z Road Types: 1=Freeway, 2=Major Regional, 3=Principal Arterial, 4=Minor Arterial, 5=Collector, 6=Ramp, 7=Frontage, 8=Local ^{aa} Area Types: 1=Central Business District, 2=Fringe, 3=Urban, 4=Suburban, 5=Rural

2006 Dispersion Modeling Domain

Off Peak VMT

FUN	AREA	OFF	OFF	OFF	OFF	TOTAL
CLASS	TYPE	PD1	PD2	PD3	PD4	OFF VMT
	2	254,289.7	287,962.1	585,928.5	131,361.9	1,259,542.2
	3	682,827.6	769,572.9	1,602,496.9	365,550.5	3,420,447.9
	4	1,126,258.3	1,330,196.4	2,891,912.8	702,089.5	6,050,457.1
	5	453,769.9	531,207.4	1,167,963.4	285,733.4	2,438,674.2
1		2,517,145.5	2,918,938.9	6,248,301.7	1,484,735.3	13,169,121.4
	2	20,486.7	23,456.1	51,549.7	12,126.5	107,619.0
	3	70,132.6	82,640.8	169,414.2	37,832.3	360,019.9
	4	186,790.0	218,089.7	479,572.1	117,229.9	1,001,681.7
	5	49,940.0	59,149.2	132,779.0	33,256.8	275,125.0
2		327,349.3	383,335.8	833,315.0	200,445.6	1,744,445.7
	1	25,739.4	30,596.1	70,603.3	18,682.9	145,621.8
	2	114,300.1	137,906.6	309,901.6	75,954.3	638,062.6
	3	656,332.0	787,948.5	1,771,654.9	439,864.6	3,655,800.0
	4	919,765.8	1,062,821.9	2,283,719.3	546,734.4	4,813,041.3
	5	141,997.4	166,565.1	370,612.1	94,543.7	773,718.3
3		1,858,134.7	2,185,838.2	4,806,491.2	1,175,780.0	10,026,244.0
	1	15,414.0	18,157.3	41,256.3	10,302.8	85,130.4
	2	45,280.6	53,146.1	120,171.8	30,199.9	248,798.4
	3	198,151.8	236,709.7	559,647.2	144,213.8	1,138,722.5
	4	334,005.5	393,942.5	901,570.4	236,298.3	1,865,816.7
	5	90,897.0	107,762.1	238,263.9	59,816.8	496,739.8
4		683,749.0	809,717.6	1,860,909.7	480,831.5	3,835,207.7
	1	3,779.3	4,408.7	9,806.4	2,461.9	20,456.3
	2	12,497.3	15,314.3	35,995.2	9,873.0	73,679.9
	3	57,103.5	66,437.9	159,317.6	45,844.0	328,703.0
	4	93,215.1	110,604.6	260,274.3	70,717.5	534,811.4
	5	58,019.2	67,700.7	147,753.6	36,182.6	309,656.2
5		224,614.4	264,466.2	613,147.1	165,078.9	1,267,306.7
	2	11,266.3	13,113.5	27,863.2	6,427.3	58,670.2
	3	29,382.0	32,554.3	68,935.9	15,839.8	146,712.0
	4	37,677.7	43,530.7	91,590.1	21,878.5	194,677.0
	5	3,573.1	4,186.7	9,127.4	2,284.0	19,171.3
б		81,899.1	93,385.2	197,516.6	46,429.6	419,230.5
	1	4,279.4	4,977.2	10,848.0	2,648.9	22,753.4
	2	32,822.0	38,278.3	83,713.1	20,340.3	175,153.7
	3	180,749.6	209,529.5	457,807.4	111,277.3	959,363.7
	4	290,109.0	337,914.6	741,337.7	180,523.2	1,549,884.6
	5	101,828.9	117,092.2	256,017.6	62,431.5	537,370.2
8		609,788.7 ==================================	707,791.8	1,549,723.8 ====================================	377,221.3 ====================================	3,244,525.6 ====================================

AM

AM

2006 Nonattainment Area

	AM	Peak	VMT	
AM			AM	
PD1			PD2	

ROAD

AREA

CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2 3 4 5	142,997.3 386,380.9 750,175.6 196,828.3	79,145.0 214,527.3 451,028.4 122,009.2	84,009.3 228,403.9 506,403.0 140,374.6	306,151.7 829,312.1 1,707,607.0 459,212.2
1		1,476,382.2	866,709.9	959,190.8	3,302,283.0
	2 3 4 5	12,998.9 45,015.6 109,891.9 11,810.8	7,720.1 25,794.0 64,310.0 7,765.2	8,467.1 28,313.4 70,984.2 9,019.7	29,186.1 99,122.9 245,186.2 28,595.7
2		179,717.2	105,589.3	116,784.4	402,090.9
	1 2 3 4 5	22,246.6 83,933.9 481,643.1 569,684.5 72,836.4	14,062.7 49,246.8 288,991.8 344,648.4 48,034.7	16,151.0 54,672.3 324,123.2 391,785.2 57,481.2	52,460.3 187,853.1 1,094,758.1 1,306,118.2 178,352.3
3		1,230,344.6	744,984.4	844,213.0	2,819,542.0
	1 2 3 4 5	11,702.0 34,690.2 166,642.1 261,665.0 52,448.1	7,234.9 21,946.7 105,340.0 173,246.6 37,667.2	8,341.9 25,567.4 122,367.9 208,741.1 49,495.9	27,278.9 82,204.3 394,349.9 643,652.7 139,611.2
4		527,147.5	345,435.3	414,514.1	1,287,097.0
	1 2 3 4 5	3,252.5 15,692.3 82,932.8 113,194.8 39,750.4	2,355.4 12,901.7 76,040.5 89,422.5 27,692.6	3,088.2 17,416.2 112,582.7 124,048.3 39,323.6	8,696.1 46,010.1 271,556.0 326,665.6 106,766.6
5		254,822.8	208,412.7	296,459.0	759,694.5
	2 3 4 5	6,416.3 17,162.7 24,970.3 2,409.2	3,777.7 9,758.4 14,826.8 1,539.0	4,310.4 10,817.7 16,915.4 1,816.0	14,504.4 37,738.8 56,712.4 5,764.2
6		50,958.4	29,901.9	33,859.5	114,719.8
	1 2 3 4 5	2,623.5 21,982.8 109,126.5 165,186.4 28,332.6	1,595.6 13,450.7 66,532.3 101,263.7 17,497.3	1,818.2 15,332.9 75,607.9 115,761.7 19,897.4	6,037.3 50,766.3 251,266.7 382,211.8 65,727.3
8		327,251.8	200,339.6	228,418.0	756,009.4
		4,046,624.4	2,501,373.2	2,893,438.8	9,441,436.4

2006 Nonattainment Area

РM	Peak	VMT

ROAD	AREA	PM	PM	PM	PM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	418,946.5	158,046.5	83,624.8	660,617.9
	3	1,183,328.0	450,783.7	239,701.1	1,873,812.9
	4	2,259,631.1	995,512.5	558,427.4	3,813,571.0
	5	559,947.7	265,936.3	155,379.1	981,263.0
1		4,421,853.3	1,870,279.0	1,037,132.5	7,329,264.8
	2	40,058.6	16,722.2	9,204.2	65,985.0
	3	134,883.6	53,203.0	29,058.9	217,145.5
	4	334,898.2	138,333.0	75,971.0	549,202.2
	5	28,643.5	16,579.0	9,930.1	55,152.6
2		538,484.0	224,837.1	124,164.2	887,485.2
	1	69,474.3	32,422.8	18,633.7	120,530.8
	2	256,053.1	109,408.5	60,715.5	426,177.1
	3	1,517,119.3	651,730.5	363,747.7	2,532,597.5
	4	1,764,365.8	769,111.0	435,158.0	2,968,634.9
	5	199,682.5	97,858.8	59,065.0	356,606.3
3		3,806,695.1	1,660,531.5	937,319.9	6,404,546.6
	1	37,036.5	16,681.0	9,470.9	63,188.5
	2	111,166.9	51,249.3	29,758.4	192,174.7
	3	517,715.4	245,460.9	140,314.7	903,491.0
	4	822,029.0	412,653.2	245,972.2	1,480,654.4
	5	138,019.7	77,042.8	51,911.0	266,973.5
4		1,625,967.5	803,087.3	477,427.2	2,906,482.0
	1	10,209.8	6,052.4	4,085.3	20,347.5
	2	44,601.5	30,639.5	20,856.1	96,097.2
	3	235,444.9	189,897.8	139,882.5	565,225.2
	4	303,817.4	204,676.9	145,869.9	654,364.1
	5	106,079.1	54,766.2	36,932.3	197,777.6
5		700,152.7	486,032.8	347,626.2	1,533,811.7
	2	22,122.2	8,820.6	4,882.2	35,824.9
	3	53,693.7	21,244.8	11,741.0	86,679.5
	4	74,500.1	31,109.2	17,832.6	123,441.9
	5	6,129.0	3,068.0	1,845.5	11,042.5
6		156,444.9	64,242.6	36,301.4	256,988.9
	1	8,905.8	3,941.3	2,249.5	15,096.6
	2	69,815.1	31,192.0	17,782.9	118,790.0
	3	374,296.1	166,253.7	94,783.6	635,333.4
	4	587,027.9	262,792.1	150,786.5	1,000,606.5
	5	85,868.0	38,280.3	21,975.6	146,123.9
8		1,125,912.9 ====================================	502,459.4 ======= 5,611,469.7	287,578.1 ====================================	1,915,950.4 ====================================

2006 Nonattainment Area

Off	Peak	VMT
OTT	r can	VIIII

FUN	AREA	OFF	OFF	OFF	OFF	TOTAL
CLASS	TYPE	PD1	PD2	PD3	PD4	OFF VMT
	2	254,289.7	287,962.1	585,928.5	131,361.9	1,259,542.2
	3	682,827.6	769,572.9	1,602,496.9	365,550.5	3,420,447.9
	4	1,095,665.3	1,294,599.8	2,813,673.1	683,373.5	5,887,311.7
	5	297,927.3	351,762.9	775,289.0	190,655.2	1,615,634.3
1	-	2,330,709.8	2,703,897.7	5,777,387.6	1,370,941.1	12,182,936.2
	2	20,486.7	23,456.1	51,549.7	12,126.5	107,619.0
	3	70,132.6	82,640.8	169,414.2	37,832.3	360,019.9
	4	158,361.7	185,379.8	407,410.1	99,059.1	850,210.8
	5	10,068.2	11,814.8	28,596.3	7,575.2	58,054.5
2	-	259,049.2	303,291.6	656,970.3	156,593.2	1,375,904.3
	1	25,739.4	30,596.1	70,603.3	18,682.9	145,621.8
	2	114,300.1	137,906.6	309,901.6	75,954.3	638,062.6
	3	652,417.3	783,325.1	1,761,512.9	437,302.7	3,634,558.0
	4	882,758.6	1,017,875.3	2,184,188.0	522,422.7	4,607,244.5
	5	81,687.2	95,367.1	213,579.2	54,958.4	445,591.9
3		1,756,902.6	2,065,070.1	4,539,785.0	1,109,321.0	9,471,078.8
	1	15,414.0	18,157.3	41,256.3	10,302.8	85,130.4
	2	45,280.6	53,146.1	120,171.8	30,199.9	248,798.4
	3	196,658.2	234,813.7	555,398.4	143,015.4	1,129,885.6
	4	315,622.5	372,741.5	856,556.8	225,107.3	1,770,028.0
	5	55,186.0	64,790.0	143,404.8	36,844.8	300,225.6
4	-	628,161.3	743,648.6	1,716,788.1	445,470.1	3,534,068.1
	1	3,779.3	4,408.7	9,806.4	2,461.9	20,456.3
	2	12,497.3	15,314.3	35,995.2	9,873.0	73,679.9
	3	56,959.5	66,276.9	158,963.8	45,751.0	327,951.2
	4	87,748.1	103,993.2	245,550.2	67,150.7	504,442.3
	5	45,503.7	53,320.5	116,696.6	28,611.1	244,131.8
5	-	206,487.9	243,313.6	567,012.3	153,847.7	1,170,661.5
	2	11,266.3	13,113.5	27,863.2	6,427.3	58,670.2
	3	29,382.0	32,554.3	68,935.9	15,839.8	146,712.0
	4	37,134.3	42,883.6	90,155.9	21,532.0	191,705.7
	5	2,700.0	3,169.6	6,894.3	1,753.0	14,516.9
6	-	80,482.6	91,720.9	193,849.2	45,552.1	411,604.8
	1	4,279.4	4,977.2	10,848.0	2,648.9	22,753.4
	2	32,822.0	38,278.3	83,713.1	20,340.3	175,153.7
	3	179,652.3	208,228.5	454,980.3	110,588.6	953,449.7
	4	281,424.3	327,852.3	719,407.8	175,192.9	1,503,877.5
	5	40,168.9	45,885.8	100,269.2	24,486.4	210,810.4
8	-	538,346.8	625,222.1	1,369,218.5	333,257.1	2,866,044.6
	-	5,800,140.2	6,776,164.6	14,821,011.0	3,614,982.3	31,012,298.2

2013 Dispersion Modeling Domain

			AM Peak VMT		
ROAD	AREA	AM	AM	AM	AM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	151,186.6	82,517.0	87,421.5	321,125.1
	3	424,271.3	234,151.9	249,269.2	907,692.5
	4	881,957.3	534,294.2	598,815.8	2,015,067.4
	5	313,694.3	194,631.4	223,991.9	732,317.5
1		1,771,109.5	1,045,594.5	1,159,498.4	3,976,202.5
	2	18,184.8	10,488.2	11,586.4	40,259.5
	3	184,594.4	104,980.2	113,128.2	402,702.9
	4	436,659.3	261,090.8	292,035.9	989,786.0
	5	77,066.6	50,539.7	58,803.6	186,410.0
2		716,505.2	427,099.0	475,554.1	1,619,158.3
	1	25,274.2	15,633.1	17,728.8	58,636.1
	2	100,119.2	59,330.3	66,000.7	225,450.2
	3	476,055.0	291,478.0	330,365.8	1,097,898.8
	4	576,185.5	351,878.2	401,702.4	1,329,766.1
	5	126,885.1	82,177.8	99,199.2	308,262.0
3		1,304,518.9	800,497.4	914,997.0	3,020,013.3
	1	13,065.0	7,929.6	8,900.7	29,895.4
	2	29,549.8	18,695.9	21,527.3	69,773.0
	3	132,601.0	85,585.2	98,817.2	317,003.4
	4	199,738.8	136,865.8	167,712.6	504,317.3
	5	52,789.2	38,402.6	49,766.9	140,958.7
4		427,743.8	287,479.2	346,724.8	1,061,947.7
	1	4,388.5	3,189.8	4,149.5	11,727.9
	2	16,831.3	14,024.1	18,813.9	49,669.4
	3	77,181.5	72,985.5	110,755.2	260,922.2
	4	120,460.5	95,549.1	132,248.9	348,258.4
	5	51,926.8	36,835.1	51,694.7	140,456.5
5		270,788.6	222,583.7	317,662.1	811,034.4
	2	7,107.9	4,055.9	4,526.7	15,690.6
	3	18,504.4	10,592.7	11,789.6	40,886.6
	4	28,408.6	16,823.0	18,924.6	64,156.2
	5	3,172.4	2,018.0	2,390.8	7,581.2
6		57,193.3	33,489.5	37,631.7	128,314.6
	1	3,472.5	2,112.1	2,392.1	7,976.7
	2	23,987.4	14,653.4	16,659.7	55,300.6
	3	119,431.9	72,961.8	82,795.0	275,188.6
	4	196,024.2	120,163.2	136,945.5	453,132.8
	5	75,265.8	46,048.9	52,497.2	173,811.8
8		418,181.8 ========== 4,966,041.1	255,939.4 ======= 3,072,682.7	291,289.4 ====================================	965,410.6 ======= 11,582,081.4

2013 Dispersion Modeling Domain

PM Peak VMT

ROAD ^{bb} CLASS	AREA [°] TYPE	PD1	PM 1	PM PD2	PM PD3	PM TOTAL
	2 3 4 5	445,447.2 1,293,157.4 2,684,485.0 925,500.2	167,69 489,57 1,195,80 434,72	6.5881.52594.86695.9249	,683.7 ,924.7 ,647.8 ,944.4	701,827.4 2,042,653.7 4,549,937.5 1,610,170.4
1		5,348,589.8	2,287,79	8.6 1,268	,200.6	8,904,589.0
	2 3 4 5	56,931.7 575,279.4 1,343,288.4 217,012.7	22,873 229,260 580,553 107,450	2.8120.01228.43240.863	,500.7 ,901.0 ,182.1 ,538.7	92,305.2 927,440.4 2,248,028.9 388,002.3
2		2,192,512.3	940,14	1.9 523	,122.6	3,655,776.8
	1 2 3 4 5	77,149.9 311,387.4 1,480,501.3 1,800,392.1 358,751.5	35,93 132,60 658,82 795,51 170,34	5.4 20 2.0 73 2.3 372 2.8 456 8.1 101	,370.0 ,879.2 ,543.3 ,479.1 ,608.1	133,455.4 517,868.6 2,511,866.9 3,052,384.0 630,707.7
3		4,028,182.3	1,793,22	0.6 1,024	,879.7	6,846,282.5
	1 2 3 4 5	41,477.3 94,877.8 404,924.2 624,012.5 140,358.2	17,78 43,69 199,12 323,07 73,68	7.5 9 0.4 25 1.3 115 5.0 197 0.5 51	,992.6 ,483.2 ,710.1 ,555.5 ,281.4	69,257.3 164,051.4 719,755.7 1,144,643.0 265,320.1
4		1,305,649.9	657,35	4.8 400	,022.8	2,363,027.5
	1 2 3 4 5	13,165.0 48,575.7 220,075.9 322,769.2 141,743.5	8,21 34,14 184,68 216,79 70,92	9.7 5 4.0 23 9.9 139 8.2 152 5.3 46	,462.4 ,335.0 ,952.7 ,356.4 ,590.4	26,847.0 106,054.6 544,718.5 691,923.8 259,259.2
5		746,329.2	514,77	7.1 367	,696.8	1,628,803.1
	2 3 4 5	24,532.4 57,691.9 85,037.2 8,933.2	9,773 22,983 35,743 4,14	1.8 5 2.8 12 1.1 19 0.0 2	,360.3 ,769.9 ,943.6 ,507.7	39,664.6 93,444.5 140,721.9 15,581.0
б		176,194.7	72,63	5.8 40	,581.5	289,412.0
	1 2 3 4 5	11,863.2 75,741.8 411,929.4 691,753.9 229,189.5	5,250 33,64 182,79 309,69 102,44	0.0 2 5.4 19 1.7 104 7.2 177 6.1 58	,995.7 ,199.0 ,202.1 ,552.7 ,663.2	20,108.9 128,586.1 698,923.2 1,179,003.8 390,298.8
8	-	1,420,477.7 ==================================	633,83 ==================================	0.4 362 === ===== 9.1 3,987	,612.6 ===== == ,116.6 2	2,416,920.7 ======= 26,104,811.6

^{bb} Road Types: 1=Freeway, 2=Major Regional, 3=Principal Arterial, 4=Minor Arterial, 5=Collector, 6=Ramp, 7=Frontage, 8=Local ^{cc} Area Types: 1=Central Business District, 2=Fringe, 3=Urban, 4=Suburban, 5=Rural

2013 Dispersion Modeling Domain

Off Peak VMT

FUN	AREA	OFF	OFF	OFF	OFF	TOTAL
CLASS	TYPE	PD1	PD2	PD3	PD4	OFF VMT
	2	296,911.1	319,495.5	635,836.6	140,325.5	1,392,568.8
	3	788,741.4	872,007.4	1,793,547.1	404,910.1	3,859,205.9
	4	1,348,904.7	1,572,530.0	3,426,558.8	818,931.7	7,166,925.1
	5	520,534.2	612,539.5	1,354,505.7	330,938.6	2,818,518.0
1		2,955,091.4	3,376,572.4	7,210,448.2	1,695,105.9	15,237,217.9
	2	28,731.1	32,628.7	70,346.5	16,724.5	148,430.7
	3	291,033.5	342,360.5	743,505.7	174,398.0	1,551,297.7
	4	622,224.9	745,719.3	1,662,490.1	408,171.8	3,438,606.0
	5	95,923.1	117,409.9	268,806.9	70,447.0	552,586.8
2		1,037,912.5	1,238,118.3	2,745,149.1	669,741.2	5,690,921.1
	1	29,784.6	36,642.9	84,491.6	21,925.9	172,845.0
	2	139,366.1	173,235.4	385,503.7	92,158.5	790,263.6
	3	626,582.4	759,734.4	1,718,390.6	427,698.2	3,532,405.6
	4	881,907.3	1,025,222.2	2,211,008.1	534,466.4	4,652,604.1
	5	167,978.1	193,568.9	431,847.3	106,313.1	899,707.4
3		1,845,618.5	2,188,403.8	4,831,241.2	1,182,562.1	10,047,825.6
	1	17,822.6	21,120.4	48,091.6	11,838.1	98,872.8
	2	39,403.6	48,000.8	106,336.4	26,506.3	220,247.1
	3	146,957.4	179,697.8	429,379.7	111,547.9	867,582.8
	4	247,941.2	291,970.9	675,540.1	173,458.0	1,388,910.1
	5	60,409.3	72,494.0	161,985.2	39,584.3	334,472.8
4		512,534.2	613,283.8	1,421,333.0	362,934.6	2,910,085.6
	1	5,089.4	5,843.8	12,890.2	3,347.5	27,171.1
	2	13,848.1	16,948.1	41,277.2	11,291.4	83,364.8
	3	61,099.9	71,815.2	169,459.5	46,678.0	349,052.6
	4	107,181.0	128,611.1	299,040.7	77,899.8	612,732.7
	5	63,988.5	77,072.6	170,003.0	40,435.5	351,499.6
5		251,207.1	300,290.8	692,670.6	179,652.3	1,423,820.7
	2	12,138.2	14,333.1	30,851.5	7,253.8	64,576.6
	3	33,147.6	35,780.8	74,911.3	17,240.7	161,080.4
	4	44,371.5	50,526.4	106,658.9	25,184.1	226,740.9
	5	4,076.5	4,736.6	10,555.3	2,579.7	21,948.1
б		93,733.7	105,376.9	222,977.1	52,258.3	474,346.1
	1	5,799.0	6,707.4	14,700.5	3,534.8	30,741.8
	2	36,344.2	42,315.6	92,568.5	22,300.3	193,528.6
	3	201,253.8	233,526.8	511,548.3	123,433.4	1,069,762.3
	4	339,635.4	394,952.8	864,838.2	209,066.6	1,808,493.0
	5	115,353.1	133,692.6	293,373.3	70,628.1	613,047.2
8		698,385.5	811,195.2	1,777,028.9	428,963.3	3,715,572.9
		1,394,482.8	0,033,241.2	10,900,048.2	4,5/1,21/./	JJ,4JJ,/09.9

2013 Nonattainment Area

ROAD	AREA	AM	AM	AM	AM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	151,186.6	82,517.0	87,421.5	321,125.1
	3	424,271.3	234,151.9	249,269.2	907,692.5
	4	860,881.7	521,573.6	584,637.9	1,967,093.3
	5	215,240.7	134,876.1	155,651.0	505,767.7
1		1,651,580.3	973,118.7	1,076,979.6	3,701,678.6
	2	18,184.8	10,488.2	11,586.4	40,259.5
	3	184,594.4	104,980.2	113,128.2	402,702.9
	4	402,495.8	239,926.3	266,383.6	908,805.6
	5	51,329.3	34,325.0	40,408.5	126,062.7
2		656,604.3	389,719.7	431,506.7	1,477,830.7
	1	25,274.2	15,633.1	17,728.8	58,636.1
	2	100,119.2	59,330.3	66,000.7	225,450.2
	3	473,238.6	289,810.0	328,436.8	1,091,485.5
	4	540,592.7	330,753.4	377,934.2	1,249,280.3
	5	85,315.6	54,767.7	65,346.5	205,429.8
3		1,224,540.3	750,294.6	855,446.9	2,830,281.9
	1	13,065.0	7,929.6	8,900.7	29,895.4
	2	29,549.8	18,695.9	21,527.3	69,773.0
	3	131,520.2	84,868.4	98,013.3	314,402.0
	4	191,044.5	131,363.6	161,404.9	483,813.0
	5	29,644.4	21,793.5	28,723.9	80,161.7
4		394,824.0	264,651.0	318,570.1	978,045.1
	1	4,388.5	3,189.8	4,149.5	11,727.9
	2	16,831.3	14,024.1	18,813.9	49,669.4
	3	77,054.2	72,885.9	110,600.5	260,540.7
	4	116,202.0	92,910.3	129,119.2	338,231.6
	5	42,279.5	30,700.4	44,350.6	117,330.5
5		256,755.6	213,710.6	307,033.7	777,500.0
	2	7,107.9	4,055.9	4,526.7	15,690.6
	3	18,504.4	10,592.7	11,789.6	40,886.6
	4	27,921.8	16,528.1	18,585.5	63,035.4
	5	2,517.9	1,621.1	1,914.0	6,052.9
6		56,051.9	32,797.7	36,815.9	125,665.5
	1	3,472.5	2,112.1	2,392.1	7,976.7
	2	23,987.4	14,653.4	16,659.7	55,300.6
	3	118,663.4	72,490.2	82,261.1	273,414.8
	4	188,816.7	115,729.0	131,901.8	436,447.4
	5	32,957.9	20,222.4	22,980.6	76,160.8
8		367,897.9	225,207.2	256,195.3	849,300.3
		4,608,254.3	2,849,499.5	3,282,548.3	10,740,302.1

2013 Nonattainment Area

PM Peak VMT

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROAD CLASS	AREA TYPE	PM PD1	PM PD2	PM PD3	PM TOTAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 3 4 5	445,447.2 1,293,157.4 2,620,441.0 623,315.8	167,696.5 489,571.5 1,167,806.7 299,865.0	88,683.7 259,924.7 654,175.7 173,060.8	701,827.4 2,042,653.7 4,442,423.3 1,096,241.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		4,982,361.4	2,124,939.7	1,175,844.9	8,283,146.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 3 4 5	56,931.7 575,279.4 1,240,999.7 137,289.0	22,872.8 229,260.0 533,571.1 70,670.1	12,500.7 122,901.0 295,195.5 42,090.4	92,305.2 927,440.4 2,069,766.3 250,049.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		2,010,499.9	856,374.0	472,687.6	3,339,561.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 2 3 4 5	77,149.9 311,387.4 1,470,307.7 1,688,721.1 237,404.4	35,935.4 132,602.0 654,684.5 745,865.5 111,897.9	20,370.0 73,879.2 370,189.5 428,294.6 66,404.7	133,455.4 517,868.6 2,495,181.7 2,862,881.3 415,707.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3		3,784,970.5	1,680,985.4	959,138.0	6,425,093.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2 3 4 5	41,477.3 94,877.8 401,568.8 593,462.4 75,099.0	17,787.5 43,690.4 197,301.5 309,283.5 42,238.4	9,992.6 25,483.2 114,640.3 189,461.3 30,771.5	69,257.3 164,051.4 713,510.6 1,092,207.2 148,108.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4		1,206,485.2	610,301.3	370,348.8	2,187,135.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2 3 4 5	13,165.0 48,575.7 219,733.1 308,016.1 113,950.4	8,219.7 34,144.0 184,436.0 210,095.0 58,222.3	5,462.4 23,335.0 139,780.9 148,433.4 38,844.1	26,847.0 106,054.6 543,950.1 666,544.6 211,016.8
2 24,532.4 9,771.8 5,360.3 39,664 3 57,691.9 22,982.8 12,769.9 93,444 4 83,873.4 35,223.2 19,603.6 138,700 5 6,740.9 3,138.8 1,926.6 11,806 6 172,838.5 71,116.5 39,660.4 283,615 1 11,863.2 5,250.0 2,995.7 20,108 2 75,741.8 33,645.4 19,199.0 128,586 3 409,396.3 181,656.9 103,554.8 694,608 4 666,347.5 298.3 170,994.0 1,135.632	5		703,440.4	495,117.0	355,855.7	1,554,413.0
6 172,838.5 71,116.5 39,660.4 283,615 1 11,863.2 5,250.0 2,995.7 20,108 2 75,741.8 33,645.4 19,199.0 128,586 3 409,396.3 181,656.9 103,554.8 694,608 4 666,347 298.3 170,994.0 1,135.639		2 3 4 5	24,532.4 57,691.9 83,873.4 6,740.9	9,771.8 22,982.8 35,223.2 3,138.8	5,360.3 12,769.9 19,603.6 1,926.6	39,664.6 93,444.5 138,700.1 11,806.2
1 11,863.2 5,250.0 2,995.7 20,108 2 75,741.8 33,645.4 19,199.0 128,586 3 409,396.3 181,656.9 103,554.8 694,608 4 666,347.5 298,298,3 170,994.0 1,135,639	6		172,838.5	71,116.5	39,660.4	283,615.4
5 99,990.1 44,677.5 25,543.4 170,211		1 2 3 4 5	11,863.2 75,741.8 409,396.3 666,347.5 99,990.1	5,250.0 33,645.4 181,656.9 298,298.3 44,677.5	2,995.7 19,199.0 103,554.8 170,994.0 25,543.4	20,108.9 128,586.1 694,608.0 1,135,639.8 170,211.0
8 1,263,338.8 563,528.0 322,286.8 2,149,153	8		1,263,338.8 ==================================	563,528.0	322,286.8	2,149,153.7 ====================================

2013 Nonattainment Area

Off Peak VMT

FUN	AREA	OFF	OFF	OFF	OFF	TOTAL
CLASS	TYPE	PD1	PD2	PD3	PD4	OFF VMT
	2	296,911.1	319,495.5	635,836.6	140,325.5	1,392,568.8
	3	788,741.4	872,007.4	1,793,547.1	404,910.1	3,859,205.9
	4	1,314,001.0	1,530,484.8	3,333,028.1	796,049.4	6,973,563.3
	5	340,291.9	397,801.7	877,839.4	214,663.0	1,830,596.0
1	·	2,739,945.4	3,119,789.4	6,640,251.2	1,555,948.1	14,055,934.1
	2	28,731.1	32,628.7	70,346.5	16,724.5	148,430.7
	3	291,033.5	342,360.5	743,505.7	174,398.0	1,551,297.7
	4	569,607.4	683,024.6	1,524,398.4	374,805.2	3,151,835.7
	5	48,471.8	61,053.9	144,415.5	40,326.8	294,268.0
2		937,843.8	1,119,067.7	2,482,666.1	606,254.5	5,145,832.1
	1	29,784.6	36,642.9	84,491.6	21,925.9	172,845.0
	2	139,366.1	173,235.4	385,503.7	92,158.5	790,263.6
	3	621,214.0	753,428.7	1,704,507.6	424,254.0	3,503,404.4
	4	824,110.7	958,295.1	2,068,512.2	499,755.6	4,350,673.6
	5	107,770.4	123,245.2	273,170.4	66,918.7	571,104.7
3		1,722,245.8	2,044,847.3	4,516,185.5	1,105,012.7	9,388,291.2
	1	17,822.6	21,120.4	48,091.6	11,838.1	98,872.8
	2	39,403.6	48,000.8	106,336.4	26,506.3	220,247.1
	3	145,545.8	178,014.8	425,629.2	110,555.9	859,745.7
	4	232,427.2	274,023.6	634,688.3	163,867.4	1,305,006.4
	5	29,312.0	36,409.1	81,702.3	20,416.5	167,840.0
4		464,511.2	557,568.8	1,296,447.8	333,184.2	2,651,712.0
	1	5,089.4	5,843.8	12,890.2	3,347.5	27,171.1
	2	13,848.1	16,948.1	41,277.2	11,291.4	83,364.8
	3	61,002.9	71,699.2	169,194.3	46,608.2	348,504.6
	4	99,957.2	120,266.4	280,264.8	73,373.8	573,862.3
	5	50,628.5	61,831.5	135,471.9	32,235.9	280,167.8
5		230,526.2	276,589.0	639,098.4	166,856.9	1,313,070.5
	2	12,138.2	14,333.1	30,851.5	7,253.8	64,576.6
	3	33,147.6	35,780.8	74,911.3	17,240.7	161,080.4
	4	43,750.6	49,796.7	105,047.6	24,801.6	223,396.5
	5	3,163.9	3,617.3	7,983.8	1,954.3	16,719.3
6		92,200.2	103,527.9	218,794.3	51,250.4	465,772.8
	1	5,799.0	6,707.4	14,700.5	3,534.8	30,741.8
	2	36,344.2	42,315.6	92,568.5	22,300.3	193,528.6
	3	200,045.4	232,101.7	508,429.0	122,687.3	1,063,263.4
	4	327,011.6	380,307.1	832,834.8	201,344.5	1,741,498.0
	5	48,427.0	55,564.4	121,725.2	29,152.5	254,869.2
8	:	617,627.1	716,996.2	1,570,258.0	379,019.6	3,283,900.9
		6,804,899.7	7,938,386.3	17,363,701.3	4,197,526.3	36,304,513.5

Appendix B – Mobile Source Emissions Modeling: Mobile5b input/output and FORTRAN algorithm for NLEV Credit Estimate

1PROMPT2006CORedesignation; small stuff p1TAMFLG1SPDFLG2VMFLAG3MYMRFG1NEWFLG6IMFLAG1ALHFLG2ATPFLG1RLFLAG2LOCFLG2TEMFLG2OUTFMT2PRTFLG1IDLFLG3NMHFLG	<pre># No prompting, vertical format plus; SIP cp; mechanics training # Use MOBILE 5 tampering rates # Use one speed for all vehicle types # Each scenario has its own VMT mix # Use local registration distribution # Use MOBILE 5 BER's # Use one I/M programs # No additional correction factors # Anti-tampering, no press/purge check # Uncontrolled refueling emission rates # Only one LAP record # MOBILE 5 uses max and min temp. # 80 column descriptive format # Calculate CO only # No idle emissions # VOC emission factors</pre>
.049 .065 .067 .074 .080 .083 .082 .058 .052 .045 .034 .028 .024 .021	2 .068 .065 .043 # Colorado LDGV I .019 .017 .009 # registration distribution
.007 .005 .003 .001 .001 .058 .055 .044 .047 .047 .078 .071 .056 .060 .051 .035 .032 .031 .033	L .065 .062 .045 # Colorado LDGT1 3 .033 .033 .021 # registration distribution
.017 .013 .009 .004 .000 .058 .055 .044 .047 .047 .078 .071 .056 .060 .051 .035 .032 .031 .033	L .065 .062 .045 # Colorado LDGT2 3 .033 .033 .021 # registration distribution
.017 .013 .009 .004 .000 .066 .062 .049 .050 .052 .084 .096 .052 .054 .044 .030 .026 .025 .027	5 .069 .064 .042 # Colorado HDGV 7 .027 .027 .018 # registration distribution
.014 .011 .007 .004 .000 .049 .065 .067 .074 .080 .083 .082 .058 .052 .045 .034 .028 .024 .021	2 .068 .065 .043 # Colorado LDDV L .019 .017 .009 # registration distribution
.058 .055 .044 .047 .047 .078 .071 .056 .060 .051 .035 .032 .031 .033 .017 013 .009 .004 .000	L .065 .062 .045 # Colorado LDDT 3 .033 .033 .021 # registration distribution
.110 .095 .116 .113 .080 .102 .079 .048 .055 .044 .001 .001 .001 .001 .001 .001 .000 .000	<pre>3 .062 .037 .050 # Colorado HDDV L .001 .001 .001 # registration distribution</pre>
.001 .001 .001 .001 .001 .001 .001 .001 .989 .000 .000 .000 .000 .000 .000 .000 .00	L .001 .001 .001 # Colorado MC) .000 .000 .000 # registration distribution
82 20 82 02 00 00 098 1 2 2221 4222 82 20 82 02 00 00 098 1 2 1112 2222 TECH12RSD80.D IMDATRSD80.D	2 .6 10.0 1.5 2 220. 1.2 999.
82 75 02 2222 12 098. 22111112 C 26. 52. 12.4 12	12.4 92 2
2 6 21.5 27.0 16.0 8.0 16.0 595.214.100.026.002.002.061.000	6 AM 1 CBD PRINCIPAL ARTERIAL
2 6 18.7 27.0 16.0 8.0 16.0 .595.214.100.026.002.002.061.000	6 AM 1 CBD MINOR ARTERIAL
2 6 17.1 27.0 7.0 11.0 7.0 .595.214.100.026.002.002.061.000	6 AM 1 CBD COLLECTOR
2 6 11.4 27.0 7.0 11.0 7.0 .595.214.100.026.002.002.061.000	6 AM 1 CBD LOCAL
2 6 36.3 27.0 8.0 1.0 8.0 .571.218.102.031.002.002.074.000	6 AM 1 FRINGE FREEWAY
2 6 30.4 27.0 8.0 1.0 8.0 .571.218.102.031.002.002.074.000	6 AM 1 FRINGE MAJOR REGIONAL
2 6 24.8 27.0 41.0 5.0 42.0 .667.154.072.030.002.002.073.000	6 AM 1 FRINGE PRINCIPAL ARTERIAL
2 6 22.1 27.0 41.0 5.0 42.0 .667.154.072.030.002.002.073.000	6 AM 1 FRINGE MINOR ARTERIAL
2 6 21.1 27.0 22.0 2.0 22.0 .667.154.072.030.002.002.073.000	6 AM 1 FRINGE COLLECTOR
2 6 30.3 27.0 41.0 5.0 42.0 .667.154.072.030.002.002.073.000	6 AM 1 FRINGE RAMP
2 6 13.1 27.0 22.0 1.0 23.0 .667.154.072.030.002.002.073.000	6 AM 1 FRINGE LOCAL
2 6 40.2 27.0 22.0 2.0 22.0 .644.187.088.023.002.002.054.000	6 AM 1 URBAN FREEWAY
2 0 32.8 27.0 24.0 2.0 24.0 .584.226.106.024.002.002.056.000	6 AM 1 URBAN MAJOR REGIONAL
2 0 28.8 27.0 39.0 4.0 40.0 .641.190.089.022.002.002.054.000	6 AM 1 URBAN PRINCIPAL ARTERIAL
2 6 27.2 27.0 61.0 7.0 83.0 .683.171.080.018.002.002.044.000 2 6 23.2 27.0 69.0 7.0 71.0	6 AM 1 URBAN MINOR ARTERIAL

Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

.652.181.085.023.002.002.055.000 2 6 31.7 27.0 39.0 4.0 40.0 .641.190.089.022.002.002.054.000 2 6 16.3 27.0 44.0 4.0 46.0 .652.181.085.023.002.002.055.000 6 45.6 27.0 28.0 2.0 28.0 .570.234.109.024.002.003.058.000 6 36.5 27.0 19.0 2.0 19.0 .514.241.113.037.002.003.090.000 6 34.0 27.0 39.0 3.0 39.0 .583.227.106.024.002.002.056.000 6 32.7 27.0 77.0 8.0 77.0 .637.194.091.022.002.002.052.000 2 6 27.6 27.0 73.0 7.0 73.0 .626.229.107.010.002.002.024.000 2 6 30.5 27.0 39.0 3.0 39.0 .583.227.106.024.002.002.056.000 6 19.8 27.0 52.0 5.0 52.0 .626.229.107.010.002.002.024.000 2 6 59.0 27.0 36.0 1.0 35.0 .389.222.104.083.001.002.199.000 2 6 45.0 27.0 8.0 0.0 8.0 .493.225.105.051.002.002.122.000 2 6 42.3 27.0 13.0 1.0 13.0 .564.238.111.024.002.003.058.000 2 6 41.5 27.0 13.0 1.0 13.0 .564.238.111.024.002.003.058.000 2 6 31.7 27.0 57.0 2.0 57.0 .564.238.111.024.002.003.058.000 2 6 34.9 27.0 13.0 1.0 13.0 .564.238.111.024.002.003.058.000 6 21.9 27.0 57.0 2.0 57.0 .564.238.111.024.002.003.058.000 6 16.3 27.0 16.0 8.0 16.0 .595.214.100.026.002.002.061.000 6 14.5 27.0 16.0 8.0 16.0 .595.214.100.026.002.002.061.000 2 6 15.2 27.0 7.0 11.0 7.0 2 .595.214.100.026.002.002.061.000 6 11.4 27.0 7.0 11.0 7.0 .595.214.100.026.002.002.061.000 6 27.8 27.0 8.0 1.0 8.0 .571.218.102.031.002.002.074.000 6 23.1 27.0 8.0 1.0 8.0 .571.218.102.031.002.002.074.000 6 19.1 27.0 41.0 5.0 42.0 .667.154.072.030.002.002.073.000 2 6 17.3 27.0 41.0 5.0 42.0 .667.154.072.030.002.002.073.000 2 6 17.9 27.0 22.0 2.0 22.0 .667.154.072.030.002.002.073.000 2 6 26.3 27.0 41.0 5.0 42.0 .667.154.072.030.002.002.073.000 2 6 13.1 27.0 22.0 1.0 23.0 .667.154.072.030.002.002.073.000 2 6 32.2 27.0 22.0 2.0 22.0 .644.187.088.023.002.002.054.000 2 6 27.9 27.0 24.0 2.0 24.0 .584.226.106.024.002.002.056.000 6 23.2 27.0 39.0 4.0 40.0 641.190.089.022.002.002.054.000 6 22.1 27.0 81.0 7.0 83.0 .683.171.080.018.002.002.044.000 2 6 20.6 27.0 69.0 7.0 71.0 652.181.085.023.002.002.055.000 2 6 28.5 27.0 39.0 4.0 40.0 .641.190.089.022.002.002.054.000 6 16.3 27.0 44.0 4.0 46.0 .652.181.085.023.002.002.055.000 2 6 38.7 27.0 28.0 2.0 28.0 .570.234.109.024.002.003.058.000 6 30.8 27.0 19.0 2.0 19.0 .514.241.113.037.002.003.090.000 6 27.6 27.0 39.0 3.0 39.0 .583.227.106.024.002.002.056.000 6 27.3 27.0 77.0 8.0 77.0 .637.194.091.022.002.002.052.000 6 24.3 27.0 73.0 7.0 73.0 .626.229.107.010.002.002.024.000 6 27.9 27.0 39.0 3.0 39.0 .583.227.106.024.002.002.056.000

б	AM	1	URBAN	COLLECTOR
б	AM	1	URBAN	RAMP
б	AM	1	URBAN	LOCAL
б	AM	1	SUBURBAN	FREEWAY
б	AM	1	SUBURBAN	MAJOR REGIONAL
б	AM	1	SUBURBAN	PRINCIPAL ARTERIAL
б	AM	1	SUBURBAN	MINOR ARTERIAL
б	AM	1	SUBURBAN	COLLECTOR
б	AM	1	SUBURBAN	RAMP
б	AM	1	SUBURBAN	LOCAL
б	AM	1	RURAL	FREEWAY
б	AM	1	RURAL	MAJOR REGIONAL
б	AM	1	RURAL	PRINCIPAL ARTERIAL
б	AM	1	RURAL	MINOR ARTERIAL
б	AM	1	RURAL	COLLECTOR
б	AM	1	RURAL	RAMP
б	AM	1	RURAL	LOCAL
б	AM	2	CBD	PRINCIPAL ARTERIAL
б	AM	2	CBD	MINOR ARTERIAL
б	AM	2	CBD	COLLECTOR
б	AM	2	CBD	LOCAL
б	AM	2	FRINGE	FREEWAY
б	AM	2	FRINGE	MAJOR REGIONAL
б	AM	2	FRINGE	PRINCIPAL ARTERIAL
б	AM	2	FRINGE	MINOR ARTERIAL
б	AM	2	FRINGE	COLLECTOR
б	AM	2	FRINGE	RAMP
б	AM	2	FRINGE	LOCAL
б	AM	2	URBAN	FREEWAY
б	AM	2	URBAN	MAJOR REGIONAL
б	AM	2	URBAN	PRINCIPAL ARTERIAL
б	AM	2	URBAN	MINOR ARTERIAL
б	AM	2	URBAN	COLLECTOR
б	AM	2	URBAN	RAMP
б	AM	2	URBAN	LOCAL
б	AM	2	SUBURBAN	FREEWAY
б	AM	2	SUBURBAN	MAJOR REGIONAL
б	AM	2	SUBURBAN	PRINCIPAL ARTERIAL
б	AM	2	SUBURBAN	MINOR ARTERIAL
б	AM	2	SUBURBAN	COLLECTOR
б	AM	2	SUBURBAN	RAMP

2 6	19827	0 5 2 0 5 0 5 2 0
.626	.229.107.	010.002.002.024.000
2 6	53.5 27.	0 36.0 1.0 35.0
.389	.222.104.	083.001.002.199.000
2 6	39.9 27.	0 8.0 0.0 8.0
.493	.225.105.	051.002.002.122.000
2 6	38.5 27.	0 13.0 1.0 13.0
.564	.238.111.	024.002.003.058.000
Z 0	220 111	
2 6	29 7 27	0 57 0 2 0 57 0
.564	.238.111.	024.002.003.058.000
2 6	31.1 27.	0 13.0 1.0 13.0
.564	.238.111.	024.002.003.058.000
2 6	21.9 27.	0 57.0 2.0 57.0
.564	.238.111.	024.002.003.058.000
2 6	11.8 27.	0 16.0 8.0 16.0
2 6	11 3 27	0 16 0 8 0 16 0
.595	.214.100.	026.002.002.061.000
2 6	12.9 27.	0 7.0 11.0 7.0
.595	.214.100.	026.002.002.061.000
2 6	11.4 27.	0 7.0 11.0 7.0
.595	.214.100.	026.002.002.061.000
Z 0 571	21.1 2/.	0 8.0 1.0 8.0 021 002 002 074 000
2 6	17 8 27	0 8 0 1 0 8 0
.571	.218.102.	031.002.002.074.000
2 6	14.1 27.	0 41.0 5.0 42.0
.667	.154.072.	030.002.002.073.000
2 6	12.9 27.	0 41.0 5.0 42.0
.667	.154.072.	030.002.002.073.000
2 0	164 072	
2 6	.134.072.	0.30.002.002.073.000
.667	.154.072.	030.002.002.073.000
2 6	13.1 27.	0 22.0 1.0 23.0
.667	.154.072.	030.002.002.073.000
2 6	25.6 27.	0 22.0 2.0 22.0
.644	.187.088.	023.002.002.054.000
2 6 584	22.3 27.	0 24.0 2.0 24.0
2 6	18.2.27	0 39.0 4.0 40.0
.641	.190.089.	022.002.002.054.000
2 6	17.3 27.	0 81.0 7.0 83.0
.683	.171.080.	018.002.002.044.000
2 6	17.4 27.	0 69.0 7.0 71.0
.652	.181.085.	023.002.002.055.000
641	25.1 2/. 100 080	0 39.0 4.0 40.0
2 6	16.3 27.	0 44.0 4.0 46.0
.652	.181.085.	023.002.002.055.000
2 6	31.7 27.	0 28.0 2.0 28.0
.570	.234.109.	024.002.003.058.000
2 6	26.5 27.	0 19.0 2.0 19.0
2 6	.241.113. 21 0 27	
∠ 0 583	21.0 27.	024 002 002 056 000
2 6	21.3 27.	0 77.0 8.0 77.0
.637	.194.091.	022.002.002.052.000
2 6	20.9 27.	0 73.0 7.0 73.0
.626	.229.107.	010.002.002.024.000
2 6	25.2 27.	0 39.0 3.0 39.0
2 6	.22/.100. 19 8 27	024.002.002.050.000
.626	.229.107.	010.002.002.024.000
2 6	47.5 27.	0 36.0 1.0 35.0
.389	.222.104.	083.001.002.199.000
2 6	34.3 27.	0 8.0 0.0 8.0
.493	.225.105.	051.002.002.122.000
∠ b 56⊅	54.5 27. 228 111	U 13.U 1.U 13.U 024 002 003 058 000
2 6	34.5 27	0 13.0 1.0 13.0
.564	.238.111.	024.002.003.058.000
2 6	27.7 27.	0 57.0 2.0 57.0
.564	.238.111.	024.002.003.058.000
2 6	26.1 27.	0 13.0 1.0 13.0
. 504. 2 6	.∠30.⊥⊥⊥. 21 0 27	024.002.003.058.000 0 57 0 2 0 57 0
.564	.238.111	024.002.003.058.000
2 6	23.2 52.	0 46.0 12.0 59.0

6	AM	2	SUBURBAN	LOCAL
б	AM	2	RURAL	FREEWAY
6	AM	2	RURAL	MAJOR REGIONAL
б	AM	2	RURAL	PRINCIPAL ARTERIAL
б	AM	2	RURAL	MINOR ARTERIAL
б	AM	2	RURAL	COLLECTOR
6	AM	2	RURAL	RAMP
6	AM	2	RURAL	LOCAL
6	AM	3	CBD	PRINCIPAL ARTERIAL
6	AM	3	CBD	MINOR ARTERIAL
б	AM	3	CBD	COLLECTOR
б	AM	3	CBD	LOCAL
б	AM	3	FRINGE	FREEWAY
б	AM	3	FRINGE	MAJOR REGIONAL
6	AM	3	FRINGE	PRINCIPAL ARTERIAL
6	AM	3	FRINGE	MINOR ARTERIAL
6	AM	3	FRINGE	COLLECTOR
6	AM	3	FRINGE	RAMP
б	AM	3	FRINGE	LOCAL
б	AM	3	URBAN	FREEWAY
б	AM	3	URBAN	MAJOR REGIONAL
б	AM	3	URBAN	PRINCIPAL ARTERIAL
б	AM	3	URBAN	MINOR ARTERIAL
б	AM	3	URBAN	COLLECTOR
б	AM	3	URBAN	RAMP
6	AM	3	URBAN	LOCAL
б	AM	3	SUBURBAN	FREEWAY
б	AM	3	SUBURBAN	MAJOR REGIONAL
6	AM	3	SUBURBAN	PRINCIPAL ARTERIAL
6	AM	3	SUBURBAN	MINOR ARTERIAL
6	AM	3	SUBURBAN	COLLECTOR
6	AM	3	SUBURBAN	RAMP
б	AM	3	SUBURBAN	LOCAL
6	AM	3	RURAL	FREEWAY
б	AM	3	RURAL	MAJOR REGIONAL
6	AM	3	RURAL	PRINCIPAL ARTERIAL
6	AM	3	RURAL	MINOR ARTERIAL
6	AM	3	RURAL	COLLECTOR
6	AM	3	RURAL	RAMP
б	AM	3	RURAL	LOCAL

.648.173.081.028.002.002.066.000	
2 6 19.9 52.0 46.0 12.0 59.0 .648.173.081.028.002.002.066.000	
2 6 17.5 52.0 45.0 8.0 56.0	
2 6 11.4 52.0 45.0 8.0 56.0	
.648.173.081.028.002.002.066.000	
.547.241.113.028.002.003.066.000	
2 6 33.9 52.0 8.0 7.0 12.0 .547.241.113.028.002.003.066.000	
2 6 27.0 52.0 30.0 19.0 43.0	
2 6 23.2 52.0 30.0 19.0 43.0	
.629.193.090.025.002.002.059.000 2 6 22.5 52.0 34.0 14.0 46.0	
.629.193.090.025.002.002.059.000	
.629.193.090.025.002.002.059.000	
2 6 13.1 52.0 34.0 14.0 46.0 629 193 090 025 002 002 059 000	
2 6 41.2 52.0 8.0 7.0 12.0	
.618.207.097.022.002.002.052.000 2 6 31.5 52.0 15.0 14.0 23.0	
.587.241.113.016.002.003.038.000	
.624.207.097.020.002.002.048.000	
2 6 28.6 52.0 39.0 37.0 60.0 648 207 097 013 002 002 031 000	
2 6 23.9 52.0 24.0 24.0 38.0	
.698.180.084.010.002.002.024.000 2 6 31.4 52.0 19.0 17.0 30.0	
.624.207.097.020.002.002.048.000	
.698.180.084.010.002.002.024.000	
2 6 49.1 52.0 13.0 10.0 19.0 .577.232.109.023.002.002.055.000	
2 6 38.0 52.0 14.0 23.0 22.0 478 281 132 021 002 003 073 000	
2 6 36.0 52.0 12.0 11.0 18.0	
.558.254.119.019.002.003.045.000 2 6 35.6 52.0 25.0 24.0 37.0	
.599.229.107.018.002.002.043.000	
.648.207.097.013.002.002.031.000	
2 6 32.8 52.0 12.0 11.0 18.0 558 254 119 019 002 003 045 000	
2 6 19.8 52.0 19.0 18.0 29.0	
2 6 60.7 52.0 16.0 9.0 23.0	
.418.241.113.066.001.003.158.000	
.498.261.122.034.002.003.080.000	
2 6 45.2 52.0 16.0 13.0 24.0 .619.220.103.016.002.002.038.000	
2 6 42.6 52.0 16.0 13.0 24.0 619 220 103 016 002 002 038 000	
2 6 33.8 52.0 23.0 13.0 34.0	
.619.220.103.016.002.002.038.000 2 6 38.3 52.0 16.0 13.0 24.0	
.619.220.103.016.002.002.038.000	
.619.220.103.016.002.002.038.000	
2 6 16.9 52.0 46.0 12.0 59.0 .648.173.081.028.002.002.066.000	
2 6 14.4 52.0 46.0 12.0 59.0 (48 172 001 028 002 002 006 000	
2 6 15.3 52.0 45.0 8.0 56.0	
.648.173.081.028.002.002.066.000	
.648.173.081.028.002.002.066.000	
2 6 27.7 52.0 8.0 7.0 12.0 .547.241.113.028.002.003.066.000	
2 6 25.0 52.0 8.0 7.0 12.0 547,241,113 028 002 003 066 000	
2 6 18.7 52.0 30.0 19.0 43.0	
.629.193.090.025.002.002.059.000 2 6 16.6 52.0 30.0 19.0 43.0	
.629.193.090.025.002.002.059.000	
.629.193.090.025.002.002.059.000	

6	PM	4	CBD	PRINCIPAL ARTERIAL
б	PM	4	CBD	MINOR ARTERIAL
б	PM	4	CBD	COLLECTOR
б	PM	4	CBD	LOCAL
б	PM	4	FRINGE	FREEWAY
б	PM	4	FRINGE	MAJOR REGIONAL
б	PM	4	FRINGE	PRINCIPAL ARTERIAL
б	PM	4	FRINGE	MINOR ARTERIAL
б	PM	4	FRINGE	COLLECTOR
б	PM	4	FRINGE	RAMP
6	PM	4	FRINGE	LOCAL
6	PM	4	URBAN	FREEWAY
б	PM	4	URBAN	MAJOR REGIONAL
6	PM	4	URBAN	PRINCIPAL ARTERIAL
б	PM	4	URBAN	MINOR ARTERIAL
б	PM	4	URBAN	COLLECTOR
б	PM	4	URBAN	RAMP
б	PM	4	URBAN	LOCAL
б	PM	4	SUBURBAN	FREEWAY
б	PM	4	SUBURBAN	MAJOR REGIONAL
б	PM	4	SUBURBAN	PRINCIPAL ARTERIAL
б	PM	4	SUBURBAN	MINOR ARTERIAL
6	PM	4	SUBURBAN	COLLECTOR
6	PM	4	SUBURBAN	RAMP
б	PM	4	SUBURBAN	LOCAL
6	PM	4	RURAL	FREEWAY
6	PM	4	RURAL	MAJOR REGIONAL
б	PM	4	RURAL	PRINCIPAL ARTERIAL
6	PM	4	RURAL	MINOR ARTERIAL
б	PM	4	RURAL	COLLECTOR
б	PM	4	RURAL	RAMP
б	PM	4	RURAL	LOCAL
б	PM	5	CBD	PRINCIPAL ARTERIAL
б	PM	5	CBD	MINOR ARTERIAL
б	PM	5	CBD	COLLECTOR
б	PM	5	CBD	LOCAL
б	PM	5	FRINGE	FREEWAY
б	PM	5	FRINGE	MAJOR REGIONAL
б	PM	5	FRINGE	PRINCIPAL ARTERIAL
6	PM	5	FRINGE	MINOR ARTERIAL
6	PM	5	FRINGE	COLLECTOR

2 6 24.0 52.0 30.0 19.0 43.0
.629.193.090.025.002.002.059.000
.629.193.090.025.002.002.059.000
2 6 29.5 52.0 8.0 7.0 12.0
2 6 26 3 52 0 15 0 14 0 23 0
.587.241.113.016.002.003.038.000
2 6 22.4 52.0 19.0 17.0 30.0
2 6 21.0 52.0 39.0 37.0 60.0
.648.207.097.013.002.002.031.000
2 6 21.0 52.0 24.0 24.0 38.0
2 6 27.4 52.0 19.0 17.0 30.0
.624.207.097.020.002.002.048.000
698.180.084.010.002.002.024.000
2 6 39.3 52.0 13.0 10.0 19.0
.577.232.109.023.002.002.055.000
.478.281.132.031.002.003.073.000
2 6 28.2 52.0 12.0 11.0 18.0
2 6 28 5 52 0 25 0 24 0 37 0
.599.229.107.018.002.002.043.000
2 6 25.3 52.0 28.0 26.0 43.0
2 6 29.8 52.0 12.0 11.0 18.0
.558.254.119.019.002.003.045.000
2 6 19.8 52.0 19.0 18.0 29.0 648 207 097 013 002 002 031 000
2 6 55.1 52.0 16.0 9.0 23.0
.418.241.113.066.001.003.158.000
.498.261.122.034.002.003.080.000
2 6 41.0 52.0 16.0 13.0 24.0
.619.220.103.016.002.002.038.000
.619.220.103.016.002.002.038.000
2 6 31.7 52.0 23.0 13.0 34.0
2 6 36.5 52.0 16.0 13.0 24.0
.619.220.103.016.002.002.038.000
2 6 21.7 52.0 23.0 13.0 34.0
2 6 12.4 52.0 46.0 12.0 59.0
.648.173.081.028.002.002.066.000
2 6 10.8 52.0 46.0 12.0 59.0 648.173.081.028.002.002.066.000
2 6 12.9 52.0 45.0 8.0 56.0
.648.173.081.028.002.002.066.000
.648.173.081.028.002.002.066.000
2 6 21.8 52.0 8.0 7.0 12.0
2 6 20.1 52.0 8.0 7.0 12.0
.547.241.113.028.002.003.066.000
2 6 14.3 52.0 30.0 19.0 43.0
2 6 12.1 52.0 30.0 19.0 43.0
.629.193.090.025.002.002.059.000
2 6 15.1 52.0 34.0 14.0 46.0
2 6 20.4 52.0 30.0 19.0 43.0
.629.193.090.025.002.002.059.000
2 0 13.1 52.0 34.0 14.0 46.0 .629.193.090.025.002.002.059.000
2 6 22.6 52.0 8.0 7.0 12.0
.618.207.097.022.002.002.052.000
.587.241.113.016.002.003.038.000
2 6 17.3 52.0 19.0 17.0 30.0
2 6 16.6 52.0 39.0 37.0 60.0
.648.207.097.013.002.002.031.000
2 6 17.8 52.0 24.0 24.0 38.0
2 6 24.4 52.0 19.0 17.0 30.0
.624.207.097.020.002.002.048.000
7 0 TO'S 27'N TA'N TA'N 2T'N

6	PM	5	FRINGE	RAMP
6	PM	5	FRINGE	LOCAL
6	PM	5	URBAN	FREEWAY
6	PM	5	URBAN	MAJOR REGIONAL
6	PM	5	URBAN	PRINCIPAL ARTERIAL
б	PM	5	URBAN	MINOR ARTERIAL
б	PM	5	URBAN	COLLECTOR
б	PM	5	URBAN	RAMP
б	PM	5	URBAN	LOCAL
6	PM	5	SUBURBAN	FREEWAY
б	PM	5	SUBURBAN	MAJOR REGIONAL
6	PM	5	SUBURBAN	PRINCIPAL ARTERIAL
б	PM	5	SUBURBAN	MINOR ARTERIAL
б	PM	5	SUBURBAN	COLLECTOR
б	PM	5	SUBURBAN	RAMP
6	PM	5	SUBURBAN	LOCAL
б	PM	5	RURAL	FREEWAY
6	PM	5	RURAL	MAJOR REGIONAL
б	PM	5	RURAL	PRINCIPAL ARTERIAL
6	PM	5	RURAL	MINOR ARTERIAL
б	PM	5	RURAL	COLLECTOR
б	PM	5	RURAL	RAMP
б	PM	5	RURAL	LOCAL
б	PM	6	CBD	PRINCIPAL ARTERIAL
б	PM	6	CBD	MINOR ARTERIAL
б	PM	6	CBD	COLLECTOR
б	PM	6	CBD	LOCAL
б	PM	6	FRINGE	FREEWAY
6	PM	6	FRINGE	MAJOR REGIONAL
6	PM	6	FRINGE	PRINCIPAL ARTERIAL
6	PM	б	FRINGE	MINOR ARTERIAL
б	PM	б	FRINGE	COLLECTOR
б	PM	б	FRINGE	RAMP
6	PM	б	FRINGE	LOCAL
б	PM	б	URBAN	FREEWAY
б	PM	б	URBAN	MAJOR REGIONAL
6	PM	б	URBAN	PRINCIPAL ARTERIAL
6	PM	б	URBAN	MINOR ARTERIAL
6	PM	6	URBAN	COLLECTOR
б	PM	б	URBAN	RAMP

.698.180.084.010.002.002.024.000
2 6 32.6 52.0 13.0 10.0 19.0
.577.232.109.023.002.002.055.000
.478.281.132.031.002.003.073.000
2 6 22.7 52.0 12.0 11.0 18.0
.558.254.119.019.002.003.045.000
.599.229.107.018.002.002.043.000
2 6 22.5 52.0 28.0 26.0 43.0
.648.207.097.013.002.002.031.000
.558.254.119.019.002.003.045.000
2 6 19.8 52.0 19.0 18.0 29.0
.648.207.097.013.002.002.031.000
.418.241.113.066.001.003.158.000
2 6 40.1 52.0 3.0 2.0 5.0
.498.261.122.034.002.003.080.000
.619.220.103.016.002.002.038.000
2 6 37.0 52.0 16.0 13.0 24.0
.619.220.103.016.002.002.038.000
.619.220.103.016.002.002.038.000
2 6 35.2 52.0 16.0 13.0 24.0
.619.220.103.016.002.002.038.000
.619.220.103.016.002.002.038.000
2 6 27.0 36.0 21.0 17.0 43.0
.589.213.100.028.002.002.066.000
.589.213.100.028.002.002.066.000
2 6 20.0 36.0 16.0 12.0 35.0
.589.213.100.028.002.002.066.000
.589.213.100.028.002.002.066.000
2 6 55.0 36.0 9.0 10.0 16.0
2 6 39.8 36.0 9.0 10.0 16.0
.517.241.113.037.002.003.087.000
2 6 35.0 36.0 22.0 25.0 39.0
2 6 30.0 36.0 22.0 25.0 39.0
.648.187.087.022.002.002.052.000
2 6 25.0 36.0 15.0 19.0 29.0 648.187.087.022.002.002.052.000
2 6 38.9 36.0 22.0 25.0 39.0
.648.187.087.022.002.002.052.000
.648.187.087.022.002.002.052.000
2 6 58.0 36.0 14.0 14.0 23.0
.618.200.094.025.002.002.059.000
.547.248.116.025.002.003.059.000
2 6 37.0 36.0 20.0 21.0 34.0
.630.210.098.017.002.002.041.000
.658.180.084.022.002.002.052.000
2 6 25.0 36.0 26.0 28.0 43.0
2 6 39.1 36.0 20.0 21.0 34.0
.630.210.098.017.002.002.041.000
2 6 16.3 36.0 18.0 20.0 20.0
2 6 58.0 36.0 13.0 11.0 21.0
.549.233.109.031.002.003.073.000
2 6 45.0 36.0 15.0 15.0 25.0
2 6 45.0 36.0 22.0 21.0 36.0
.608.207.097.025.002.002.059.000
2 6 39.8 36.0 32.0 30.0 52.0
2 6 30.0 36.0 23.0 22.0 37.0
.568.268.125.010.002.003.024.000
2 0 39.0 30.0 22.0 21.0 36.0 .608.207.097.025.002.002.059.000
2 6 19.7 36.0 19.0 19.0 32.0
.568.268.125.010.002.003.024.000
.440.220.103.069.001.002.165.000

6	PM	6	URBAN	LOCAL
6	PM	6	SUBURBAN	FREEWAY
6	PM	6	SUBURBAN	MAJOR REGIONAL
б	PM	б	SUBURBAN	PRINCIPAL ARTERIAL
6	PM	6	SUBURBAN	MINOR ARTERIAL
6	PM	6	SUBURBAN	COLLECTOR
6	PM	6	SUBURBAN	RAMP
6	PM	6	SUBURBAN	LOCAL
6	PM	6	RURAL	FREEWAY
6	PM	6	RURAL	MAJOR REGIONAL
б	PM	б	RURAL	PRINCIPAL ARTERIAL
6	PM	6	RURAL	MINOR ARTERIAL
6	PM	6	RURAL	COLLECTOR
6	PM	6	RURAL	RAMP
6	PM	6	RURAL	LOCAL
6	OFF	7	CBD	PRINCIPAL ARTERIAL
6	OFF	7	CBD	MINOR ARTERIAL
6	OFF	7	CBD	COLLECTOR
6	OFF	7	CBD	LOCAL
б	OFF	7	FRINGE	FREEWAY
6	OFF	7	FRINGE	MAJOR REGIONAL
б	OFF	7	FRINGE	PRINCIPAL ARTERIAL
6	OFF	7	FRINGE	MINOR ARTERIAL
6	OFF	7	FRINGE	COLLECTOR
б	OFF	7	FRINGE	RAMP
6	OFF	7	FRINGE	LOCAL
6	OFF	7	URBAN	FREEWAY
б	OFF	7	URBAN	MAJOR REGIONAL
6	OFF	7	URBAN	PRINCIPAL ARTERIAL
6	OFF	7	URBAN	MINOR ARTERIAL
6	OFF	7	URBAN	COLLECTOR
6	OFF	7	URBAN	RAMP
6	OFF	7	URBAN	LOCAL
б	OFF	7	SUBURBAN	FREEWAY
6	OFF	7	SUBURBAN	MAJOR REGIONAL
6	OFF	7	SUBURBAN	PRINCIPAL ARTERIAL
6	OFF	7	SUBURBAN	MINOR ARTERIAL
б	OFF	7	SUBURBAN	COLLECTOR
б	OFF	7	SUBURBAN	RAMP
б	OFF	7	SUBURBAN	LOCAL
6	OFF	7	RURAL	FREEWAY

2 6 49.0 36.0 4.0 2.0 6.0	
.487.241.113.045.002.003.109.000	
.458.288.135.034.002.003.080.000	
2 6 44.0 36.0 18.0 12.0 29.0	
2 6 35.0 36.0 23.0 13.0 48.0	
.458.288.135.034.002.003.080.000	
2 6 39.6 36.0 18.0 12.0 29.0	
2 6 21.1 36.0 23.0 13.0 48.0	
.458.288.135.034.002.003.080.000	
2 6 26.7 36.0 21.0 17.0 43.0 .589.213.100.028.002.002.066.000	
2 6 24.5 36.0 21.0 17.0 43.0	
.589.213.100.028.002.002.066.000	
.589.213.100.028.002.002.066.000	
2 6 11.3 36.0 16.0 12.0 35.0	
2 6 52.2 36.0 9.0 10.0 16.0	
.517.241.113.037.002.003.087.000	
2 6 38.4 36.0 9.0 10.0 16.0	
2 6 33.9 36.0 22.0 25.0 39.0	
.648.187.087.022.002.002.052.000	
2 6 29.1 36.0 22.0 25.0 39.0 .648.187.087.022.002.002.052.000	
2 6 24.8 36.0 15.0 19.0 29.0	
.648.187.087.022.002.002.052.000	
.648.187.087.022.002.002.052.000	
2 6 13.1 36.0 15.0 19.0 29.0	
2 6 55.2 36.0 14.0 14.0 23.0	
.618.200.094.025.002.002.059.000	
2 6 39.9 36.0 14.0 14.0 24.0	
2 6 36.2 36.0 20.0 21.0 34.0	
.630.210.098.017.002.002.041.000	
2 6 34.4 36.0 33.0 33.0 54.0 .658.180.084.022.002.002.052.000	
2 6 24.8 36.0 26.0 28.0 43.0	
.658.207.097.010.002.002.024.000	
.630.210.098.017.002.002.041.000	
2 6 16.3 36.0 18.0 20.0 20.0	
2 6 57.2 36.0 13.0 11.0 21.0	
.549.233.109.031.002.003.073.000	
2 6 44.3 36.0 15.0 15.0 25.0 477.275.129.034.002.003.080.000	
2 6 43.5 36.0 22.0 21.0 36.0	
.608.207.097.025.002.002.059.000	
.609.212.099.022.002.002.054.000	
2 6 29.9 36.0 23.0 22.0 37.0	
2 6 37.1 36.0 22.0 21.0 36.0	
.608.207.097.025.002.002.059.000	
2 6 19.7 36.0 19.0 19.0 32.0	
2 6 62.9 36.0 15.0 9.0 25.0	
.440.220.103.069.001.002.165.000	
487.241.113.045.002.003.109.000	
2 6 47.5 36.0 18.0 12.0 29.0	
.458.288.135.034.002.003.080.000	
.458.288.135.034.002.003.080.000	
2 6 34.9 36.0 23.0 13.0 48.0	
2 6 39.4 36.0 18.0 12.0 29.0	
.458.288.135.034.002.003.080.000	
2 6 21.0 36.0 23.0 13.0 48.0 458.288.135 034 002 003 080 000	
2 6 26.0 36.0 21.0 17.0 43.0	
.589.213.100.028.002.002.066.000	
2 0 23.5 30.0 21.0 1/.0 43.0 .589.213.100.028.002.002.066.000	
2 6 19.0 36.0 16.0 12.0 35.0	

б	OFF	7	RURAL	MAJOR REGIONAL
б	OFF	7	RURAL	PRINCIPAL ARTERIAL
б	OFF	7	RURAL	MINOR ARTERIAL
б	OFF	7	RURAL	COLLECTOR
б	OFF	7	RURAL	RAMP
б	OFF	7	RURAL	LOCAL
б	OFF	8	CBD	PRINCIPAL ARTERIAL
б	OFF	8	CBD	MINOR ARTERIAL
б	OFF	8	CBD	COLLECTOR
б	OFF	8	CBD	LOCAL
б	OFF	8	FRINGE	FREEWAY
б	OFF	8	FRINGE	MAJOR REGIONAL
б	OFF	8	FRINGE	PRINCIPAL ARTERIAL
б	OFF	8	FRINGE	MINOR ARTERIAL
б	OFF	8	FRINGE	COLLECTOR
б	OFF	8	FRINGE	RAMP
б	OFF	8	FRINGE	LOCAL
б	OFF	8	URBAN	FREEWAY
б	OFF	8	URBAN	MAJOR REGIONAL
б	OFF	8	URBAN	PRINCIPAL ARTERIAL
б	OFF	8	URBAN	MINOR ARTERIAL
б	OFF	8	URBAN	COLLECTOR
б	OFF	8	URBAN	RAMP
б	OFF	8	URBAN	LOCAL
б	OFF	8	SUBURBAN	FREEWAY
б	OFF	8	SUBURBAN	MAJOR REGIONAL
б	OFF	8	SUBURBAN	PRINCIPAL ARTERIAL
б	OFF	8	SUBURBAN	MINOR ARTERIAL
б	OFF	8	SUBURBAN	COLLECTOR
б	OFF	8	SUBURBAN	RAMP
б	OFF	8	SUBURBAN	LOCAL
б	OFF	0		
б		8	RUKAL	FREEWAY
	OFF	8	RURAL	MAJOR REGIONAL
б	OFF OFF	8 8	RURAL	FREEWAI MAJOR REGIONAL PRINCIPAL ARTERIAL
6 6	OFF OFF OFF	8 8 8	RURAL RURAL RURAL	FREEWAI MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL
6 6	OFF OFF OFF OFF	8 8 8 8	RURAL RURAL RURAL RURAL	MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR
6 6 6	OFF OFF OFF OFF OFF	8 8 8 8 8	RURAL RURAL RURAL RURAL RURAL	FREEWAI MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR RAMP
6 6 6	OFF OFF OFF OFF OFF	8 8 8 8 8 8 8	RURAL RURAL RURAL RURAL RURAL RURAL	FREEWAT MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR RAMP LOCAL
66666	OFF OFF OFF OFF OFF OFF	8 8 8 8 8 8 8 9	RURAL RURAL RURAL RURAL RURAL CBD	MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL

.589.	.213.100.028.002.002.066.000	б
∠ 6 .589.	.213.100.028.002.002.066.000	6
.517.	47.5 36.0 9.0 10.0 16.0 .241.113.037.002.003.087.000	6
.517.	.241.113.037.002.003.087.000	6
.648.	.187.087.022.002.002.052.000	6
.648.	27.9 30.0 22.0 23.0 39.0 .187.087.022.002.002.052.000 .24 3 36 0 15 0 19 0 29 0	6
.648.	.187.087.022.002.002.052.000	6
.648.	187.087.022.002.002.052.000	6
.648.	13.1 30.0 15.0 19.0 29.0 .187.087.022.002.002.052.000 50 5 36 0 14 0 14 0 23 0	6
.618.	200.094.025.002.002.059.000	6
.547.	.248.116.025.002.003.059.000	6
.630.	.210.098.017.002.002.041.000	6
.658.	.180.084.022.002.002.052.000	6
.658.	24.7 36.0 20.0 28.0 43.0 .207.097.010.002.002.024.000	6
.630.	.210.098.017.002.002.041.000	6
.658.	.207.097.010.002.002.024.000	6
.549.	.233.109.031.002.003.073.000	6
.477.	43.2 36.0 15.0 15.0 25.0	6
.608.	41.3 36.0 22.0 21.0 36.0	6
2 6 .609.	.212.099.022.002.002.054.000	6
∠ 6 .568.	29.8 36.0 23.0 22.0 37.0 .268.125.010.002.003.024.000	6
.608.	.207.097.025.002.002.059.000	6
.568.	.268.125.010.002.003.024.000	6
.440.	.220.103.069.001.002.165.000	6
.487.	49.0 38.0 4.0 2.0 8.0	6
.458.	47.1 36.0 18.0 12.0 29.0 .288.135.034.002.003.080.000	6
∠ 6 .458.	43.7 36.0 18.0 12.0 29.0	6
∠ 6 .458.	.288.135.034.002.003.080.000	6
∠ 6 .458.	.288.135.034.002.003.080.000	6
.458.	21.0 36.0 23.0 13.0 48.0 .288.135.034.002.003.080.000	6
.589.	25.2 36.0 21.0 17.0 43.0 .213.100.028.002.002.066.000	6
2 6	22.3 36.0 21.0 17.0 43.0 .213.100.028.002.002.066.000	6
2 6 .589.	$18.4 \ 36.0 \ 16.0 \ 12.0 \ 35.0$ $.213.100.028.002.002.066.000$	6
2 6 .589.	11.3 36.0 16.0 12.0 35.0 .213.100.028.002.002.066.000	6
2 6 .517.	42.9 36.0 9.0 10.0 16.0 .241.113.037.002.003.087.000	6
2 6 .517.	34.3 36.0 9.0 10.0 16.0 .241.113.037.002.003.087.000	6
2 6 .648.	29.5 36.0 22.0 25.0 39.0 .187.087.022.002.002.052.000	6
2 6 .648.	25.7 36.0 22.0 25.0 39.0 .187.087.022.002.002.052.000	6
2 6 .648.	23.6 36.0 15.0 19.0 29.0 .187.087.022.002.002.052.000	6
2 6 .648.	32.6 36.0 22.0 25.0 39.0 .187.087.022.002.002.052.000	6
2 6 .648.	13.1 36.0 15.0 19.0 29.0 .187.087.022.002.002.052.000	б

6	OFF	9	CBD	COLLECTOR
6	OFF	9	CBD	LOCAL
б	OFF	9	FRINGE	FREEWAY
6	OFF	9	FRINGE	MAJOR REGIONAL
6	OFF	9	FRINGE	PRINCIPAL ARTERIAL
б	OFF	9	FRINGE	MINOR ARTERIAL
б	OFF	9	FRINGE	COLLECTOR
6	OFF	9	FRINGE	RAMP
б	OFF	9	FRINGE	LOCAL
б	OFF	9	URBAN	FREEWAY
6	OFF	9	URBAN	MAJOR REGIONAL
б	OFF	9	URBAN	PRINCIPAL ARTERIAL
б	OFF	9	URBAN	MINOR ARTERIAL
6	OFF	9	URBAN	COLLECTOR
6	OFF	9	URBAN	RAMP
6	OFF	9	URBAN	LOCAL
6	OFF	9	SUBURBAN	FREEWAY
6	OFF	9	SUBURBAN	MAJOR REGIONAL
6	OFF	9	SUBURBAN	PRINCIPAL ARTERIAL
6	OFF	9	SUBURBAN	MINOR ARTERIAL
6	OFF	9	SUBURBAN	COLLECTOR
6	OFF	9	SUBURBAN	RAMP
б	OFF	9	SUBURBAN	LOCAL
б	OFF	9	RURAL	FREEWAY
6	OFF	9	RURAL	MAJOR REGIONAL
б	OFF	9	RURAL	PRINCIPAL ARTERIAL
б	OFF	9	RURAL	MINOR ARTERIAL
6	OFF	9	RURAL	COLLECTOR
б	OFF	9	RURAL	RAMP
б	OFF	9	RURAL	LOCAL
б	OFF1	0	CBD	PRINCIPAL ARTERIAL
6	OFF1	0	CBD	MINOR ARTERIAL
6	OFF1	0	CBD	COLLECTOR
6	OFF1	0	CBD	LOCAL
6	OFF1	0	FRINGE	FREEWAY
б	OFF1	0	FRINGE	MAJOR REGIONAL
б	OFF1	0	FRINGE	PRINCIPAL ARTERIAL
6	OFF1	0	FRINGE	MINOR ARTERIAL
6	OFF1	0	FRINGE	COLLECTOR
б	OFF1	0	FRINGE	RAMP
6	OFF1	0	FRINGE	LOCAL

2 6 45.6 36.0 14.0 14.0 23.0
.618.200.094.025.002.002.059.000
2 6 36.4 36.0 14.0 14.0 24.0
.547.248.116.025.002.003.059.000
2 6 32.6 36.0 20.0 21.0 34.0
.630.210.098.017.002.002.041.000
2 6 31.3 36.0 33.0 33.0 54.0
.658.180.084.022.002.002.052.000
2 6 24.5 36.0 26.0 28.0 43.0
.658.207.097.010.002.002.024.000
$2 \epsilon 16 2 26 0 19 0 20 0 20 0$
658 207 097 010 002 002 024 000
2 6 52 2 36 0 13 0 11 0 21 0
549.233.109.031.002.003.073.000
2 6 41.4 36.0 15.0 15.0 25.0
.477.275.129.034.002.003.080.000
2 6 38.9 36.0 22.0 21.0 36.0
.608.207.097.025.002.002.059.000
2 6 37.3 36.0 32.0 30.0 52.0
.609.212.099.022.002.002.054.000
2 6 29.6 36.0 23.0 22.0 37.0
.568.268.125.010.002.003.024.000
2 6 34.2 36.0 22.0 21.0 36.0
.608.207.097.025.002.002.059.000
2 6 61 2 36 0 15 0 9 0 25 0
.440.220.103.069.001.002.165.000
2 6 48.9 36.0 4.0 2.0 6.0
.487.241.113.045.002.003.109.000
2 6 46.5 36.0 18.0 12.0 29.0
.458.288.135.034.002.003.080.000
2 6 43.4 36.0 18.0 12.0 29.0
.458.288.135.034.002.003.080.000
2 6 34.5 36.0 23.0 13.0 48.0
.458.288.135.034.002.003.080.000
4 0 39.0 30.0 18.0 12.0 29.0
.450.200.135.034.002.003.080.000
458 288 135 034 002 003 080 000
. 100.200.100.001.002.000.000.000

6	OFF10	URBAN	FREEWAY
6	OFF10	URBAN	MAJOR REGIONAL
6	OFF10	URBAN	PRINCIPAL ARTERIAL
6	OFF10	URBAN	MINOR ARTERIAL
6	OFF10	URBAN	COLLECTOR
6	OFF10	URBAN	RAMP
6	OFF10	URBAN	LOCAL
6	OFF10	SUBURBAN	FREEWAY
6	OFF10	SUBURBAN	MAJOR REGIONAL
6	OFF10	SUBURBAN	PRINCIPAL ARTERIAL
6	OFF10	SUBURBAN	MINOR ARTERIAL
6	OFF10	SUBURBAN	COLLECTOR
6	OFF10	SUBURBAN	RAMP
6	OFF10	SUBURBAN	LOCAL
6	OFF10	RURAL	FREEWAY
6	OFF10	RURAL	MAJOR REGIONAL
6	OFF10	RURAL	PRINCIPAL ARTERIAL
6	OFF10	RURAL	MINOR ARTERIAL
6	OFF10	RURAL	COLLECTOR
6	OFF10	RURAL	RAMP
б	OFF10	RURAL	LOCAL

12006 CO Redesignation; small stuff plus; SIP cp; mechanics training

MOBILE5b (14-Sep-96) 0 -M 22 Warning: 0.346E-01 mileage with zero registration + -M 22 Warning: 0.626E-01 mileage with zero registration -M 22 Warning: 0.373E-01 mileage with zero registration -M 22 Warning: 0.222E-01 mileage with zero registration + 0R Ρ Vehicle Mix е Amb. 0 Composite Emission Factors AllVeh LDGV LDGT1LDGT2HDGV LDDV LDDT HDDV MC g CY Tmp Cold/Hot Start l LDGV LDGT1 LDGT2 LDGT HDGV LDDV LDDT HDDV MC _ __ ____ OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 16.0 8.0 16.0 2 15.64 21.13 23.48 21.88 38.21 1.15 2.08 16.40 0.00 18.17 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 16.0 8.0 16.0 2 17.93 23.93 26.57 24.77 44.42 1.32 2.40 18.94 0.00 20.76 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 7.0 11.0 7.0 2 17.31 22.58 25.36 23.47 48.79 1.37 0.00 20.21 .595 .214 .100 .026 .002 .002 .061 .000 2 6 27 2.50 20.70 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 7.0 11.0 7.0 2 21.82 28.11 31.64 29.23 71.34 1.96 0.00 25.83 .595 .214 .100 .026 .002 .002 .061 .000 3.56 29.48 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 8.0 1.0 8.0 2 7.45 10.74 12.14 11.19 22.96 0.63 9.71 9.27 .571 .218 .102 .031 .002 .002 .074 .000 1.13 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. 8.0 1.0 8.0 2 9.46 13.21 14.89 13.75 26.55 2 6 27 1.33 11.41 0.00 11.47 .571 .218 .102 .031 .002 .002 .074 .000 0.74 OEmission factors are as of Jan. 1st of the indicated calendar year. 41.0 5.0 42.0 2 16.35 23.36 25.39 24.01 32.71 1.18 2 6 27 2.13 14.10 0.00 18.35 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 41.0 5.0 42.0 2 18.81 26.53 28.79 27.25 37.08 1.33 2.40 15.93 20.99 .667 .154 .072 .030 .002 .002 .073 .000 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 22.0 2.0 22.0 2 16.83 23.02 25.43 23.79 39.00 1.19 19.00 .667 .154 .072 .030 .002 .002 .073 .000 2.15 16.73 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 41.0 5.0 42.0 2 12.70 18.66 20.34 19.19 26.63 0.96 1.73 11.45 0.00 14.45 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 22.0 1.0 23.0 2 23.09 30.98 34.24 32.02 63.22 1.88 3.39 26.37 0.00 26.47 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 22.0 2.0 22.0 2 7.29 11.04 12.31 11.45 21.75 8.84 .644 .187 .088 .023 .002 .002 .054 .000 0.64 1.16 9.04 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 24.0 2.0 24.0 2 9.85 14.34 15.89 14.83 24.80 0.77 1.39 10.61 0.00 11.87 .584 .226 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 39.0 4.0 40.0 2 13.35 19.43 21.20 19.99 27.98 0.99 1.79 12.05 0.00 15.41 .641 .190 .089 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 81.0 7.0 83.0 2 23.57 34.66 36.66 35.30 29.66 1.52 2.73 12.79 0.00 26.06 .683 .171 .080 .018 .002 .002 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 69.0 7.0 71.0 2 24.95 35.87 38.12 36.59 35.17 1.62 2.91 15.13 0.00 27.65 .652 .181 .085 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 39.0 4.0 40.0 2 11.79 17.42 19.04 17.94 25.55 0.90 1.62 10.95 0.00 13.72 .641 .190 .089 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 44.0 4.0 46.0 2 24.96 34.61 37.43 35.51 51.24 1.86 3.35 21.67 0.00 28.10 .652 .181 .085 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 28.0 2.0 28.0 2 6.37 10.08 11.21 10.44 21.33 1.15 8.57 0.00 8.23 .570 .234 .109 .024 .002 .003 .058 .000 0.64 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 19.0 2.0 19.0 2 8.15 12.01 13.40 12.45 22.88 0.68 1.22 9.67 0.00 10.32 .514 .241 .113 .037 .002 .003 .090 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 39.0 3.0 39.0 2 10.64 15.91 17.42 16.39 24.08 0.84 1.50 10.26 0.00 12.82 .583 .227 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 77.0 8.0 77.0 2 17.41 26.31 28.00 26.85 24.86 1.21 2.18 10.64 0.00 19.85 .637 .194 .091 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 6 27 73.0 7.0 73.0 2 20.54 30.21 32.15 30.83 29.22 1.37 2.47 12.59 0.00 23.82 .626 .229 .107 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 139 CDPHE/APCD/Technical Services Program January 4, 2000

2 6 27	20 0	2 0	20 0	2 1	2 20	10 03	2 10 70	10	56 26	5 47	0 02	1 67	11 27	0 00	14 62	E 0 2	227	106	024	002	002	056	000
0 Emission	factors	are	ag of J	z 1 an	1et 0	10.03 f the	indicate	. ot d ca	lendar	vear	0.93	1.07	11.37	0.00	14.02	. 565	. 221	.100	.024	.002	.002	.050	.000
2 6 27	52.0	5.0	52.0	2 2	24.03	33.72	2 36.27	34.	53 41	.78	1.62	2.92	17.87	0.00	27.50	.626	.229	.107	.010	.002	.002	.024	.000
0Emission	factors	are	as of J	an.	1st o	f the	indicate	ed ca	lendar	year	•												
2 6 27	36.0	1.0	35.0	2	8.59	13.75	5 15.34	14.	26 26	5.81	0.74	1.33	9.44	0.00	12.09	.389	.222	.104	.083	.001	.002	.199	.000
OEmission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	r year	•												
2 6 27	8.0	0.0	8.0	2	5.44	8.29	9.40	8.	64 21	1.31	0.55	0.99	8.60	0.00	7.67	.493	.225	.105	.051	.002	.002	.122	.000
OEmission	factors	are	as of J	an.	lst o	t the	indicate	ed ca	lendar	year	·	1 0 0	0 00	0 00		564	020		004	000	002	0.5.0	000
2 6 27 OEmicaion	13.0	1.0	13.U	2	6.25	9.44	± 10.64	9.	1 2 2 2 1	1.42	0.59	1.06	8.80	0.00	7.98	.564	.238		.024	.002	.003	.058	.000
2 6 27	13 0	1 0	12 0	211. 2	1SL 0	9 61	1101Cale	10 Ca	05 21	52	0 59	1 07	8 88	0 00	8 17	564	228	111	024	002	003	058	000
0Emission	factors	are	as of J	an.	1st o	f the	indicate	d ca	lendar	r vear	0.55	1.07	0.00	0.00	0.17		.250	• • • •	.024	.002	.005	.050	.000
2 6 27	57.0	2.0	57.0	2 1	4.01	20.99	22.64	21.	52 25	5.55	1.02	1.83	10.95	0.00	16.67	.564	.238	.111	.024	.002	.003	.058	.000
0Emission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	year													
2 6 27	13.0	1.0	13.0	2	8.22	11.88	3 13.33	12.	34 23	3.60	0.67	1.21	10.03	0.00	10.10	.564	.238	.111	.024	.002	.003	.058	.000
OEmission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	year	•												
2 6 27	57.0	2.0	57.0	2 2	22.25	31.72	2 34.04	32.	46 37	/.45	1.50	2.69	16.09	0.00	25.72	.564	.238	.111	.024	.002	.003	.058	.000
2 6 27	16 0	are 8 0	as or J	an. 21	1SL 0	25 59	$\frac{11010ale}{2842}$	20 Ca	48 51	year 24	1 51	2 75	21 67	0 00	22 43	595	214	100	026	002	002	061	000
OEmission	factors	are	as of J	an 1	1st 0	f the	indicate	.02 d ca	lendar	r vear	1.51	2.75	21.07	0.00	22.13		. 217	.100	.020	.002	.002	.001	.000
2 6 27	16.0	8.0	16.0	2 2	20.52	27.17	7 30.22	28.	14 57	7.51	1.69	3.06	24.15	0.00	24.02	.595	.214	.100	.026	.002	.002	.061	.000
0Emission	factors	are	as of J	an.	1st o	f the	indicate	ed ca	lendar	year													
2 6 27	7.0	11.0	7.0	2 1	8.44	23.96	5 26.93	24.	91 54	1.94	1.53	2.80	23.14	0.00	21.64	.595	.214	.100	.026	.002	.002	.061	.000
OEmission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	year	•												
2 6 27	7.0	11.0	7.0	2 2	21.82	28.11	L 31.64	29.	23 71	1.34	1.96	3.56	29.48	0.00	25.83	.595	.214	.100	.026	.002	.002	.061	.000
UEmission	Iactors	are	as or J	an. ว่า	LSt O	I the	indicate	ed ca	lendar	year	. 0 01	1 / 5	12 50	0 00	12 76	671	210	102	021	002	002	074	000
0Emission	o.u factors	are	as of J	⊿ ⊥ an	1st o	f the	indicate	d ca	lendar	vear	0.01	1.45	12.50	0.00	12.70	. 571	.210	.102	.031	.002	.002	.0/4	.000
2 6 27	8.0	1.0	8.0	2 1	3.36	18.00	20.23	18.	71 35	5.33	.0.98	1.77	15.20	0.00	15.84	.571	.218	102	.031	.002	.002	074	.000
0Emission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	vear			10.10	0.00	10.01								
2 6 27	41.0	5.0	42.0	2 2	22.05	30.64	1 33.22	31.	46 43	3.43	1.55	2.79	18.54	0.00	24.48	.667	.154	.072	.030	.002	.002	.073	.000
OEmission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	r year	•												
2 6 27	41.0	5.0	42.0	2 2	23.19	32.13	3 34.85	33.	00 48	3.21	1.71	3.09	20.46	0.00	25.87	.667	.154	.072	.030	.002	.002	.073	.000
UEmission	Lactors	are	as or J	an.	lst o	t the	indicate	ed ca	lendar	year	•	о г и	10 70	0 00	01 00	667	1 - 4	070	020	000	000	072	000
2 0 2/ Offmission	factors	2.U	ag of J	∠ ⊥ an	19.29 19t 0	∠0.00 f the	indicate	∠0. d ca	94 40 lendar	vear	1.41	2.54	19.79	0.00	21.80	.00/	.154	.072	.030	.002	.002	.073	.000
2 6 27	41.0	5.0	42.0	2 1	5.20	21.88	3 23.80	22.	49 30).73	1.11	2.00	13.25	0.00	17.12	.667	.154	.072	.030	.002	.002	.073	.000
0Emission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	year													
2 6 27	22.0	1.0	23.0	2 2	23.09	30.98	3 34.24	32.	02 63	3.22	1.88	3.39	26.37	0.00	26.47	.667	.154	.072	.030	.002	.002	.073	.000
OEmission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	r year	•												
2 6 27	22.0	2.0	22.0	2	9.91	14.33	3 15.91	14.	84 25	5.19	0.77	1.39	10.79	0.00	11.63	.644	.187	.088	.023	.002	.002	.054	.000
0Emission	factors	are	as of J	an.	lst o	t the	indicate	ed ca	lendar	year		1 6 2	10 45	0 00	14 40	EQA	226	106	024	002	002	056	000
2 0 2/ Officeion	factors	2.0	24.U	⊿ ⊥ ຈກ	1at 0	17.23 f +ho	indicate	. / L d da	londar	0.90	0.90	1.05	12.45	0.00	14.42	. 504	.220	.100	.024	.002	.002	.050	.000
2 6 27	39.0	4.0	40.0	2 1	7.48	24.73	26.90	25.	42 35	5.17		2.24	15.13	0.00	19.89	641	.190	.089	.022	.002	.002	054	.000
0Emission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	year			10.10	0.00	10.00								
2 6 27	81.0	7.0	83.0	2 3	30.41	43.62	2 46.00	44.	38 37	7.08	1.89	3.40	15.93	0.00	33.29	.683	.171	.080	.018	.002	.002	.044	.000
OEmission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	r year	•												
2 6 27	69.0	7.0	71.0	2 2	28.77	40.85	5 43.36	41.	65 40	0.03	1.83	3.30	17.15	0.00	31.71	.652	.181	.085	.023	.002	.002	.055	.000
OEmission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	year		1 0 1	10 10	0 00	15 61	C 4 1	100	000	000	000	000	054	000
2 6 2/ Offician	39.U	4.0	40.0	2 1 27	19.53	19.00 f +bo	indicato	∠∪.	23 28 londar	3.28 	1.00	1.81	12.18	0.00	15.01	.641	.190	.089	.022	.002	.002	.054	.000
2 6 27	14CLOIS	4 0	46 0	an. 2 2	15L U 04 96	34 61	Indicate	20 Ca	51 51	24	1 86	3 35	21 67	0 00	28 10	652	1 8 1	085	023	002	002	055	000
0Emission	factors	are	as of J	an.	1st o	f the	indicate	ed ca	lendar	vear	1.00	5.55	21.07	0.00	20.10	.052	. 101	.005	.025	.002	.002	.055	.000
2 6 27	28.0	2.0	28.0	2	8.12	12.29	9 13.62	12.	71 22	2.12	0.69	1.25	9.26	0.00	10.06	.570	.234	.109	.024	.002	.003	.058	.000
0Emission	factors	are	as of J	an.	1st o	f the	indicate	ed ca	lendar	r year													
2 6 27	19.0	2.0	19.0	2 1	0.25	14.63	3 16.28	15.	16 26	5.23	0.79	1.42	11.26	0.00	12.62	.514	.241	.113	.037	.002	.003	.090	.000
UEmission	tactors	are	as of J	an.	ist o	t the	indicate	ed ca	lendar	year	•	1 0 4	10 50	0 0 0	16 40	F 0 0	005	100	004	000	000	056	000
Z 6 27	39.0 factors	3.0	39.0	∠ ⊥ ⊃n	1 at 0	20.18	s 22.02	20.	1/ 29	1.22	1.03	1.84	12.59	0.00	16.47	.583	.221	.106	.024	.002	.002	.056	.000
2 6 27	77.0	8.0	77.0	2. 2	1.98	32.28	3 34.25	32	91 20	. year 9.55	1.45	2.61	12.74	0.00	24.70	637	194	.091	022	.002	.002	.052	.000
0Emission	factors	are	as of J	an.	lst o	f the	indicate	ed ca	lendar	year								1					
										-													

CDPHE/APCD/Technical Services Program
2 6 27	73.0	7.0	73.0 2	24.06	34.81	L 36.98	35.50	33.44	1.57	2.82	14.41	0.00	27.68	.626	.229	.107	.010	.002	.002	.024	.000
OEmission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea:	r.												
2 6 27	39.0	3.0	39.0 2	13.78	19.94 of the	4 21.76	20.52 d galond	28.90	1.01	1.82	12.45	0.00	16.26	.583	.227	.106	.024	.002	.002	.056	.000
2 6 27	52.0	5.0	52.0 2	24.03	33.72	2 36.27	34.53	41.78	1.62	2.92	17.87	0.00	27.50	.626	.229	.107	.010	.002	.002	.024	.000
OEmission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea	r.												
2 6 27	36.0	1.0	35.0 2	6.24	10.15 of the	5 11.23	10.49 d galord	23.27	0.69	1.23	8.72	0.00	9.52	.389	.222	.104	.083	.001	.002	.199	.000
2 6 27	1actors 8.0	0.0	8.0 2	6.51	9.60	10.86	10.00	21.82	0.58	1.05	9.08	0.00	8.73	.493	.225	.105	.051	.002	.002	.122	.000
0Emission	factors	are a	s of Jan	. 1st d	of the	indicated	d calend	lar yea:	r.												
2 6 27	13.0	1.0	13.0 2	7.17	10.58	3 11.89	11.00 d galord	22.18	0.62	1.12	9.30	0.00	8.96	.564	.238	.111	.024	.002	.003	.058	.000
2 6 27	13.0	1.0	13.0 2	7.17	10.58	11.89	11.00	22.18	0.62	1.12	9.30	0.00	8.96	.564	.238	.111	.024	.002	.003	.058	.000
OEmission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea:	r.												
2 6 27 Official	57.0 factors	2.0	57.02 = of Tan	15.25	22.60 of the) 24.36 indicate	23.16 d calend	27.15 lar vea	1.09 r	1.95	11.68	0.00	18.02	.564	.238	.111	.024	.002	.003	.058	.000
2 6 27	13.0	1.0	13.0 2	9.59	13.58	3 15.22	14.10	25.99	0.74	1.34	11.16	0.00	11.61	.564	.238	.111	.024	.002	.003	.058	.000
OEmission	factors	are a	s of Jan	. 1st o	of the	indicate	d calend	lar yea:	r.												
2 6 27 Official	57.0 factors	2.0 are a	57.02 = of Tan	22.25	31.72 of the	2 34.04 indicate	32.46 d calend	37.45 lar vea	1.50 r	2.69	16.09	0.00	25.72	.564	.238		.024	.002	.003	.058	.000
2 6 27	16.0	8.0	16.0 2	23.16	30.48	33.93	31.58	69.30	2.01	3.64	28.70	0.00	27.26	.595	.214	.100	.026	.002	.002	.061	.000
OEmission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea:	r.	2 56	00 60	0 00		505	014	1 0 0	0.00			0.61	000
2 6 27 OEmission	16.0 factors	8.0 are a	16.02 s of Jan	23.79 1st (31.20 of the	o 34.81 indicate	32.39 d calend	71.86 lar vea	2.07 r.	3.76	29.68	0.00	28.02	.595	.214	.100	.026	.002	.002	.061	.000
2 6 27	7.0	11.0	7.0 2	20.25	26.18	3 29.45	27.22	64.11	1.77	3.23	26.71	0.00	23.90	.595	.214	.100	.026	.002	.002	.061	.000
0Emission	factors	are a	s of Jan	. 1st (of the	indicate	d calend	lar yea:	r. 1 06	2 56	20 10	0 00	25 02	EQE	21/	100	026	002	002	061	000
0Emission	factors	are a	s of Jan	. 1st (of the	indicate	d calend	lar yea:	r.	3.50	29.40	0.00	23.03	. 595	.214	.100	.020	.002	.002	.001	.000
2 6 27	8.0	1.0	8.0 2	14.90	19.90	22.34	20.67	39.00	1.08	1.95	16.73	0.00	17.58	.571	.218	.102	.031	.002	.002	.074	.000
0Emission	factors	are a	s of Jan 802	. 1st (17 12	22 50 22 50	indicate	d calenc 23 47	lar yea: 46 80	r. 128	2 31	19 90	0 00	20 22	571	21.8	102	031	002	002	074	000
0Emission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea:	r.	2.91	19.90	0.00	20.22	. 571		. 102	.051	.002	.002	.0/1	.000
2 6 27	41.0	5.0	42.0_2	25.92	35.71	1 38.79	36.69	59.06	2.07	3.73	24.75	0.00	29.17	.667	.154	.072	.030	.002	.002	.073	.000
2 6 27	factors	are a	3 OI Jan 42.0 2	27.30	37.51	1nd1cate	a caleno 38.55	ar yea: 64.11	r. 2.23	4.03	26.71	0.00	30.81	.667	.154	.072	.030	.002	.002	.073	.000
OEmission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea:	r.												
2 6 27	22.0	2.0	22.0 2	21.60	29.01	1 32.07	29.98	57.51	1.72	3.10	24.15	0.00	24.68	.667	.154	.072	.030	.002	.002	.073	.000
2 6 27	41.0	5.0	42.0 2	18.91	26.66	5 28.93	27.38	37.27	1.34	2.41	16.01	0.00	21.10	.667	.154	.072	.030	.002	.002	.073	.000
0Emission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea:	r.												
2 6 27 Official	22.0 factors	1.0 are a	23.0 2 = of Tan	23.09	30.98 of the	3 34.24 indicate	32.02 d calend	63.22 lar vea	1.88 r	3.39	26.37	0.00	26.47	.667	.154	.072	.030	.002	.002	.073	.000
2 6 27	22.0	2.0	22.0 2	13.30	18.59	20.58	19.23	31.62	0.97	1.75	13.63	0.00	15.32	.644	.187	.088	.023	.002	.002	.054	.000
OEmission	factors	area	s of Jan	. 1st o	of the	indicate	d calend	lar yea:	r.	0.00	1 5 7 0	0 00	10 70	F 0 4	225	100	004	000	000	050	000
2 6 27 OEmission	24.0 factors	2.0 are a	24.0 2 s of Jan	16.05 . 1st (22.14 of the	indicate	22.87 d calend	36.72 lar vea	1.15 r.	2.06	15.78	0.00	18.73	.584	.226	.106	.024	.002	.002	.056	.000
2 6 27	39.0	4.0	40.0 2	22.26	30.83	3 33.48	31.68	45.72	1.60	2.89	19.46	0.00	25.17	.641	.190	.089	.022	.002	.002	.054	.000
0Emission	factors	are a	s of Jan	. 1st (of the	indicate	d calend	lar yea:	r.	1 26	20 16	0 00	10 07	602	171	000	010	002	002	044	000
0Emission	factors	are a	os.∪∠ s of Jan	. 1st (52.03 of the	indicate	d calend	40.21 lar vea:	2.45 r.	4.30	20.40	0.00	40.07	.005	• 1 / 1	.080	.010	.002	.002	.044	.000
2 6 27	69.0	7.0	71.0 2	32.51	45.70	48.51	46.60	47.92	2.18	3.92	20.35	0.00	35.82	.652	.181	.085	.023	.002	.002	.055	.000
0Emission	tactors	are a	s of Jan 40 0 2	15 87	of the	indicate	d calenc	lar yea: 32 20	r. 115	2 06	13 92	0 00	10 15	641	190	089	022	002	002	054	000
0Emission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea:	r.	2.00	13.72	0.00	10.15	.011	.190	.005	.022	.002	.002	.051	.000
2 6 27	44.0	4.0	46.0_2	24.96	34.61	1 37.43	35.51	51.24	1.86	3.35	21.67	0.00	28.10	.652	.181	.085	.023	.002	.002	.055	.000
2 6 27	28.0	2.0	28.0 2	10.66	15.52	17.13	16.03	25.55	0.82	1.47	10.95	0.00	12.83	.570	.234	.109	.024	.002	.003	.058	.000
OEmission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea	r.	_											
2 6 27 Official	19.0 factors	2.0	19.0 2 = of Tan	12.42	17.35 of the	5 19.27	17.97 d calend	30.48 Jar ves	0.92	1.65	13.14	0.00	15.06	.514	.241	.113	.037	.002	.003	.090	.000
2 6 27	39.0	3.0	39.0 2	18.67	26.22	2 28.53	26.95	37.64	1.32	2.37	16.16	0.00	21.68	.583	.227	.106	.024	.002	.002	.056	.000
0Emission	factors	are a	s of Jan	. 1st d	of the	indicate	d calend	lar yea:	r.												

UBERNISSION Factors are as of Tran. 1st of The Indicated calendar year. 16.30 0.00 12.94 5.26 27 17.0 7.0	2 6 27	77.0	8.0	77.0 2	29.78	42.47	44.92	43.25	38.60	1.89	3.39	16.56	0.00	33.02	.637	.194	.091	.022	.002	.002	.052	.000
2 6 27 7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	0Emission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar year	c.												
A A	2 6 27 Officient	73.0 factors	7.0 are a	73.02 s of Tai	28.86	41.07	43.55 indicator	41.86 Japlend	39.41 Jar veau	1.84	3.31	16.90	0.00	32.94	.626	.229	.107	.010	.002	.002	.024	.000
Obmission factors are as of Jan. 1: of the indicated calendar year. 2.9 7.8 0.00 27.50 6.05 2.02 2.02 2.02 2.03 3.03 3.02 3.02 3.03 3.02 3.02 3.03 3.02 3.02 3.03 3.02 3.02 3.03 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 0.00 0.02 0.0	2 6 27	39.0	3.0	39.0 2	15.65	22.34	24.35	22.98	32.16	1.13	2.03	13.86	0.00	18.33	.583	.227	.106	.024	.002	.002	.056	.000
2 6 a7 b5.10 5.01 52.02 24.03 57.22 54.23 44.53 41.78 1.62 2.92 17.80 0.00 27.50 6.66 2.29 0.01 0.02 2.002 1.024 0.00 0.002 2.002 1.024 0.00 0.002 2.002 1.024 0.00 0.002 2.002 1.024 0.00 0.002 2.002 0.002 2.000 0.001 0.002 1.002 0.002 2.000 0.001 0.002 0.002 0.002 2.000 0.001 0.002	0Emission	factors	are a	s of Jai	n. 1st	of the	indicated	d calend	lar year	r.												
2 7 36.0 1.0 35.0 2.6 37.0 37.0 2.0 9.20 9.42 389 222 1.04 0.00 0.01 0.02 0.01 0.02 0.03 0.05 0.03	2 6 27 Official	52.0 factors	5.0 are a	52.02 g of Tai	24.03 n 1et	33.72 of the	36.27 indicated	34.53 J calend	41.78 Jar veau	1.62 r	2.92	17.87	0.00	27.50	.626	.229	.107	.010	.002	.002	.024	.000
Ommission factors are as of Jan. 1st of the indicated calendar year. 1.18 10.19 0.00 10.38 493 2.25 1.10 1.02 0.02	2 6 27	36.0	1.0	35.0 2	6.35	10.28	11.38	10.63	21.51	0.67	1.20	8.52	0.00	9.42	.389	.222	.104	.083	.001	.002	.199	.000
Command Command <t< td=""><td>0Emission</td><td>factors</td><td>are a</td><td>s of Jai</td><td>n. 1st</td><td>of the</td><td>indicated</td><td>d_calend</td><td>lar year</td><td>r.</td><td>1 10</td><td>10 10</td><td>0 00</td><td>10.00</td><td>400</td><td>005</td><td>105</td><td>0 5 1</td><td></td><td></td><td>100</td><td>000</td></t<>	0Emission	factors	are a	s of Jai	n. 1st	of the	indicated	d_calend	lar year	r.	1 10	10 10	0 00	10.00	400	005	105	0 5 1			100	000
2 6 27 13.0 1.0 13.0 10.0 12.0 12.0 <td>2 6 27 OEmission</td> <td>8.U factors</td> <td>0.0 are a</td> <td>8.02 s of Jai</td> <td>8.04 n. 1st</td> <td>of the</td> <td>12.96 indicated</td> <td>ll.95 d calend</td> <td>23.91 Jar veau</td> <td>0.65</td> <td>1.18</td> <td>10.19</td> <td>0.00</td> <td>10.38</td> <td>.493</td> <td>.225</td> <td>.105</td> <td>.051</td> <td>.002</td> <td>.002</td> <td>.122</td> <td>.000</td>	2 6 27 OEmission	8.U factors	0.0 are a	8.02 s of Jai	8.04 n. 1st	of the	12.96 indicated	ll.95 d calend	23.91 Jar veau	0.65	1.18	10.19	0.00	10.38	.493	.225	.105	.051	.002	.002	.122	.000
OBmission factors are as of Jan. 1st of the indicated calendar year. 1.2 1.01 0.01 0.24 .524 .01 0.02 .03 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. .02 .02 .02 .02 .02 .03 .058 .000 .02 .02 .02 .03 .058 .000 .02 .02 .02 .02 .03 .058 .000 .02 .02 .02 .02 .03 .058 .000 .02 .02 .02 .00 .02	2 6 27	13.0	1.0	13.0 2	8.35	12.04	13.51	12.51	23.81	0.68	1.22	10.13	0.00	10.24	.564	.238	.111	.024	.002	.003	.058	.000
of the low function function of the indicated calendar year. 10.11 0.01 0.01 0.02 10.24	0Emission	factors	are a	s of Jai	n. 1st	of the	indicated	d calend	lar year	r.	1 00	10 12	0 00	10 04	564	220	111	0.0.4	000	002	0.5.0	000
2 7 7.0 2.0 57.0 2.0 57.0 2.0 57.0 2.0 57.0 2.0 1.0 1.0.	2 6 27 OEmission	factors	are a	⊥3.0 ∠ s of Jai	8.35 n. 1st	of the	indicated	12.51 d calend	ar veau	0.68 r.	1.22	10.13	0.00	10.24	.504	.238		.024	.002	.003	.058	.000
Demission factors are as of Jan. 1st of the indicated calendar year. 26 27 13.0 1.0 13.0 2 12.0 16.57 116.53 17.2 30.98 0.99 1.60 13.35 0.00 14.30 .564 .238 .111 .024 .002 .003 .058 .000 27 57.0 2.0 57.0 2 0 57.0 2 0 2.22 5 31.72 34.04 32.46 37.45 1.50 2.69 16.09 0.00 25.72 .564 .238 .111 .024 .002 .003 .058 .000 27 6 52 46.0 12.0 59.0 2 16.65 22.18 24.08 22.79 33.42 1.45 2.69 16.09 0.00 25.72 .564 .238 .111 .024 .002 .002 .002 .006 .000 28 6 52 46.0 12.0 59.0 2 16.65 22.18 24.08 22.79 33.42 1.45 2.69 16.09 0.00 25.72 .564 .238 .111 .024 .002 .002 .002 .006 .000 28 6 52 46.0 12.0 59.0 2 10.65 22.18 24.08 22.79 33.42 1.45 2.69 16.09 0.00 2.572 .564 .238 .111 .024 .002 .002 .002 .006 .000 28 6 52 46.0 12.0 59.0 2 10.55 26.84 34 .012 72.594 .395 0 1.70 3.12 2 6 52 46.0 12.0 59.0 2 20.00 26.24 28.43 28.50 1.70 3.12 2 6 52 48.0 73.0 650 2 20.5 26.84 34 .918 27.59 45.57 1.46 3.39 20.24 0.00 22.97 1.648 .173 .081 .028 .002 .002 .066 .000 28 6 52 45.0 8.0 56.0 2 10.2 3 33.86 6.91 34.85 67.80 2.71 4.94 29.48 0.00 29.71 .648 .173 .081 .028 .002 .002 .066 .000 26 52 30.0 19.0 43.0 2 12.22 16.37 17.97 16.88 28.41 1.12 2.06 11.6 9.55 0.00 7.77 .547 .241 .113 .028 .002 .003 .066 .000 26 52 30.0 19.0 43.0 2 12.22 16.37 17.97 16.88 28.41 1.12 2.07 12.69 0.00 13.94 .629 .193 .090 .025 .002 .002 .005 .000 26 52 30.0 19.0 43.0 2 14.74 19.38 21.24 19.97 33.42 1.11 2.26 11.03 1.00 16.66 .629 .193 .090 .025 .002 .002 .059 .000 26 52 30.0 19.0 43.0 2 14.74 19.38 21.24 19.97 33.42 1.10 2.40 0.00 12.64 .629 .193 .090 .025 .002 .002 .059 .000 26 52 30.0 19.0 43.0 2 14.10 0 fthe indicated calendar year. 2 6 52 30.0 19.0 43.0 2 14.10 0 fthe indicated calendar year. 2 6 52 30.0 19.0 43.0 2 14.10 14.93 31.74 2.48 60.09 2.30 26 52 30.0 19.0 43.0 2 14.10 14.93 17.4 28.46 0.23 1.22 27 50 17.0 30.0 2 .93 .21.71 14.12 13.16 25.72 0.91 1.64 1.64 0.00 12.64 .629 .193 .090 .025 .002 .002 .002 .005 .000 26 52 13.0 14.0 23.0 2 .93 .92 .71 14.12 13.16 25.72 0.91 1.67 1.68 1.00 10.27 .624 .007 .097 .022 .002 .002 .002 .002 .002 .002	2 6 27	57.0	2.0	57.0 2	16.67	24.45	26.32	25.05	29.11	1.17	2.10	12.55	0.00	19.58	.564	.238	.111	.024	.002	.003	.058	.000
Offmission factors are as of Jan. 1at of the indicated calendar year. Off of Jan	0Emission	factors	are a	s of Jai	n. 1st	of the	indicated	d calend	lar yean 30 98	r. 0.89	1 60	12 25	0 00	14 30	564	238	111	024	002	003	058	000
$ \begin{array}{c} 2 & 6 & 27 & 57.0 & 2.0 & 57.0 & 2.2 & 2.25 & 31.72 & 34.04 & 32.46 & 37.45 & 1.50 & 2.69 & 1.6.0 & 0.00 & 25.72 & 5.64 & 2.38 & 1.11 & 0.24 & 0.02 & 0.03 & 0.58 & 0.00 \\ \begin{array}{c} 0.000 \\ 0.000 $	0Emission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar year	r.	1.00	13.33	0.00	11.30	. 504	.250	• • • • •	.024	.002	.005	.050	.000
Ubmission factors are as of Jan. 1st of the indicated calendar year. 2 6 1 0.00 18.52 648 1.73 0.01 0.852 648 1.73 0.01 0.852 648 1.73 0.01 0.852 648 1.73 0.01 18.52 648 1.73 0.01 0.852 648 1.73 0.01 18.52 648 1.73 0.01 0.02 2.09 648 1.73 0.01 0.02	2 6 27	57.0	2.0	57.0_2	22.25	31.72	34.04	32.46	37.45	1.50	2.69	16.09	0.00	25.72	.564	.238	.111	.024	.002	.003	.058	.000
Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 46.0 12.0 59.0 2 20.0 2 6.54 28.43 26.9 39.50 1.70 3.12 17.78 0.00 22.99 648 .173 .081 .028 .002 .002 .066 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 12.0 2 5.05 26.84 29.18 27.59 45.7 1.86 3.39 20.24 0.00 29.71 648 .173 .081 .028 .002 .002 .066 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 19.0 43.0 2 1.22 16.37 17.97 16.88 28.41 1.12 2.07 12.89 0.00 17.77 .547 .241 .113 .028 .002 .002 .005 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 19.0 43.0 2 12.22 16.37 17.97 16.88 28.41 1.12 2.07 12.89 0.00 13.94 629 .193 .090 .025 .002 .002 .059 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 19.0 43.0 2 14.74 19.38 21.24 19.97 33.42 1.31 2.43 15.13 0.00 16.66 6.629 .193 .090 .025 .002 .002 .059 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 19.0 43.0 2 14.74 19.38 21.24 19.97 33.42 1.31 2.43 15.13 0.00 16.66 6.29 .193 .090 .025 .002 .002 .059 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 19.0 43.0 2 11.01 14.93 16.41 15.40 26.15 1.03 1.90 11.84 0.00 17.37 .629 .193 .090 .025 .002 .002 .059 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 19.0 43.0 2 10.2 15.38 20.27 22.17 20.87 34.56 1.30 1.90 11.84 0.00 12.64 .629 .193 .090 .025 .002 .002 .059 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 34.0 13.0 4 36.0 2 12.32 5.7 5.55 5.55 7.77 20.50 0.60 1.09 8.20 .000 0.57 .629 .193 .090 .025 .002 .002 .002 .059 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 34.0 19.0 43.0 2 1.02 2.52 7.58 5.55 7.77 20.50 0.00 0.00 17.37 .629 .193 .090 .025 .002 .002 .002 .002 .002 .002 .00	0Emission 2 6 52	1actors	are a	s of Jai	n. 1st 16 65	of the 22 18	1ndicated	d calenc	lar yean 33 42	r. 145	2 66	15 13	0 00	18 52	648	173	0.81	028	002	002	066	000
$ \begin{array}{c} 2 & 6 & 52 & 46.0 & 12.0 & 59.0 & 2 & 20.00 & 26.24 & 28.43 & 26.94 & 39.50 & 1.70 & 3.12 & 17.78 & 0.00 & 22.09 & 648 & 173 & .081 & .028 & .002 & .006 & .000 \\ \hline 0 minsion factors are as of Jan. 1st of the indicated calendar year. \\ 2 & 6 & 52 & 45.0 & 8.0 & 56.0 & 2 & 26.53 & 33.86 & 5(.91 & 34.83 & 67.80 & 2.71 & 4.94 & 29.48 & 0.00 & 29.71 & 648 & 173 & .081 & .028 & .002 & .006 & .000 \\ \hline 0 minsion factors are as of Jan. 1st of the indicated calendar year. \\ 2 & 6 & 52 & 8.0 & 7.0 & 12.0 & 2 & 6.18 & 8.56 & 9.68 & 8.92 & 21.52 & 0.00 & 7.77 & 547 & .241 & .113 & .028 & .002 & .006 & .000 \\ \hline 0 minsion factors are as of Jan. 1st of the indicated calendar year. \\ 2 & 6 & 52 & 30.0 & 130 & 43.02 & 1.242 & 16.71 & 17.97 & 16.48 & 1.14 & 29.48 & 0.00 & 29.71 & 648 & 1.73 & .081 & .028 & .002 & .006 & .000 \\ \hline 0 minsion factors are as of Jan. 1st of the indicated calendar year. \\ 2 & 6 & 52 & 30.0 & 19.0 & 43.02 & 1.242 & 16.71 & 1.97 & 1.48 & 1.41 & 1.26 & 0.00 & 7.77 & .547 & .241 & .113 & .028 & .002 & .002 & .005 & .000 \\ \hline 0 mission factors are as of Jan. 1st of the indicated calendar year. \\ 2 & 6 & 52 & 30.0 & 19.0 & 43.02 & 1.47.4 & 19.38 & 21.24 & 1.97 & 33.42 & 1.31 & 2.48 & 0.00 & 16.66 & .629 & .193 & .090 & .025 & .002 & .002 & .059 & .000 \\ \hline 0 mission factors are as of Jan. 1st of the indicated calendar year. \\ 2 & 6 & 53 & 30.0 & 19.0 & 43.02 & 1.10 & 14.47 & 19.88 & 1.64 & 2.61 & 1.26 & 1.02 & 1.68 & 2.61 & 1.00 & 1.666 & .629 & .193 & .090 & .025 & .002 & .002 & .059 & .000 \\ \hline 0 mission factors are as of Jan. 1st of the indicated calendar year. \\ 2 & 6 & 53 & 30.0 & 19.0 & 43.02 & 1.10 & 14.49 & 16.41 & 15.40 & 26.15 & 1.03 & 1.80 & 11.84 & 0.00 & 12.64 & .629 & 193 & .090 & .025 & .002 & .002 & .059 & .000 \\ \hline 0 mission factors are as of Jan. 1st of the indicated calendar year. \\ 2 & 6 & 53 & 30.0 & 19.0 & 43.0 & 1.10 & 14.12 & 16.41 & 1.44 & 0.61 & 1.44 & 0.61 & 1.44 & 0.61 & 0.23 & 0.23 & .002 & .002 & .002 & .002 & .002 & .002 & .002 & .002 & .002 & .002 & .002 & .002 & .002 & .00$	0Emission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar year	r.	2.00	13.13	0.00	10.52	.010	• 1 / 5	.001	.020	.002	.002	.000	.000
Using and factors are as of Jan. 1st of the indicated calendar year. 2 6 52 45.0 8.0 56.0 2 2.05 2 6.24 29.18 27.59 48.27 1.86 3.39 20.24 0.00 22.94 .648 .173 .081 .028 .002 .002 .006 .000 2 6 52 45.0 8.0 56.0 2 2.6.23 33.63 36.3 1 34.83 65.80 2.71 4.94 29.48 0.00 29.71 .648 .173 .081 .028 .002 .002 .006 .000 2 6 58 8.0 7.0 12.0 2 6.18 8.55 9.66 8.92 21.52 0.64 1.16 9.55 0.00 7.77 .547 .241 .113 .028 .002 .003 .066 .000 2 6 52 30.0 19.0 43.0 2 12.22 16.37 17.97 16.88 28.41 1.12 2.07 12.89 0.00 13.94 .629 .193 .090 .025 .002 .002 .005 .000 2 6 52 30.0 19.0 43.0 2 12.22 16.37 17.97 16.88 28.41 1.12 2.07 12.89 0.00 13.94 .629 .193 .090 .025 .002 .002 .005 .000 2 6 52 30.0 19.0 43.0 2 14.74 19.38 21.24 19.97 33.42 1.31 2.43 15.13 0.00 16.66 .629 .193 .090 .025 .002 .002 .059 .000 0 Minision factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 19.0 43.0 2 11.01 14.93 16.41 15.40 26.15 1.03 1.90 11.84 0.00 12.64 .629 .193 .090 .025 .002 .002 .059 .000 0 Minision factors are as of Jan. 1st of the indicated calendar year. 2 6 52 3.0.0 19.0 43.0 2 11.01 14.93 16.41 15.40 26.15 1.03 1.90 11.84 0.00 12.64 .629 .193 .090 .025 .002 .002 .059 .000 0 Minision factors are as of Jan. 1st of the indicated calendar year. 2 6 52 15.0 14.0 46.0 2 2.59 28.98 31.74 29.86 60.09 2.30 4.22 26.37 0.00 25.73 .629 .193 .090 .025 .002 .002 .059 .000 0 Minision factors are as of Jan. 1st of the indicated calendar year. 2 6 52 15.0 14.0 23.0 2 8.34 11.32 12.65 11.74 24.42 0.81 1.49 11.02 0.00 9.87 .587 .241 .113 .016 .002 .003 .038 .000 0 Minision factors are as of Jan. 1st of the indicated calendar year. 2 6 52 19.0 17.0 30.0 2 9.39 12.71 14.12 13.16 25.72 0.91 1.67 11.64 0.00 15.31 .698 .180 .084 .010 .002 .002 .002 .002 .002 .002 .002	2 6 52	46.0	12.0	59.0_2	20.00	26.24	28.43	26.94	39.50	1.70	3.12	17.78	0.00	22.09	.648	.173	.081	.028	.002	.002	.066	.000
DEmission factors are as of Jan. 1st of the indicated calendar year. 1.4.4 2.9.52 4.9.4 0.00 29.71 648 1.73 0.02 0.02 0.066 0.00 DEmission factors are as of Jan. 1st of the indicated calendar year. 1.16 9.55 0.00 7.77 547 241 1.13 0.28 0.02 0.03 0.66 0.00 DEmission factors are as of Jan. 1st of the indicated calendar year. 2.6 52 8.0 7.0 12.02 2.6 2.9 1.474 9.91 22.24 0.69 1.26 10.09 0.00 13.94 .629 1.93 0.02 .003 0.66 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.6 52 3.00 19.0 43.02 14.74 19.32 2.24 1.12 2.07 12.89 0.00 13.94 .629 .193 .090 0.25 .002 <td< td=""><td>2 6 52</td><td>factors</td><td>are a 8.0</td><td>s or Jai 56.0 2</td><td>n. 1st 20.55</td><td>or the 26.84</td><td>29.18</td><td>27.59</td><td>45.27</td><td>r. 1.86</td><td>3.39</td><td>20.24</td><td>0.00</td><td>22.94</td><td>.648</td><td>.173</td><td>.081</td><td>.028</td><td>.002</td><td>.002</td><td>.066</td><td>.000</td></td<>	2 6 52	factors	are a 8.0	s or Jai 56.0 2	n. 1st 20.55	or the 26.84	29.18	27.59	45.27	r. 1.86	3.39	20.24	0.00	22.94	.648	.173	.081	.028	.002	.002	.066	.000
2 6 52 45.0 8.0 56.0 2 26.3 33.86 36.91 34.83 67.80 27.1 4.94 29.48 0.00 29.71 648 173 0.01 0.28 0.02 0.02 0.06 0.00 2 6 52 8.0 7.0 12.0 2 6.8 8.56 9.68 8.92 21.52 0.00 7.77 547 241 113 0.02 0.00 0.00 7.77 547 241 113 0.02 0.00 0.0	OEmission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar year	r.												
Using string lack of a large of the indicated of large arrows and the indicated of large arrows are as of the indicated of large arrows are as of the indicated of large arrows are as of the indicated cale and arrows arrows are as of the indicated cale and arrow arrows are as of the indicated cale and arrows arrows	2 6 52	45.0	8.0	56.0 2	26.23	33.86	36.91	34.83	67.80	2.71	4.94	29.48	0.00	29.71	.648	.173	.081	.028	.002	.002	.066	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 6 9.00 8.66 .47 .24 1.12 0.00 8.66 .47 .24 1.13 .028 .002 .003 .066 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 5 30.0 19.0 43.0 2 1.22 1.28 0.00 13.94 .629 .193 .090 .025 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 .00 16.66 .629 .193 .090 .025 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. .65 34.0 14.0 46.0 .166 .629 .193 .090 .025 .002 .005 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. .00 11.49 .174 .98 .01 .01 .26 .273 .62 .02 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002	2 6 52	8.0	7.0	12.0 2	6.18	8.56	9.68	8.92	21.52	0.64	1.16	9.55	0.00	7.77	.547	.241	.113	.028	.002	.003	.066	.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0Emission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar year	c.												
0.50m/spice 1 1.2 6 52 30.0 19.0 43.0 2 12.2 16.37 17.97 16.88 28.41 1.12 2.07 12.89 0.00 13.94 .629 .193 .090 .025 .002 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.6 52 34.0 14.0 46.0 2 15.38 20.27 2.17 2.087 34.56 1.36 2.50 15.63 0.00 17.37 .629 .193 .090 .025 .002 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.50 34.0 14.0 46.0 2 15.38 20.27 2.17 2.087 34.56 1.36 2.50 15.63 0.00 17.37 .629 .193 .090 .025 .002 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.50 34.0 14.0 46.0 2 22.59 28.98 31.74 29.86 60.09 2.30 4.22 26.37 0.00 25.73 .629 .193 .090 .025 .002 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.6 52 34.0 14.0 46.0 2 22.59 28.98 31.74 29.86 60.09 2.30 4.22 26.37 0.00 25.73 .629 .193 .090 .025 .002 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.6 52 15.0 14.0 23.0 2 8.34 11.32 12.65 11.74 24.42 0.81 1.49 11.02 0.00 9.87 .587 .241 .113 .016 .002 .003 .038 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.50 19.0 17.0 30.0 2 9.39 12.71 14.12 13.16 25.72 0.91 1.67 11.64 0.00 10.94 .624 .207 .097 .020 .002 .002 .024 .040 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.50 19.0 17.0 30.0 2 8.77 11.97 13.31 12.40 24.49 0.66 1.59 11.05 0.00 10.57 .648 .207 .097 .020 .002 .002 .024 .000 <	2 6 52 Officient	8.0	7.0	12.0 2	6.99	9.52	10.74 indicated	9.91 Japlend	22.94 Jar veau	0.69	1.26	10.29	0.00	8.66	.547	.241	.113	.028	.002	.003	.066	.000
02mission factors are as of Jan. 1st of the indicated calendar year. 2 6 2 0.0 16.66 .629 .193 .090 .025 .002 .059 .000 02mission factors are as of Jan. 1st of the indicated calendar year. 2 .0 16.66 .629 .193 .090 .025 .002 .059 .000 02mission factors are as of Jan. 1st of the indicated calendar year. 2 .0 19.0 43.0 2 1.01 14.9 16.41 15.40 26.15 1.03 1.00 12.64 .629 .193 .090 .025 .002 .059 .000 02mission factors are as of Jan. 1st of the indicated calendar year. 2 2 .0 12.64 .629 .193 .090 .025 .002 .002 .059 .000 02mission factors are as of Jan. 1st of the indicated calendar year. 2 6 .0 14.0 46.02 22.57 7.57 8.55 7.87 20.50 0.60 1.09 8.92 0.00 6.60 .618 .207 .002 .002 .002 .002 .002 .002 .002 <td>2 6 52</td> <td>30.0</td> <td>19.0</td> <td>43.0 2</td> <td>12.22</td> <td>16.37</td> <td>17.97</td> <td>16.88</td> <td>28.41</td> <td>1.12</td> <td>2.07</td> <td>12.89</td> <td>0.00</td> <td>13.94</td> <td>.629</td> <td>.193</td> <td>.090</td> <td>.025</td> <td>.002</td> <td>.002</td> <td>.059</td> <td>.000</td>	2 6 52	30.0	19.0	43.0 2	12.22	16.37	17.97	16.88	28.41	1.12	2.07	12.89	0.00	13.94	.629	.193	.090	.025	.002	.002	.059	.000
2 5 2 30.0 19.0 43.0 2 14.7 19.38 21.42 19.37 24.3 15.13 0.00 16.66 .629 .193 .090 .022 .002 .0	0Emission	factors	are a	s of Jai	n. 1st	of the	indicated	d_calend	lar year	r.												
32 6 2 34.0 14.0 46.0 2 15.38 20.77 22.17 20.87 34.26 1.36 2.50 15.63 0.00 17.37 .629 .193 .090 .022 .002 <td< td=""><td>2 6 52 Officient</td><td>30.0 factors</td><td>19.0 are a</td><td>43.02 g of Tai</td><td>14.74 n 1et</td><td>19.38 of the</td><td>21.24 indicated</td><td>19.97 d calend</td><td>33.42 Jar veau</td><td>1.31 r</td><td>2.43</td><td>15.13</td><td>0.00</td><td>16.66</td><td>.629</td><td>.193</td><td>.090</td><td>.025</td><td>.002</td><td>.002</td><td>.059</td><td>.000</td></td<>	2 6 52 Officient	30.0 factors	19.0 are a	43.02 g of Tai	14.74 n 1et	19.38 of the	21.24 indicated	19.97 d calend	33.42 Jar veau	1.31 r	2.43	15.13	0.00	16.66	.629	.193	.090	.025	.002	.002	.059	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 30.0 19.0 43.0 2 11.01 14.93 16.41 15.40 26.15 1.00 11.84 0.00 12.64 629 .19.0 3.09 .025 .002 .002 .002 .005 .000	2 6 52	34.0	14.0	46.0 2	15.38	20.27	22.17	20.87	34.56	1.36	2.50	15.63	0.00	17.37	.629	.193	.090	.025	.002	.002	.059	.000
2 6 52 30.0 19.0 43.0 2 11.01 14.93 16.41 15.40 26.15 11.03 11.84 0.00 12.64 6.69 193 0.00 10.25 10.02 <	0Emission	factors	are a	s of Jai	n. 1st	of the	indicated	d calend	lar year	r.	1 0 0	11 04	0 00	10 64	C 0 0	100	000	005	000	000	050	000
2 6 52 34.0 14.0 46.0 2 22.59 28.98 31.74 29.86 60.09 2.30 4.22 26.37 0.00 25.73 .629 .193 .090 .025 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 2 6.37 0.00 25.73 .629 .193 .090 .025 .002 .002 .059 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6.52 15.0 14.0 23.02 9.34 11.32 12.65 17.74 24.42 0.81 1.49 11.02 0.00 9.87 587 .241 .113 .016 .002 .003 .038 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 .50 12.14 0.00 16.75 .648 .207 .097 .022 .002 .024 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002	2 6 52 OEmission	30.0 factors	are a	43.0 Z s of Ja	11.01 n. 1st	of the	16.41 indicated	15.40 d calend	⊿6.⊥5 lar veai	1.03 r.	1.90	11.84	0.00	12.64	.629	.193	.090	.025	.002	.002	.059	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 8.0 7.0 12.0 2 5.32 7.55 8.55 7.87 20.50 0.60 1.09 8.92 0.00 6.60 .618 .207 .097 .022 .002 .052 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 15.0 14.0 23.0 2 8.34 11.32 12.65 11.74 24.42 0.81 1.49 11.02 0.00 9.87 .587 .241 .113 .016 .002 .003 .038 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 39.0 37.0 60.02 15.04 20.11 21.76 20.64 26.78 1.22 2.33 14.66 0.00 16.75 .648 .207 .097 .013 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002	2 6 52	34.0	14.0	46.0 2	22.59	28.98	31.74	29.86	60.09	2.30	4.22	26.37	0.00	25.73	.629	.193	.090	.025	.002	.002	.059	.000
2 0 1.0 </td <td>0Emission</td> <td>factors</td> <td>are a</td> <td>s of Jai</td> <td>n. 1st</td> <td>of the</td> <td>indicated</td> <td>d calend</td> <td>lar yean</td> <td>r. 0 60</td> <td>1 00</td> <td>0 0 0</td> <td>0 00</td> <td>6 60</td> <td>619</td> <td>207</td> <td>007</td> <td>022</td> <td>002</td> <td>002</td> <td>052</td> <td>000</td>	0Emission	factors	are a	s of Jai	n. 1st	of the	indicated	d calend	lar yean	r. 0 60	1 00	0 0 0	0 00	6 60	619	207	007	022	002	002	052	000
2 6 52 15.0 14.0 23.0 2 8.34 11.32 12.65 11.74 24.42 0.81 1.49 11.02 0.00 9.87 .587 .241 .113 .016 .002 .003 .038 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 39.0 37.0 60.0 2 15.04 20.11 21.76 20.64 26.78 1.32 2.50 12.14 0.00 16.75 .648 .207 .097 .013 .002 .002 .002 .002 .002 .002 .002 .002 .001 .001 16.75 .648 .207 .097 .013 .002 </td <td>0Emission</td> <td>factors</td> <td>are a</td> <td>s of Ja</td> <td>n. 1st</td> <td>of the</td> <td>indicated</td> <td>d calend</td> <td>lar yea</td> <td>r.</td> <td>1.09</td> <td>0.92</td> <td>0.00</td> <td>0.00</td> <td>.010</td> <td>.207</td> <td>.097</td> <td>.022</td> <td>.002</td> <td>.002</td> <td>.052</td> <td>.000</td>	0Emission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar yea	r.	1.09	0.92	0.00	0.00	.010	.207	.097	.022	.002	.002	.052	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 19.0 17.0 30.0 2 9.39 12.71 14.12 13.16 25.72 0.91 1.67 11.64 0.00 10.94 .624 .207 .097 .020 .002 .002 .004 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 39.0 37.0 60.0 2 15.04 20.11 21.76 20.64 26.78 1.32 2.50 12.14 0.00 16.75 .648 .207 .097 .013 .002 .002 .002 .002 .001 .002 <t< td=""><td>2 6 52</td><td>15.0</td><td>14.0</td><td>23.0 2</td><td>8.34</td><td>11.32</td><td>12.65</td><td>11.74</td><td>24.42</td><td>0.81</td><td>1.49</td><td>11.02</td><td>0.00</td><td>9.87</td><td>.587</td><td>.241</td><td>.113</td><td>.016</td><td>.002</td><td>.003</td><td>.038</td><td>.000</td></t<>	2 6 52	15.0	14.0	23.0 2	8.34	11.32	12.65	11.74	24.42	0.81	1.49	11.02	0.00	9.87	.587	.241	.113	.016	.002	.003	.038	.000
2 1	0Emission	factors	are a	s of Jai 30 0 2	n. lst 939	of the 12 71	indicated	d calenc	lar yea: 25 72	r. 0.91	1 67	11 64	0 00	10 94	624	207	097	020	002	002	048	000
2 6 52 39.0 37.0 60.0 2 15.04 20.11 21.76 20.64 26.78 1.32 2.50 12.14 0.00 16.75 .648 .207 .097 .013 .002 .001 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.50 12.14 0.00 16.75 .648 .207 .097 .013 .002 .002 .002 .001 .000 16.75 .648 .207 .097 .013 .002 <td>0Emission</td> <td>factors</td> <td>are a</td> <td>s of Ja</td> <td>n. 1st</td> <td>of the</td> <td>indicated</td> <td>d calend</td> <td>lar yean</td> <td>r.</td> <td>1.07</td> <td>11.01</td> <td>0.00</td> <td>10.91</td> <td>.021</td> <td>.207</td> <td>.007</td> <td>.020</td> <td>.002</td> <td>.002</td> <td>.010</td> <td>.000</td>	0Emission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar yean	r.	1.07	11.01	0.00	10.91	.021	.207	.007	.020	.002	.002	.010	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 24.0 24.0 38.0 2 13.87 18.17 19.97 18.74 32.36 1.25 2.33 14.66 0.00 15.31 .698 .180 .084 .010 .002 .002 .024 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 19.0 17.0 30.0 2 8.77 11.97 13.31 12.40 24.49 0.86 1.59 11.05 0.00 10.27 .624 .207 .097 .020 .002 <t< td=""><td>2 6 52</td><td>39.0</td><td>37.0</td><td>60.0_2</td><td>15.04</td><td>20.11</td><td>21.76</td><td>20.64</td><td>26.78</td><td>1.32</td><td>2.50</td><td>12.14</td><td>0.00</td><td>16.75</td><td>.648</td><td>.207</td><td>.097</td><td>.013</td><td>.002</td><td>.002</td><td>.031</td><td>.000</td></t<>	2 6 52	39.0	37.0	60.0_2	15.04	20.11	21.76	20.64	26.78	1.32	2.50	12.14	0.00	16.75	.648	.207	.097	.013	.002	.002	.031	.000
Demission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 19.0 17.0 30.0 2 8.77 11.97 13.31 12.40 24.49 0.86 1.59 11.05 0.00 10.27 .624 .207 .097 .002 <	0Emission 2 6 52	1actors 24 0	are a 24 0	S OI JA1 38 0 2	n. 1st 13 87	or the 18 17	19 97	1 calenc 18 74	ar yea 32 36	r. 125	2 33	14 66	0 00	15 31	698	180	084	010	002	002	024	000
2 6 52 19.0 17.0 30.0 2 8.77 11.97 13.31 12.40 24.49 0.86 1.59 11.05 0.00 10.27 .624 .207 .097 .020 .002 .004 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 19.0 19.0 31.0 2 17.70 22.52 24.88 23.27 48.70 1.71 3.17 21.67 0.00 19.51 .698 .180 .084 .010 .002 </td <td>0Emission</td> <td>factors</td> <td>are a</td> <td>s of Ja</td> <td>n. 1st</td> <td>of the</td> <td>indicated</td> <td>d calend</td> <td>lar year</td> <td>r.</td> <td>2.55</td> <td>11.00</td> <td>0.00</td> <td>13.31</td> <td>.090</td> <td>.100</td> <td>.001</td> <td>.010</td> <td>.002</td> <td>.002</td> <td>.021</td> <td>.000</td>	0Emission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar year	r.	2.55	11.00	0.00	13.31	.090	.100	.001	.010	.002	.002	.021	.000
00Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 19.0 19.0 31.0 2 17.70 22.52 24.88 23.27 48.70 1.71 3.17 21.67 0.00 19.51 .698 .180 .084 .010 .002 .002 .024 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 13.0 10.0 19.0 2 4.42 6.61 7.48 6.89 20.72 0.60 1.10 8.51 0.00 5.84 .577 .232 .109 .023 .002 .002 .055 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 14.0 23.0 22.0 2 6.47 9.05 10.15 9.40 21.23 0.71 1.32 9.38 0.00 8.32 .478 .281 .132 .003 .003 .073 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 9.38 0.00 8.32 .478 .281 .132 .003 .073<	2 6 52	19.0	17.0	30.0 2	8.77	11.97	13.31	12.40	24.49	0.86	1.59	11.05	0.00	10.27	.624	.207	.097	.020	.002	.002	.048	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 13.0 10.0 19.0 2 4.42 6.61 7.48 6.89 20.72 0.60 1.10 8.51 0.00 5.84 .577 .232 .109 .023 .002 .055 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 14.0 23.0 22.0 2 6.47 9.05 10.15 9.40 21.23 0.71 1.32 9.38 0.00 8.32 .478 .281 .132 .003 .073 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 0.71 1.32 9.38 0.00 8.32 .478 .281 .132 .003 .073 .000	2 6 52	19.0	are a 19.0	31.0 2	n. 1st 17.70	or the 22.52	24.88	23.27	48.70	r. 1.71	3.17	21.67	0.00	19.51	.698	.180	.084	.010	.002	.002	.024	.000
2 6 52 13.0 10.0 19.0 2 4.42 6.61 7.48 6.89 20.72 0.60 1.10 8.51 0.00 5.84 .577 .232 .109 .023 .002 .005 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 6 52 14.0 23.0 22.0 2 6.47 9.05 10.15 9.40 21.23 0.71 1.32 9.38 0.00 8.32 .478 .281 .132 .003 .073 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 9.38 0.00 8.32 .478 .281 .132 .003 .073 .000	0Emission	factors	are a	s of Ja	n. 1st	of the	indicated	d calend	lar year	r.								. = -				
2 6 52 14.0 23.0 22.0 2 6.47 9.05 10.15 9.40 21.23 0.71 1.32 9.38 0.00 8.32 .478 .281 .132 .031 .002 .003 .073 .000 0Emission factors are as of Jan. 1st of the indicated calendar year.	2 6 52	13.0	10.0	19.0 2	4.42	6.61	7.48	6.89	20.72	0.60	1.10	8.51	0.00	5.84	.577	.232	.109	.023	.002	.002	.055	.000
OEmission factors are as of Jan. 1st of the indicated calendar year.	2 6 52	14.0	23.0	22.0 2	6.47	9.05	10.15	9.40	21.23	0.71	1.32	9.38	0.00	8.32	.478	.281	.132	.031	.002	.003	.073	.000
	0Emission	factors	are a	s of Jai	n. 1st	of the	indicated	d calend	lar year	r.												

2 6 52	12.0	11.0	18.	0 2	6.71	9.3	0 10.45	9.6	57 21	.94	0.69	1.26	9.78	0.00	8.21	.558	.254	.119	.019	.002	.003	.045	.000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year													
2 6 52	25.0	24.0	37.	0_2	8.21	11.4	4 12.66	11.8	33 22	2.11	0.84	1.56	9.87	0.00	9.72	.599	.229	.107	.018	.002	.002	.043	.000
2 6 52	28 0	are	as or	Jan. 02	11 63	15 6	1nd1cate 4 17 17	α cai 16 1	endar	r year 5 51	1 07	2 01	12 01	0 00	13 16	648	207	097	013	002	002	031	000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year		2.01	12.01	0.00	13.10	.010	.207	.057	.015	.002	.002	.051	.000
2 6 52	12.0	11.0	18.	0 2	7.62	10.3	6 11.63	10.7	7 23	3.57	0.75	1.37	10.61	0.00	9.20	.558	.254	.119	.019	.002	.003	.045	.000
OEmission	factors	are	as of	Jan.	lst o	of the	indicate	ed cal	endar	year		0 57	1 7 0 7	0 00	10 00	C 4 0	0.07	0.07	012	000	000	0.2.1	000
Z 6 5Z OEmission	19.0 factors	18.U	29.0 as of	Jan.	15.4/ 1st c	19.8 of the	8 21.98 indicate	20.5 d cal	endar	'./⊥ ∵vear	1.39	2.57	1/.8/	0.00	17.35	.648	.207	.097	.013	.002	.002	.031	.000
2 6 52	16.0	9.0	23.0	0 2	6.94	10.2	4 11.66	10.6	59 26	5.98	0.70	1.29	9.78	0.00	10.02	.418	.241	.113	.066	.001	.003	.158	.000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year	•												
2 6 52	3.0	2.0	5.0	0 2	3.99	5.8	9 6.73	6.1	.6 20).58	0.53	0.97	8.51	0.00	5.73	.498	.261	.122	.034	.002	.003	.080	.000
2 6 52	16.0	13.0	as or 24.1	0 2	5.03	7.4	$\frac{1}{3}$ 8.36	a cai 7.7	.endar 72 20	year).26	.0.64	1.17	8.59	0.00	6.26	619	. 220	.103	.016	.002	.002	.038	.000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year			0.05	0.00	0.20								
2 6 52	16.0	13.0	24.	0_2	5.50	7.9	8 8.97	8.3	30 20	.33	0.65	1.19	8.77	0.00	6.75	.619	.220	.103	.016	.002	.002	.038	.000
0Emission	factors	are	as of	Jan.	1st c	11 2	indicate	ed cal	endar	year		1 50	10 22	0 00	0 57	610	220	102	016	002	002	020	000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	ed cal	.endar	vear		1.50	10.52	0.00	2.57	.019	.220	.105	.010	.002	.002	.050	.000
2 6 52	16.0	13.0	24.	0 2	6.42	9.0	7 10.17	9.4	2 21	.14	0.69	1.27	9.33	0.00	7.71	.619	.220	.103	.016	.002	.002	.038	.000
OEmission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year	•	0.00	16 04	0 00	1 6 0 1	61.0		100	016				000
2 6 52 Officeion	23.0 factors	13.U	34.0 ag of	02. .Tan	14.23 1et 6	18.5 of the	9 20.51 indicate	19.2 d cal	20 35 endar	.95 vear	1.28	2.36	16.24	0.00	16.21	.619	.220	.103	.016	.002	.002	.038	.000
2 6 52	46.0	12.0	59.1	0 2 2	22.03	28.6	8 31.09	29.4	15 46	5.94	. 2.00	3.67	20.94	0.00	24.46	.648	.173	.081	.028	.002	.002	.066	.000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year	•												
2 6 52	46.0	12.0	59.1	0_2 2	24.04	31.1	5 33.82	32.0	0 55	5.02	2.33	4.26	24.29	0.00	26.86	.648	.173	.081	.028	.002	.002	.066	.000
2 6 52	45.0	are 8.0	as or 56.1	0 2 1	22.08	28.7	3 31.25	29.5	.enuar 53 51	. year	2.11	3.86	23.00	0.00	24.79	648	.173	.081	028	.002	.002	066	.000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year		5.00	20100	0.00	211/2		• = / 5		.020				
2 6 52	45.0	8.0	56.	0_2 3	26.23	33.8	6 36.91	34.8	33 67	7.80	2.71	4.94	29.48	0.00	29.71	.648	.173	.081	.028	.002	.002	.066	.000
0Emission	factors	are	as of	Jan.	1st c	12 0	indicate	ed cal	endar	year		1 5 3	12 55	0 00	11 01	547	241	112	028	002	003	066	000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	ed cal	.endar	year		1.55	12.33	0.00	11.01	. 517	.211	.115	.020	.002	.005	.000	.000
2 6 52	8.0	7.0	12.	02	10.37	13.4	7 15.15	14.0	0 30	.82	0.94	1.70	13.98	0.00	12.42	.547	.241	.113	.028	.002	.003	.066	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	ed cal	endar	year		2 04	10 04	0 00	20 70	620	100	000	0.05	000	000	050	000
2 0 52 OEmission	factors	are	43.0 as of	u⊿. Jan.	18.52 1st d	23.8 of the	o 20.09 indicate	24.5 d cal	o/ 4∠ endar	.zz vear	1.04	3.04	18.94	0.00	20.79	.029	.193	.090	.025	.002	.002	.059	.000
2 6 52	30.0	19.0	43.0	0 2 3	19.69	25.2	8 27.67	26.0)4 47	.80	1.85	3.42	21.30	0.00	22.22	.629	.193	.090	.025	.002	.002	.059	.000
OEmission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year	•												
2 6 52 Officient	34.0	14.0	46.0	02. .Tan	18.77 1et 6	24.3	0 26.55 indicate	25.0 d cal)2 42 ondar	2.95 . Vear	1.68	3.08	19.25	0.00	21.10	.629	.193	.090	.025	.002	.002	.059	.000
2 6 52	30.0	19.0	43.0	0 2 3	14.14	18.6	7 20.46	19.2	24 32	2.21	1.27	2.35	14.60	0.00	16.01	.629	.193	.090	.025	.002	.002	.059	.000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year	•												
2 6 52	34.0	14.0	46.0	0_2 2	22.59	28.9	8 31.74	29.8	36 60	0.09	2.30	4.22	26.37	0.00	25.73	.629	.193	.090	.025	.002	.002	.059	.000
2 6 52	actors 8 0	are 7 (as or	Jan. 02	1St 0 8 41	11 1	1nd1cate 7 12 59	a cai 11 ƙ	endar	year 97	0 79	1 43	11 76	0 00	9 92	618	207	097	022	002	002	052	000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year		1.15	11.70	0.00	5.52	.010	.207	.057	.022	.002	.002	.052	.000
2 6 52	15.0	14.0	23.	02	10.52	13.8	9 15.48	14.3	39 29	9.20	0.98	1.80	13.25	0.00	12.25	.587	.241	.113	.016	.002	.003	.038	.000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	ed cal	endar	year	1 22	2 26	15 71	0 00	15 22	624	207	007	020	002	002	049	000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	ed cal	.endar	vear		2.20	13./1	0.00	10.00	.024	.207	.097	.020	.002	.002	.040	.000
2 6 52	39.0	37.0	60.0	02	22.02	28.3	3 30.55	29.0	04 37	2.26	1.83	3.46	16.81	0.00	24.11	.648	.207	.097	.013	.002	.002	.031	.000
OEmission	factors	are	as of	Jan.	lst o	of the	indicate	ed cal	endar	year		0 67	1 0 0 1	0 00	1 7 0 0	600	100	004	010	000	000	0.0.4	000
2 0 52 OEmission	24.0 factors	24.U	as of	Jan.	10.22 1st c	20.9 of the	4 22.98 indicate	∠⊥.5 d cal	endar	vear	1.43	2.0/	10.81	0.00	1/.80	.098	.180	.084	.010	.002	.002	.024	.000
2 6 52	19.0	17.0	30.0	0 2 3	10.46	13.9	8 15.50	14.4	6 27	.98	0.99	1.82	12.69	0.00	12.10	.624	.207	.097	.020	.002	.002	.048	.000
OEmission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year	•												
2 6 52 Official	19.0 factors	19.0	31.0 ag of	02. .Tan	19+70	22.5	2 24.88 indicato	23.2	48 Andar	5.70 . Vear	1.71	3.17	21.67	0.00	19.51	.698	.180	.084	.010	.002	.002	.024	.000
2 6 52	13.0	10.0	19.0	0 2	5.97	8.4	4 9.50	8.7	78 20).87	0.65	1.18	9.17	0.00	7.42	.577	.232	.109	.023	.002	.002	.055	.000
0Emission	factors	are	as of	Jan.	lst d	of the	indicate	ed cal	endar	year	•												

2 6 52	14.0	23.0	22	.0 2	8.02	10.87	7 12.15	11.28	23	.75	0.81	1.50	10.70	0.00	10.01	.478	.281	.132	.031	.002	.003	.073	.000
0Emission	factors	are	as o	of Jan.	. 1st d	of the	indicate	ed cale	ndar	year													
2 6 52	12.0	11.0	18	.02	9.29	12.32	2 13.80	12.79	27	.17	0.87	1.59	12.32	0.00	11.03	.558	.254	.119	.019	.002	.003	.045	.000
2 6 52	25 0	24 0	as 0 37	n Jan.	. ISU (11 02	14 7	16 28	15 25	ndar 26	year 88	1 03	1 93	12 18	0 00	12 74	599	229	107	018	002	002	043	000
OEmission	factors	are	as o	of Jan.	1st c	of the	indicate	ed cale	ndar	year		1.75	12.10	0.00	12.71			. ± 0 /	.010	.002	.002	.015	.000
2 6 52	28.0	26.0	43	.0 2	13.76	18.16	5 19.90	18.72	30	.43	1.23	2.31	13.80	0.00	15.43	.648	.207	.097	.013	.002	.002	.031	.000
0Emission	factors	are	as c	of Jan.	. lst c	11 F	indicate	ed cale	ndar	year		1 50	11 64	0 00	10 22	EEQ	254	110	010	002	002	045	000
0Emission	factors	are	as o	of Jan.	. 1st c	of the	indicate	ed cale	ndar	vear	0.02	1.50	11.04	0.00	10.33	. 556	.234	.119	.019	.002	.003	.045	.000
2 6 52	19.0	18.0	29	.0 2	15.47	19.88	3 21.98	20.55	39	.71	1.39	2.57	17.87	0.00	17.35	.648	.207	.097	.013	.002	.002	.031	.000
0Emission	factors	are	as o	of Jan.	. 1st c	of the	indicate	ed cale	ndar	year		1 1 7	0 07	0 00	7 25	410	0.4.1	110	000	0.01	002	1 - 0	000
2 0 52 OEmission	10.0	9.0 are	⊿3 as o	o.∪ ∠ of Jan.	4.50 1st c	o.o. of the	indicate	/.⊥⊃ ⊳d cale	ndar	.89 vear	0.64	1.1/	8.8/	0.00	1.35	.418	.241	.113	.066	.001	.003	.128	.000
2 6 52	3.0	2.0	5	.02	4.55	6.54	1 7.47	6.84	20	.25	0.54	0.98	8.65	0.00	6.27	.498	.261	.122	.034	.002	.003	.080	.000
OEmission	factors	are	as o	of Jan.	. 1st c	of the	indicate	ed cale	ndar	year	•	1 00	0.04	0 00		C10		100	016			0.2.0	
2 6 52 OEmission	16.0 factors	13.0 are	24 as o	f Jan	5.82 1st c	8.30 of the	o 9.38 indicate	8.69 d cale	20 ndar	.53 vear	0.66	1.22	8.94	0.00	7.08	.619	.220	.103	.016	.002	.002	.038	.000
2 6 52	16.0	13.0	24	.02	5.99	8.56	5 9.60	8.89	20	.67	0.67	1.23	9.04	0.00	7.26	.619	.220	.103	.016	.002	.002	.038	.000
0Emission	factors	are	as o	f Jan.	lst o	of the	indicate	ed cale	ndar	year	•					~ ~ ~							
2 6 52 Officient	23.0 factors	13.0 are	34 29 0	.02 f.Tan	8.84 1et c	12.10 f the	indicate	12.59 d cale	24 ndar	.28 Vear	0.86	1.59	10.95	0.00	10.35	.619	.220	.103	.016	.002	.002	.038	.000
2 6 52	16.0	13.0	24	.0 2	6.87	9.60	10.75	9.97	21	.74	0.72	1.31	9.67	0.00	8.19	.619	.220	.103	.016	.002	.002	.038	.000
0Emission	factors	are	as o	f Jan.	. 1st d	of the	indicate	ed cale	ndar	year	•												
2 6 52	23.0	13.0	34	.02	14.23	18.59) 20.51	19.20	35 ndar	.95	1.28	2.36	16.24	0.00	16.21	.619	.220	.103	.016	.002	.002	.038	.000
2 6 52	46.0	12.0	as 0 59	0.02	26.23	33.85	5 36.79	34.79	63	.10	2.64	4.84	27.59	0.00	29.44	.648	.173	.081	.028	.002	.002	.066	.000
OEmission	factors	are	as o	of Jan.	lst d	of the	indicate	ed cale	ndar	year	•												
2 6 52	46.0	12.0	59	0.02	28.57	36.73	39.95 indiasta	37.76	70 20	.86	2.94	5.39	30.71	0.00	32.13	.648	.173	.081	.028	.002	.002	.066	.000
2 6 52	45.0	8.0	as 0 56	10211.	24.34	31.52	2 34.33	32.42	60	.93	2.46	4.48	26.71	0.00	27.49	.648	.173	.081	.028	.002	.002	.066	.000
0Emission	factors	are	as o	of Jan.	. 1st d	of the	indicate	ed cale	ndar	year	•												
2 6 52	45.0	8.0	56	.02	26.23	33.86	5 36.91	34.83	67 ndar	.80	2.71	4.94	29.48	0.00	29.71	.648	.173	.081	.028	.002	.002	.066	.000
2 6 52	8.0	7.0	as 0 12	.0 2	12.25	15.68	1101Cate 3 17.61	16.29	35	.77	1.08	1.97	16.16	0.00	14.55	.547	.241	.113	.028	.002	.003	.066	.000
0Emission	factors	are	as o	f Jan.	lst d	of the	indicate	ed cale	ndar	year	•												
2 6 52	8.0	7.0	12	1.0 2	13.50	17.14	19.23	17.81	39	.07	1.18	2.15	17.59	0.00	15.95	.547	.241	.113	.028	.002	.003	.066	.000
2 6 52	30.0	19.0	as 0 43	.02	21.37	27.31	29.93	28.15	ndar 55	.39	2.12	3.93	24.45	0.00	24.25	.629	.193	.090	.025	.002	.002	.059	.000
0Emission	factors	are	as o	f Jan.	lst d	of the	indicate	ed cale	ndar	year	•												
2 6 52	30.0	19.0	43	.02	23.57	29.99	32.90	30.91	64	.46	2.44	4.52	28.14	0.00	26.86	.629	.193	.090	.025	.002	.002	.059	.000
2 6 52	34.0	14.0	as 0 46	.02	20.83	26.83	29.35	27.63	ndar 52	.55	. 2.03	3.73	23.28	0.00	23.62	.629	.193	.090	.025	.002	.002	.059	.000
OEmission	factors	are	as o	of Jan.	. 1st d	of the	indicate	ed cale	ndar	year													
2 6 52	30.0	19.0	43	.0_2	17.20	22.31	L 24.42	22.98	38	.45	1.50	2.78	17.33	0.00	19.32	.629	.193	.090	.025	.002	.002	.059	.000
2 6 52	IACTORS	are 14 0	as o 46	i Jan.	22 59	28 98	$\frac{1nd1cate}{3}$ 31 74	29 86	ndar 60	year 09	2 30	4 22	26 37	0 00	25 73	629	193	090	025	002	002	059	000
0Emission	factors	are	as o	of Jan.	1st o	of the	indicate	ed cale	ndar	year		1.22	20.37	0.00	23.75	.029	• 1 > 5	.050	.025	.002	.002	.055	.000
2 6 52	8.0	7.0	12	.0 2	11.73	15.07	7 16.93	15.66	34	.39	1.04	1.90	15.56	0.00	13.58	.618	.207	.097	.022	.002	.002	.052	.000
0Emission 2 6 52	15 0	are 14 0	as o	of Jan.	. 1st c 14 17	18 10	indicate	ed cale	ndar 38	year 05	1 26	2 22	17 15	0 00	16 26	587	241	113	016	002	003	038	000
0Emission	factors	are	as o	of Jan.	. 1st d	of the	indicate	ed cale	ndar	year		2.55	1/.15	0.00	10.20	. 507	. 2 1 1		.010	.002	.005	.050	.000
2 6 52	19.0	17.0	30	.0 2	16.81	21.50	23.77	22.22	45	.82	1.59	2.94	20.46	0.00	19.16	.624	.207	.097	.020	.002	.002	.048	.000
0Emission 2 6 52	tactors	are	as o 60	of Jan.	. Ist (26 09	22 12	$\frac{1ndlcate}{2}$	ed cale	ndar 47	year 80	2 32	4 38	21 30	0 00	28 53	648	207	097	013	002	002	031	000
0Emission	factors	are	as o	of Jan.	1st 0	of the	indicate	ed cale	ndar	year		1.50	21.30	0.00	20.35	.010	.207	.057	.015	.002	.002	.051	.000
2 6 52	24.0	24.0	38	.0 2	18.53	23.66	5 25.96	24.39	_44	.48	1.69	3.16	19.90	0.00	20.31	.698	.180	.084	.010	.002	.002	.024	.000
UEmission	Iactors	are	as o	or Jan.	. 1st c 12 no	DI the	indicate	ed cale	ndar 21	year 64	1 1 2	2 06	14 34	0 00	13 97	624	207	007	020	000	000	048	000
0Emission	factors	are	as o	of Jan.	1st c	of the	indicate	ed cale	ndar	year		2.00	11.01	0.00	10.01	.024	. 40 /	.091	.020	.002	.002	.010	.000
2 6 52	19.0	19.0	31	.0 2	17.70	22.52	2 24.88	23.27	48	.70	1.71	3.17	21.67	0.00	19.51	.698	.180	.084	.010	.002	.002	.024	.000
UEmission	tactors	are	as o	ot Jan.	. lst d	of the	indicate	ed cale	ndar	year	•												

2 6 52	13.0	10.0	19.0 2	7.73	10.5	1 11.79	10.92	23.69	0	.75	1.38	10.67	0.00	9.32	.577	.232	.109	.023	.002	.002	.055	.000
0Emission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.	0.2	1 7 2	10 07	0 00	11 70	170	201	120	0.2.1	002	002	073	000
0Emission	factors	are a	⊿⊿.∪⊿ s of Jar	9.60 1. 1st	of the	indicate	d calend	lar ve	ar.	.95	1.72	12.2/	0.00	11./0	.4/0	.201	.132	.031	.002	.003	.075	.000
2 6 52	12.0	11.0	18.0 2	12.16	15.7	0 17.55	16.29	34.23	1	.09	2.00	15.49	0.00	14.22	.558	.254	.119	.019	.002	.003	.045	.000
OEmission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.	0.0	0 00	1 - 10	0 00	16 00			100	010			0.4.2	
2 6 52 Officient	25.0 factors	24.0 are a	37.02 - of Tar	14.25	 of the	8 20.43	19.17 d calend	33.42 Jar ve	⊥ ar	.29	2.39	15.13	0.00	16.23	.599	.229	.107	.018	.002	.002	.043	.000
2 6 52	28.0	26.0	43.0 2	15.88	20.6	8 22.62	21.30	34.56	ar. 1	.40	2.61	15.63	0.00	17.71	.648	.207	.097	.013	.002	.002	.031	.000
0Emission	factors	are a	s of Jar	n. 1st	of the	indicate	d calend	lar ye	ar.													
2 6 52	12.0	11.0	18.0 2	9.54	12.6	2 14.14	13.11	27.77	0	.89	1.62	12.59	0.00	11.32	.558	.254	.119	.019	.002	.003	.045	.000
2 6 52	19.0	18.0	29.0 2	1. ISL 15.47	19.8	8 21.98	20.55	39.71	ar. 1	.39	2.57	17.87	0.00	17.35	.648	.207	.097	.013	.002	.002	.031	.000
OEmission	factors	are a	s of Jar	n. 1st	of the	indicate	d calend	lar ye	ar.													
2 6 52	16.0	9.0	23.0_2	4.52	6.8	1 7.68	7.09	20.95	0	.62	1.12	8.53	0.00	7.13	.418	.241	.113	.066	.001	.003	.158	.000
UEmission	iactors	are a	s or Jar 5 0 2	1. IST 5 24	or the	indicate	d calend	ar ye	ar.	57	1 03	9 05	0 00	6 98	498	261	122	034	002	003	080	000
0Emission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.	. 57	1.05	2.05	0.00	0.90	. 190	.201	.122	.031	.002	.005	.000	.000
2 6 52	16.0	13.0	24.0 2	6.69	9.3	9 10.52	9.75	21.49	0	.70	1.30	9.53	0.00	8.00	.619	.220	.103	.016	.002	.002	.038	.000
OEmission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.	71	1 20	0 57	0 00	0 05	610	220	102	010	000	000	020	000
2 0 52 OEmission	factors	are a	24.0 Z s of Jar	0.74 1. 1st	of the	indicate	d calend	⊿⊥.50 lar ve	ar.	./1	1.30	9.5/	0.00	8.05	.619	.220	.103	.010	.002	.002	.038	.000
2 6 52	23.0	13.0	34.0 2	9.50	12.9	5 14.35	13.40	25.55	0	.91	1.68	11.56	0.00	11.06	.619	.220	.103	.016	.002	.002	.038	.000
OEmission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.		1 25	0.00	0 00	0 57	610	000	100	010	000	000	020	000
2 6 52 OEmission	10.0 factors	13.U are a	24.0 Z s of Jar	/.22 1 1st	of the	2 II.21 indicate	10.40 d calend	22.29 Jar ve	u ar	./4	1.35	9.96	0.00	8.5/	.619	.220	.103	.016	.002	.002	.038	.000
2 6 52	23.0	13.0	34.0 2	14.23	18.5	9 20.51	19.20	35.95	1	.28	2.36	16.24	0.00	16.21	.619	.220	.103	.016	.002	.002	.038	.000
0Emission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.													
2 6 36	21.0	17.0	43.02	13.87	19.5	0 21.19	20.04	28.32	1	.07	2.01	12.89	0.00	16.09	.589	.213	.100	.028	.002	.002	.066	.000
2 6 36	21.0	17.0	43.0 2	15.19	21.1	5 22.96	21.73	30.59	ar. 1	.16	2.17	13.92	0.00	17.53	.589	.213	.100	.028	.002	.002	.066	.000
0Emission	factors	are a	s of Jar	n. 1st	of the	indicate	d calend	lar ye	ar.													
2 6 36	16.0	12.0	35.0 2	17.76	24.1	0 26.31	24.80	39.16	1	.36	2.53	17.69	0.00	20.49	.589	.213	.100	.028	.002	.002	.066	.000
2 6 36	16.0	12.0	35.0 2	24.80	33.0	0 36.14	34.00	68.07	ar. 2	. 28	4.24	29.68	0.00	29.13	.589	.213	.100	.028	.002	.002	.066	.000
OEmission	factors	are a	s of Jar	n. 1st	of the	indicate	d calend	lar ye	ar.													
2 6 36	9.0	10.0	16.0_2	4.67	7.2	1 8.13	7.51	22.76	0	.61	1.12	8.86	0.00	6.69	.517	.241	.113	.037	.002	.003	.087	.000
0Emission 2 6 36	iactors 9 0	are a	3 OI Jar 16 0 2	1. IST 6 19	or the	1nd1cate 7 10 18	d calend	1ar ye 20 69	ar.	63	1 15	9 1 0	0 00	8 10	517	241	113	037	002	003	087	000
0Emission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.	.05	1.10	2.10	0.00	0.10	. 5 ± /		• = = 5	.057	.002	.005	.007	
2 6 36	22.0	25.0	39.0_2	9.75	14.1	7 15.49	14.59	22.31	0	.85	1.60	10.01	0.00	11.33	.648	.187	.087	.022	.002	.002	.052	.000
UEmission	tactors	are a	s of Jar 30 n 2	1. 1st 11 07	of the	indicate	d calend	lar ye 25 47	ar.	99	1 85	11 56	0 00	13 69	648	187	087	022	002	002	052	000
0Emission	factors	are a	s of Jar	11.97 1. 1st	of the	indicate	d calend	lar ye	ar.		1.05	11.50	0.00	13.05	.010	.107	.007	.022	.002	.002	.052	.000
2 6 36	15.0	19.0	29.0 2	12.96	17.7	9 19.55	18.35	30.72	1	.08	2.00	13.98	0.00	14.83	.648	.187	.087	.022	.002	.002	.052	.000
0Emission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.	70	1 4 7	0 0 0	0 00	0 0 2	C 4 0	107	007	000	000	000	050	000
2 0 30 OEmission	factors	∠5.0 are a	39.0 Z s of Jar	8.42 1. 1st	of the	indicate	d calend	lar ve	ar.	. 79	1.4/	9.23	0.00	9.93	.048	.18/	.087	.022	.002	.002	.052	.000
2 6 36	15.0	19.0	29.0 2	21.66	28.5	8 31.40	29.48	59.89	2	.03	3.78	26.37	0.00	24.81	.648	.187	.087	.022	.002	.002	.052	.000
OEmission	factors	are a	s of Jar	1. 1st	of the	indicate	d calend	lar ye	ar.	60	1 05	0.00	0 00	0 1 4	610		004	005			050	
2 6 36 OEmission	14.0 factors	14.0 are a	23.02 s of Jar	6.40 1st	9.8 of the	7 II.II indicate	10.27 d calend	24.63 Jar ve	u ar	.68	1.25	9.26	0.00	8.14	.618	.200	.094	.025	.002	.002	.059	.000
2 6 36	14.0	14.0	24.0 2	5.56	8.5	2 9.51	8.84	20.19	0	.63	1.16	8.60	0.00	7.27	.547	.248	.116	.025	.002	.003	.059	.000
OEmission	factors	are a	s of Jar	n. 1st	of the	indicate	d calend	lar ye	ar.													
2 6 36 OEmiggion	20.0 factors	21.0	34.0 2 7 of Tor	8.36	12.2 of the	7 13.50	12.66 d galony	21.49 Jar vo	0	.78	1.45	9.57	0.00	9.93	.630	.210	.098	.017	.002	.002	.041	.000
2 6 36	33.0	33.0	54.0 2	12.24	17.8	5 19.25	18.29	22.31	ar . 1	.00	1.90	10.01	0.00	13.90	.658	.180	.084	.022	.002	.002	.052	.000
0Emission	factors	are a	s of Jar	n. 1st	of the	indicate	d calend	lar ye	ar.													
2 6 36	26.0	28.0	43.0 2	16.07	22.1	5 23.99	22.74	30.72	1	.25	2.35	13.98	0.00	18.14	.658	.207	.097	.010	.002	.002	.024	.000
2 6 36	20.0	21.0	34.0 2	7.74	11.5	0 12.66	11.87	20.85	ar. 0	.75	1.39	9.20	0.00	9.27	.630	.210	.098	.017	.002	.002	.041	.000
0Emission	factors	are a	s of Jar	n. 1st	of the	indicate	d calend	lar ye	ar.													

2 6 36	18.0	20.	0 20	0.0 2	17	.68	23.1	3 25.	60	23.92	48.54	4	1.63	3.00	21.67	0.00	19.92	.658	.207	.097	.010	.002	.002	.024	.000
0Emission 2 6 36	factors 13.0	are 11.	e as o 0 21	of Jan 1.0 2	ı. 1 6	st o .26	f the 9.6	indic 4 10.	cated 87	calend	lar ye 24.63	ear. 3	0.66	1.21	9.26	0.00	8.31	.549	.233	.109	.031	.002	.003	.073	.000
0Emission 2 6 36	factors 15.0	are 15.	e as o 0 2!	of Jan 5.0 2	ı. 1 5	st o .62	f the 8.6	indic 2 9.	cated 61	calend 8.94	lar ye 20.19	ear. 9	0.64	1.18	8.60	0.00	7.67	.477	.275	.129	.034	.002	.003	.080	.000
0Emission 2 6 36	factors 22.0	are 21.	e as (of Jan 6.0 2	ı. 1 6	st o .45	f the 9.9	indic 7 11.	cated	calend	lar ye 20.19	ear. 9	0.71	1.32	8.60	0.00	8.07	.608	.207	.097	.025	.002	.002	.059	.000
OEmission 2 6 36	factors 32.0	are 30.	e as d .0 52	of Jan 2.0 2	ı. 1 9	st o .85	f the 14.7	indic 9 16.	cated 03	calend 15.19	lar ye 20.69	ear. 9	0.89	1.67	9.10	0.00	11.67	.609	.212	.099	.022	.002	.002	.054	.000
0Emission 2 6 36	factors 23.0	are 22.	e as (.0 3'	of Jan 7.0 2	1. 1 11	.st o 54	f the 16.3	indic 2 17.	ated 83	calend 16.80	lar ye 25.4	ear. 7	0.97	1.80	11.56	0.00	13.69	.568	.268	.125	.010	.002	.003	.024	.000
0Emission 2 6 36	factors 22.0	are 21.	e as (of Jan 6.0 2	1. 1 7	.st o 7.95	f the 11.8	indic 4 13.	ated	calend	lar ye 20.88	ear. 8	0.76	1.41	9.22	0.00	9.62	.608	.207	.097	.025	.002	.002	.059	.000
0Emission 2 6 36	factors 19.0	are 19.	e as (.0 32	of Jan 2.0_2	1. 1	st o .98	f the 24.1	indic 0 26	ated	calend 24.81	lar ye 39.80	ear. O	1.42	2.65	17.96	0.00	20.81	.568	.268	.125	.010	.002	.003	.024	.000
0Emission 2 6 36	15.0	are 9.	e as 0 0 2!	51 Jan	1. 1 8	st o .86	13.5	9 15.	ated	14.16	lar ye 29.35	ear. 5	0.75	1.38	10.35	0.00	12.21	.440	.220	.103	.069	.001	.002	.165	.000
2 6 36	factors	are 2.	e as d 0 (51 Jan 6.0 2	1. 1 4	.st o 1.22	f the	3 7.	ated	6.72	lar ye 20.63	ear. 3	0.54	0.97	8.51	0.00	6.29	.487	.241	.113	.045	.002	.003	.109	.000
2 6 36	18.0	12.	0 29	9.0 2	1. 1 5	.28 5.28	8.3 f the	2 9.	27 27	8.63	20.43	ear. 3 oor	0.64	1.18	8.51	0.00	7.45	.458	.288	.135	.034	.002	.003	.080	.000
2 6 36	18.0	12.	0 29	9.0 2	1. 1 6 2 1	5.01	9.2 f the	4 10.	26	9.57	20.19	ear. 9 99r	0.65	1.20	8.66	0.00	8.18	.458	.288	.135	.034	.002	.003	.080	.000
2 6 36	23.0	13.	0 48	3.0 2	1. 1	.29	15.2	2 16.	56	15.64	22.31	ear. 1 Sor	0.84	1.58	10.01	0.00	12.89	.458	.288	.135	.034	.002	.003	.080	.000
2 6 36 OEmission	18.0	12. are	0 29	9.02	7 1.1	7.02 st o	10.4	9 11.	.62 rated	10.85 calend	20.73 lar ve	3 Par	0.69	1.27	9.12	0.00	9.24	.458	.288	.135	.034	.002	.003	.080	.000
2 6 36 OEmission	23.0 factors	13. are	0 48	3.0 2 of Jar	19 1. 1	.52 st o	26.8 f the	5 29.	01 ated	27.54 calend	36.99	5 ear.	1.41	2.63	16.73	0.00	23.19	.458	.288	.135	.034	.002	.003	.080	.000
2 6 36 OEmission	21.0 factors	17. are	0 43 as (3.0 2 of Jar	14 1. 1	1.06 .st o	19.7 f the	4 21. indic	45 cated	20.29 calend	28.69 lar ve	5 ear.	1.09	2.03	13.04	0.00	16.30	.589	.213	.100	.028	.002	.002	.066	.000
2 6 36 OEmission	21.0 factors	17. are	0 43 e as d	3.0 2 of Jar	15 n. 1	5.65 .st o	21.7 f the	2 23. indic	.58 cated	22.32 calend	31.40 lar ye	0 ear.	1.19	2.23	14.28	0.00	18.03	.589	.213	.100	.028	.002	.002	.066	.000
2 6 36 OEmission	16.0 factors	12. are	0 3! as (5.0 2 of Jar	18 n. 1	3.25 .st o	24.6 f the	7 26. indic	.92 cated	25.39 calend	40.02 lar ye	2 ear.	1.39	2.58	18.06	0.00	21.01	.589	.213	.100	.028	.002	.002	.066	.000
2 6 36 OEmission	16.0 factors	12. are	0 3! as o	5.0 2 of Jar	24 n. 1	1.80 .st o	33.0 f the	0 36. indic	14 cated	34.00 calend	68.0' lar ye	7 ear.	2.28	4.24	29.68	0.00	29.13	.589	.213	.100	.028	.002	.002	.066	.000
2 6 36 OEmission	9.0 factors	10. are	0 10 as o	5.0 2 of Jar	4 1. 1	1.67 .st o	7.2 f the	1 8. indic	.13 cated	7.51 calend	21.53 lar ye	3 ear.	0.59	1.09	8.63	0.00	6.62	.517	.241	.113	.037	.002	.003	.087	.000
2 6 36 OEmission	9.0 factors	10. are	0 10 as o	5.02 of Jar	6 1. 1	5.51 .st o	9.4 f the	7 10. indic	.61 cated	9.83 calend	21.04 lar ye	4 ear.	0.64	1.18	9.31	0.00	8.44	.517	.241	.113	.037	.002	.003	.087	.000
2 6 36 OEmission	22.0 factors	25. are	0 39 as 0	∂.0 2 of Jar	10 1. 1).18 .st o	14.7 f the	0 16. indic	.06 cated	15.13 calend	22.80 lar ye	6 ear.	0.88	1.64	10.29	0.00	11.79	.648	.187	.087	.022	.002	.002	.052	.000
2 6 36 OEmission	22.0 factors	25. are	0 39 e as o	∂.0 2 of Jar	12 1. 1	2.45 .st o	17.5 f the	0 19. indic	.08 cated	18.00 calenc	26.24 lar ye	4 ear.	1.02	1.90	11.92	0.00	14.20	.648	.187	.087	.022	.002	.002	.052	.000
2 6 36 OEmission	15.0 factors	19. are	0 29 as 0	∂.0 2 of Jar	13 1. 1	8.09 _st_o	17.9 f the	5 19. indic	.73 cated	18.52 calend	30.99 lar ye	9 ear.	1.09	2.02	14.10	0.00	14.97	.648	.187	.087	.022	.002	.002	.052	.000
2 6 36 OEmission	22.0 factors	are	0 39 as 0	€.0 2 J.0 2	9 1. 1	9.45 .st o	13.8 f the	indic	.09 cated	14.21 calend	21.99 lar ye	b ear.	0.84	1.57	9.82	0.00	11.02	.648	.187	.087	.022	.002	.002	.052	.000
2 6 36 OEmission	15.0 factors	19. are	0 29 easo	€.02 J.02	21 1. 1	66 .st o	28.5 f the	indic	.40 cated	29.48 calend	59.89 lar ye	9 ear. 7	2.03	3.78	26.37	0.00	24.81	.648	.187	.087	.022	.002	.002	.052	.000
2 6 36 OEmission	14.0 factors	14. are	as o	3.0 2 of Jar	1. 1	.09 st o	f the	4 8.	ated	8.24 calend	22.8 lar ye	/ ear.	0.65	1.20	8.88	0.00	0.67	.618	.200	.094	.025	.002	.002	.059	.000
2 6 36 OEmission	factors	are	as	±.0 ∠ of Jar	1. 1	.64 _st o	9.8 f the	indic	ated	calend	20.6 lar ye	/ ear.	0.67	1.23	9.08	0.00	8.41	.54/	.248	.116	.025	.002	.003	.059	.000
2 0 36 OEmission	20.0 factors	⊿⊥. are	as o	±.∪ ∠ of Jar	1. 1 1. 1	.⊽∠ .st o	⊥∠.5 f the	indic	ated	LZ.99 calend	ar ye	ear.	1 02	1.4/	9./3	0.00	14 21	.030	.∠⊥U	.098	. UI /	.002	.002	.041	.000
∠ 0 30 OEmission 2 6 36	factors	are	as of a second s	±.∪ ∠ of Jar 3 0 ?	1. 1 1. 1		10.2 f the 22 2	indic	ated	_0.00 calend	عم. 22 lar ye	ear. 9	1 26	1.94 2.37	14 10	0.00	18 21	.058	.18U	.084	.022	.002	.002	.∪⊃∠ ∩⊃4	000
0Emission	factors	are	e as o	of Jar	ı. 1	.st o	f the	indic	cated	calend	lar ye	ear.	1.20	2.31	14.10	0.00	10.31	.050	.207	.097	.010	.002	.002	.024	.000

2 6 36	20.0	21.0	34.0 2	8.46	12.39	9 13.63	12.78	21.	60	0.78	1.45	9.63	0.00	10.03	.630	.210	.098	.017	.002	.002	.041	.000
0Emission 2 6 36	factors 18.0	are as 20.0	s of Jan 20.0 2	. 1st 0 17.68	of the 23.13	indicate 3 25.60	d calen 23.92	dar 48.	year 54	1.63	3.00	21.67	0.00	19.92	.658	.207	.097	.010	.002	.002	.024	.000
0Emission 2 6 36	factors 13.0	are as 11.0	s of Jan 21.0 2	. 1st (5.89	of the 9.10	indicate	ed calen 9.46	dar 24.	year 07	0.65	1.20	9.14	0.00	7.89	.549	.233	.109	.031	.002	.003	.073	.000
0Emission 2 6 36	factors 15.0	are as 15.0	s of Jan 25.0 2	. 1st o 5.75	of the 8.79	indicate 9.80	ed calen 9.11	dar 20.	year 18	0.64	1.19	8.64	0.00	7.81	.477	.275	.129	.034	.002	.003	.080	.000
0Emission 2 6 36	factors 22.0	are as 21.0	s of Jan 36.0 2	. 1st 0 6.78	of the 10.39	indicate	ed calen 10.73	dar 20.	year 21	0.72	1.33	8.69	0.00	8.41	.608	.207	.097	.025	.002	.002	.059	.000
0Emission 2 6 36	factors 32.0	are as 30.0	s of Jan 52.0 2	. 1st 0 10.06	of the 15.06	indicate	d calen 15.46	dar 20.	year 83	. 0.89	1.68	9.18	0.00	11.90	.609	.212	.099	.022	.002	.002	.054	.000
0Emission 2 6 36	factors 23.0	are as 22.0	s of Jan 37.0 2	. 1st 0 11.59	of the 16.38	indicate 3 17.90	d calen 16.86	dar 25.	year 55	0.97	1.81	11.60	0.00	13.75	.568	.268	.125	.010	.002	.003	.024	.000
0Emission 2 6 36	factors 22.0	are as 21.0	s of Jan 36.0 2	. 1st 0 8.53	of the 12.56	indicate 5 13.79	d calen 12.95	dar 21.	year 45	0.79	1.47	9.55	0.00	10.23	.608	.207	.097	.025	.002	.002	.059	.000
0Emission 2 6 36	factors 19.0	are as 19.0	s of Jan 32.0 2	. 1st (17.98	of the 24.10	indicate) 26.34	d calen 24.81	dar 39.	year 80	1.42	2.65	17.96	0.00	20.81	.568	.268	.125	.010	.002	.003	.024	.000
0Emission 2 6 36	factors 15.0	are as 9.0	s of Jan 25.0 2	. 1st 0 8.81	of the 13.52	indicate 2 15.29	d calen 14.08	dar 29.	year 24	0.75	1.37	10.32	0.00	12.15	.440	.220	.103	.069	.001	.002	.165	.000
0Emission 2 6 36	factors 4.0	are as 2.0	s of Jan 6.0 2	. 1st 0 4.22	of the 6.43	indicate 3 7.33	ed calen 6.72	dar 20.	year 63	0.54	0.97	8.51	0.00	6.29	.487	.241	.113	.045	.002	.003	.109	.000
0Emission 2 6 36	factors 18.0	are as 12.0	s of Jan 29.0 2	. 1st (5.35	of the 8.41	indicate 1 9.36	d calen 8.72	dar 20.	year 38	0.64	1.18	8.52	0.00	7.51	.458	.288	.135	.034	.002	.003	.080	.000
0Emission 2 6 36	factors 18.0	are as 12.0	s of Jan 29.0 2	. 1st 0 6.03	of the 9.26	indicate 5 10.29	d calen 9.59	dar 20.	year 19	0.66	1.21	8.67	0.00	8.21	.458	.288	.135	.034	.002	.003	.080	.000
0Emission 2 6 36	factors 23.0	are as 13.0	s of Jan 48.0 2	. 1st (10.33	of the 15.27	indicate 7 16.61	d calen 15.70	dar 22.	year 36	0.85	1.58	10.03	0.00	12.94	.458	.288	.135	.034	.002	.003	.080	.000
0Emission 2 6 36	factors 18.0	are as 12.0	s of Jan 29.0 2	. 1st (7.07	of the 10.55	indicate 5 11.69	d calen 10.91	dar 20.	year 78	0.69	1.27	9.15	0.00	9.30	.458	.288	.135	.034	.002	.003	.080	.000
0Emission 2 6 36	factors 23.0	are as 13.0	s of Jan 48.0 2	. 1st (19.63	of the 26.99	indicate 9 29.16	d calen 27.68	dar 37.	year 14	1.42	2.65	16.81	0.00	23.32	.458	.288	.135	.034	.002	.003	.080	.000
0Emission 2 6 36	factors 21.0	are as 17.0	s of Jan 43.0 2	. 1st (14.54	of the 20.34	indicate 4 22.09	d calen 20.90	dar 29.	year 46	1.12	2.09	13.41	0.00	16.82	.589	.213	.100	.028	.002	.002	.066	.000
0Emission 2 6 36	factors 21.0	are as 17.0	s of Jan 43.0 2	. 1st 0 16.47	of the 22.75	indicate 5 24.68	ed calen 23.37	dar 32.	year 85	1.24	2.33	14.93	0.00	18.92	.589	.213	.100	.028	.002	.002	.066	.000
0Emission 2 6 36	factors 16.0	are as 12.0	s of Jan 35.0 2	. 1st (18.53	of the 25.03	indicate 3 27.31	d calen 25.76	dar 41.	year 37	1.43	2.66	18.64	0.00	21.37	.589	.213	.100	.028	.002	.002	.066	.000
0Emission 2 6 36	factors 16.0	are as 12.0	s of Jan 35.0 2	. 1st 0 24.80	of the 33.00	indicate) 36.14	d calen 34.00	dar 68.	year 07	2.28	4.24	29.68	0.00	29.13	.589	.213	.100	.028	.002	.002	.066	.000
0Emission 2 6 36	factors 9.0	are as 10.0	s of Jan 16.0 2	. 1st (4.74	of the 7.31	indicate 1 8.23	ed calen 7.61	dar 20.	year 38	0.59	1.08	8.52	0.00	6.64	.517	.241	.113	.037	.002	.003	.087	.000
0Emission 2 6 36	factors 9.0	are as 10.0	s of Jan 16.0 2	. 1st 0 6.81	of the 9.83	indicate 3 11.01	d calen 10.21	dar 21.	year 42	0.66	1.20	9.53	0.00	8.76	.517	.241	.113	.037	.002	.003	.087	.000
0Emission 2 6 36	factors 22.0	are as 25.0	s of Jan 39.0 2	. 1st 0 10.91	of the 15.60	indicate) 17.03	d calen 16.05	dar 23.	year 87	0.92	1.72	10.79	0.00	12.56	.648	.187	.087	.022	.002	.002	.052	.000
0Emission 2 6 36	factors 22.0	are as 25.0	s of Jan 39.0 2	. 1st (13.13	of the 18.36	indicate 5 19.99	d calen 18.88	dar 27.	year 37	1.06	1.99	12.45	0.00	14.94	.648	.187	.087	.022	.002	.002	.052	.000
0Emission 2 6 36	factors 15.0	are as 19.0	s of Jan 29.0 2	. 1st (13.42	of the 18.36	indicate 5 20.17	d calen 18.94	dar 31.	year 68	1.11	2.07	14.41	0.00	15.34	.648	.187	.087	.022	.002	.002	.052	.000
0Emission 2 6 36	factors 22.0	are as 25.0	s of Jan 39.0 2	. 1st o 10.10	of the 14.60	indicate) 15.95	d calen 15.03	dar 22.	year 76	0.87	1.64	10.24	0.00	11.70	.648	.187	.087	.022	.002	.002	.052	.000
0Emission 2 6 36	factors 15.0	are as 19.0	s of Jan 29.0 2	. 1st (21.66	of the 28.58	indicate 3 31.40	d calen 29.48	dar 59.	year 89	2.03	3.78	26.37	0.00	24.81	.648	.187	.087	.022	.002	.002	.052	.000
0Emission 2 6 36	factors 14.0	are as 14.0	s of Jan 23.0 2	1. 1st (4.99	of the 7.80	indicate) 8.73	ed calen 8.10	dar 20.	year 99	0.63	1.16	8.55	0.00	6.50	.618	.200	.094	.025	.002	.002	.059	.000
0Emission 2 6 36	factors 14.0	are as 14.0	s of Jan 24.0 2	. 1st o 7.07	of the 10.38	indicate 3 11.54	d calen 10.75	dar 21.	year 10	0.69	1.27	9.35	0.00	8.86	.547	.248	.116	.025	.002	.003	.059	.000
0Emission 2 6 36	factors 20.0	are as 21.0	s of Jan 34.0 2	. 1st o 9.13	of the 13.23	indicate 3 14.53	d calen 13.64	dar 22.	year 45	0.82	1.52	10.08	0.00	10.76	.630	.210	.098	.017	.002	.002	.041	.000
0Emission 2 6 36	factors 33.0	are as 33.0	s of Jan 54.0 2	. 1st (13.20	of the 19.04	indicate 4 20.51	d calen 19.51	dar 23.	year 31	1.05	1.99	10.52	0.00	14.90	.658	.180	.084	.022	.002	.002	.052	.000
OEmission	factors	are as	s of Jan	. 1st (of the	indicate	ed calen	dar	year	•												

2 6 36	26.0	28.0	0 43.0	2 1	16.31	22.45	24.31	23.04	31	.13	1.27	2.38	14.16	0.00	18.40	.658	.207	.097	.010	.002	.002	.024	.000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	d caler	ıdar	year													
2 6 36	20.0	21.0	0 34.0	2	8.99	13.05	5 14.34	13.46	22	.26	0.81	1.51	9.98	0.00	10.60	.630	.210	.098	.017	.002	.002	.041	.000
OEmission	factors	are	as of i	Jan.	lst d	of the	indicate	d caler	Idar	year	•												
2 6 36	18.0	20.0	0 20.0	2 1 Ton	17.68	23.13 5 + ho	25.60	23.92	48	.54	1.63	3.00	21.67	0.00	19.92	.658	.207	.097	.010	.002	.002	.024	.000
2 6 36	13 0	11 I	as or i n 21 n	2 2	1 93	7 68		7 98	22	9ear 81	0 63	1 16	8 87	0 00	6 79	549	222	109	031	002	003	073	000
OEmission	factors	are	as of i	Tan.	1.55 1st (of the	indicate	d caler	Idar	vear	0.05	1.10	0.07	0.00	0.75	. 5 1 5	. 255	.105	.051	.002	.005	.075	.000
2 6 36	15.0	15.0	25.0	2	5.97	9.06	5 10.09	9.39	20	.22	0.65	1.20	8.72	0.00	8.03	.477	.275	.129	.034	.002	.003	.080	.000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	ed caler	ıdar	year													
2 6 36	22.0	21.0	0 36.0	2	7.32	11.06	5 12.18	11.42	20	.42	0.73	1.37	8.90	0.00	8.96	.608	.207	.097	.025	.002	.002	.059	.000
OEmission	factors	are	asofi	Jan.	lst o	of the	indicate	d caler	Idar	year	•	1 80	0.06	0 00	10.00	600	010				000	054	
2 6 36 OEmicaion	32.0	30.1	J 52.0	2 _ Ton	10.25	15.29 f +ho	16.56	15.70 d galor	20	.96	0.90	1.70	9.26	0.00	12.09	.609	.212	.099	.022	.002	.002	.054	.000
2 6 36	23 0	22 i	as or i 1 37 0	2 1	11 64	16 44	1101Cale	16 93	25	year 64	0 97	1 81	11 64	0 00	13 81	568	268	125	010	002	003	024	000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	d caler	ıdar	vear		1.01	11.01	0.00	13.01	. 500	.200	.125	.010	.002	.005	.021	.000
2 6 36	22.0	21.	0 36.0	2	9.04	13.18	14.46	13.59	22	.04	0.81	1.51	9.87	0.00	10.76	.608	.207	.097	.025	.002	.002	.059	.000
OEmission	factors	are	as of C	Jan.	lst d	of the	indicate	ed caler	ıdar	year	•												
2 6 36	19.0	19.0	0 32.0	_2 1	17.88	23.97	26.20	24.68	39	.58	1.42	2.63	17.87	0.00	20.69	.568	.268	.125	.010	.002	.003	.024	.000
0Emission	factors	are	as of i	Jan.	lst o	of the	indicate	d caler	Idar	year		1 20	10 01	0 00	11 00	440	220	102	000	0.01	000	165	000
2 0 30 Offmission	15.U factors	9.1	J ∠5.0 ag of J	⊿ Tan	8.0Z	13.24 of the	indicate	13./9 d caler	28 Idar	.// vear	0.74	1.30	10.21	0.00	11.92	.440	.220	.103	.069	.001	.002	.105	.000
2 6 36	4.0	2.1	0 6.0	2	4.22	6.43	7.33	6.72	20	.63	.0.54	0.97	8.51	0.00	6.29	.487	.241	.113	.045	.002	.003	.109	.000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	ed caler	ıdar	year		0.07	0.01	0.00	0.25								
2 6 36	18.0	12.0	0 29.0	2	5.42	8.50	9.46	8.81	20	.33	0.64	1.19	8.52	0.00	7.58	.458	.288	.135	.034	.002	.003	.080	.000
OEmission	factors	are	as of i	Jan.	lst d	of the	indicate	ed caler	ıdar	year	•												
2 6 36	18.0	12.0	0 29.0	2	6.07	9.32	2 10.35	9.65	20	.20	0.66	1.21	8.68	0.00	8.25	.458	.288	.135	.034	.002	.003	.080	.000
2 6 36	22 0	are	as oli 1 49 0	Jan. 2	10 41	15 37	16 72	15 80	22	year 45		1 59	10 08	0 00	13 03	458	288	135	034	002	003	080	000
0Emission	factors	are	as of i	an.	1st (of the	indicate	d caler	idar	vear	0.05	1.59	10.08	0.00	13.03	.450	.200	.135	.034	.002	.003	.080	.000
2 6 36	18.0	12.0	29.0	2	7.12	10.61	11.76	10.98	20	.83	0.69	1.28	9.18	0.00	9.35	.458	.288	.135	.034	.002	.003	.080	.000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	ed caler	ıdar	year	•												
2 6 36	23.0	13.0	0 48.0	_2 _1	19.63	26.99	29.16	27.68	37	.14	1.42	2.65	16.81	0.00	23.32	.458	.288	.135	.034	.002	.003	.080	.000
UEmission	Lactors	are	as or i	Jan.	15t (or the	indicate	a caler	idar	year	•	2 16	12 06	0 00	17 / 5	EQO	212	100	0.20	002	002	066	000
0Emission	factors	1/.	as of 7	⊿ ⊥ Tan	lot (⊿⊥.00 of the	indicate	d caler	udar.	vear	1.10	2.10	13.00	0.00	17.45	. 509	. 413	.100	.020	.002	.002	.000	.000
2 6 36	21.0	17.0	0 43.0	2 1	17.55	24.10	26.13	24.75	34	.78	1.32	2.46	15.78	0.00	20.10	.589	.213	.100	.028	.002	.002	.066	.000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	d caler	ıdar	year													
2 6 36	16.0	12.0	0 35.0	2 1	18.83	25.41	. 27.73	26.15	42	.81	1.48	2.75	19.25	0.00	21.75	.589	.213	.100	.028	.002	.002	.066	.000
OEmission	factors	are	as of i	Jan.	lst o	of the	indicate	ed caler	Idar	year	•	4 0 4	00 60	0 00	00 10	500	010	100			000	0.5.5	
2 6 36 Official	16.0	12.0	J 35.0	22 Ton	24.80	33.00 of tho) 36.14	34.00 d galor	68	.07	2.28	4.24	29.68	0.00	29.13	.589	.213	.100	.028	.002	.002	.066	.000
2 6 36	9.0	10.0	16.0	2	5.54	8.29	9.31	8.61	20	.24	0.60	1.10	8.74	0.00	7.43	517	241	.113	.037	.002	.003	.087	.000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	d caler	ıdar	vear													
2 6 36	9.0	10.0	0 16.0	2	7.62	10.81	12.10	11.22	22	.65	0.70	1.29	10.19	0.00	9.64	.517	.241	.113	.037	.002	.003	.087	.000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	d caler	ıdar	year	•												
2 6 36	22.0	25.0	0 39.0	2 1	12.23	17.24	18.79	17.73	25	.89	1.00	1.88	11.76	0.00	13.97	.648	.187	.087	.022	.002	.002	.052	.000
UEmission 2 6 36	1actors	are	as or i n 30 n	Jan. 2	14 56	20 12	$\frac{1nd1cate}{21}$	20 69	aar	year	1 16	2 17	13 57	0 00	16 47	648	187	087	022	002	002	052	000
0Emission	factors	are	as of i	Tan.	1st (of the	indicate	d caler	Idar	vear	1.10	2.1/	13.37	0.00	10.1/	.010	.107	.007	.022	.002	.002	.052	.000
2 6 36	15.0	19.0	29.0	2 1	13.91	18.97	20.83	19.56	32	.70	1.15	2.13	14.86	0.00	15.87	.648	.187	.087	.022	.002	.002	.052	.000
0Emission	factors	are	as of i	Jan.	lst d	of the	indicate	d caler	ıdar	year													
2 6 36	22.0	25.0	0 39.0	2 1	10.73	15.38	16.79	15.83	23	.61	0.91	1.70	10.67	0.00	12.37	.648	.187	.087	.022	.002	.002	.052	.000
OEmission	factors	are	as of i	Jan.	lst o	of the	indicate	d caler	Idar	year	•	2 50	06 05	0 00	04 01	640	100	0.0 5			000	050	
2 6 36 OEmicaion	15.0 fagtorg	19.1	J 29.0	22 Ton	21.66	28.58	31.40	29.48	59	.89	2.03	3.78	26.37	0.00	24.81	.648	.187	.087	.022	.002	.002	.052	.000
2 6 36	14 0	14 I	as or i n 23 n	2 2	1 SC C	21 LIIE 8 31	9 29	8 62	20	21	0 63	1 16	8 57	0 00	6 89	618	200	094	025	002	002	059	000
0Emission	factors	are	as of i	Jan.	1st 0	of the	indicate	d caler	ıdar	vear		±•±0	0.37	0.00	0.00		.200		.025	.002	.002		
2 6 36	14.0	14.0	0 24.0	2	7.56	10.99	12.20	11.37	21	.71	0.71	1.31	9.69	0.00	9.40	.547	.248	.116	.025	.002	.003	.059	.000
0Emission	factors	are	as of t	Jan.	lst d	of the	indicate	d caler	ıdar	year	•												
2 6 36	20.0	21.0	0 34.0	2	9.93	14.22	2 15.60	14.66	23	.61	0.87	1.61	10.67	0.00	11.62	.630	.210	.098	.017	.002	.002	.041	.000
UEMISSION	Iactors	are	as of c	Jan.	ist o	or the	indicate	ed caler	ldar	year	•												

2 6 36	33.0	33.0	54.0 2	14.22	20.30	21.85	20.79	24.48	1.11	2.10	11.09	0.00	15.97	.658	.180	.084	.022	.002	.002	.052	.000
OEmission	factors	are a	s of Jan	. 1st o	f the i	indicated	d calen	dar ye	ar.	0 40	14 00	0 00	10 55	650	005	005	010			0.0.4	
2 6 36	26.0	28.0	43.0 2	16.48	22.65	24.53	23.25	31.40	1.28	2.40	14.28	0.00	18.57	.658	.207	.097	.010	.002	.002	.024	.000
UEmission	Lactors	are a	s or Jan	. ISt O	I the 1	Indicated	1 Calen	ar ye	ar.	1 50	10 25	0 00	11 10	620	21.0	000	017	000	000	0.4.1	000
Z 0 30	20.0	21.0	34.0 Z	9.50	13.00 f +ho i	L5.03	14.11 dalar	22.97	0.84	1.50	10.35	0.00	11.15	.030	.210	.098	.01/	.002	.002	.041	.000
2 6 26	10 0	20 0		. ISL 0	22 12	25 60	2 Caren	IUAL YE	ar. 162	2 00	21 67	0 00	10 02	659	207	007	010	002	002	024	000
OFmission	factors	20.0 are a	c of Tan	1et o	f + h a i	25.00	d calen	dar ve	1.05 ar	5.00	21.07	0.00	19.92	.050	.207	.057	.010	.002	.002	.024	.000
2 6 36	13 0	11 0	21 0 2	4 88	7 61	8 54	7 91	21 53	0 62	1 13	8 63	0 00	6 69	549	233	109	031	002	003	073	000
OEmission	factors	are a	s of Jan	. 1st o	f the i	indicate	d calen	dar ve	ar.	1.15	0.05	0.00	0.05	. 5 17	.255	. 102	.051	.002	.005	.075	.000
2 6 36	15.0	15.0	25.0 2	6.36	9.54	10.62	9.88	20.40	0.66	1.22	8.89	0.00	8.44	.477	.275	.129	.034	.002	.003	.080	.000
0Emission	factors	are a	s of Jan	. 1st o	f the i	indicated	d calen	dar ve	ar.												
2 6 36	22.0	21.0	36.0 2	7.98	11.88	13.06	12.25	20.90	0.76	1.42	9.23	0.00	9.65	.608	.207	.097	.025	.002	.002	.059	.000
0Emission	factors	are a	s of Jan	. 1st o	f the i	Indicated	d calen	dar ye	ar.												
2 6 36	32.0	30.0	52.0 2	10.79	15.97	17.29	16.39	21.38	0.93	1.74	9.51	0.00	12.66	.609	.212	.099	.022	.002	.002	.054	.000
OEmission	factors	are a	s of Jan	. 1st o	f the i	Indicated	d calen	dar ye	ar.												
2 6 36	23.0	22.0	37.0 2	11.74	16.57	18.10	17.05	25.80	0.98	1.82	11.72	0.00	13.92	.568	.268	.125	.010	.002	.003	.024	.000
OEmission	factors	are a	s of Jan	. 1st o	f the i	indicated	d calen	dar ye	ar.												
2 6 36	22.0	21.0	36.0 2	9.54	13.81	15.14	14.24	22.70	0.84	1.57	10.21	0.00	11.31	.608	.207	.097	.025	.002	.002	.059	.000
OEmission	factors	are a	s of Jan	. 1st o	f the i	indicated	d calen	ldar ye	ar.												
2 6 36	19.0	19.0	32.0 2	17.88	23.97	26.20	24.68	39.58	1.42	2.63	17.87	0.00	20.69	.568	.268	.125	.010	.002	.003	.024	.000
OEmission	factors	are a	s of Jan	. 1st o	f the i	Indicated	d calen	dar ye	ar.												
2 6 36	15.0	9.0	25.0 2	8.00	12.32	13.91	12.83	27.38	0.72	1.32	9.89	0.00	11.19	.440	.220	.103	.069	.001	.002	.165	.000
OEmission	factors	are a	s of Jan	. 1st o	f the i	Indicated	d calen	dar ye	ar.		0 51		<								
2 6 36	4.0	2.0	6.0_2	4.22	6.43	7.33	6.72	20.61	0.54	0.97	8.51	0.00	6.29	.487	.241	.113	.045	.002	.003	.109	.000
UEmission	factors	are a	s of Jan	. ist o	t the 1	Indicated	d calen	dar ye	ar.	1 10	0 54	0 00	7 60	450	200	125	024	000	000	000	000
2 6 36	18.0	12.0	29.0 2	5.53	8.63 5 5 6 6 5	9.61	8.95	20.27	0.65	1.19	8.54	0.00	7.69	.458	.288	.135	.034	.002	.003	.080	.000
UEmission	lactors	are a	s or Jan	. 1St O	I the 1	indicated	a caien	ar ye	ar.	1 01	0 70	0 00	0 21	450	200	125	024	000	002	000	000
Z 0 30	18.0	12.0	29.0 Z	0.14 1at o	9.39 f +ho i	IU.43	9./3 d golon	20.21	0.00	1.21	8.70	0.00	8.31	.458	.288	.135	.034	.002	.003	.080	.000
2 6 26	22 0	12 0		10 40	15 47	16 02	1 Calen	Dar ye	ar. 0 05	1 50	10 12	0 00	12 12	150	200	125	024	002	002	000	000
0Emiggion	23.0	13.0	40.0 Z	10.49	10.4/	10.05	ID.JI A colon	22.55 dar vo	0.05	1.59	10.13	0.00	13.12	.450	.200	.135	.034	.002	.003	.080	.000
2 6 36	18 0	12 0	29 0 2	- ISU 0	10 68	11 83	11 05	20 88	ar. 0 70	1 28	9 22	0 00	9 41	458	288	135	034	002	003	080	000
OEmission	factors	are a	s of Jan	1st 0	f the i	indicated	d calen	dar ve	- 0.70 ar	1.20	2.22	0.00	2.11	. 150	.200	. 100	.051	.002	.005	.000	.000
2 6 36	23.0	13.0	48.0 2	19.63	26.99	29.16	27.68	37.14	1.42	2.65	16.81	0.00	23.32	458	288	.135	.034	.002	.003	.080	.000
2 0 50	20.0	10.0	10.0 2	12.05	20.00	22.10	2,.00	5,.11	1.12	2.05	10.01	0.00	23.52	. 150	. 200	. ± 5 5		.002		.000	.000

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

5	PROMPT	Г					#	No j	prompt	ing	, vertical	for	mat	
2006 1 2 3 1 6 1 2 2 2 2 2 2 1 3	TAMFLO SPDFLO VMFLAO MYMRFO IMFLAO ALHFLO ATPFLO CLOCFLO OUTFMI PRTFLO IDLFLO	29 79 79 79 79 79 79 79 79 79 79 79 79 79					# # # # # # # # # # # # # #	Use Eacl Use Use No a Ant: Unco Only MOB 80 a Cala	MOBIL one s n scen local MOBIL one I additi i-tamp ontrol y one ILE 5 column culate idle e	E 5 peeari re E 5 /M eri lec LAF use CC mis	tampering d for all o has its gistration BER's programs l correcting, no pre- record scriptive only sions factors	y rat vehi own dis lon f ess/p g emi form	es cle types VMT mix stribution factors purge chec ssion rat temp. at	s n ck ces
1	HCFLAG	3					#	No	compon	ent	emission	fact	or output	5
.049 .065	.067 . .045 .	.074 .034 .001	.080	.083 .024	.082 .021	.06 .01	8. 9.	.065 .017	.043 .009	# #	Colorado I registrati	LOGV Lon d	listribut:	ion
.058 .055	.044 .	.047	.047	.078 .031	.071 .033	.06 .03	5. 3.	.062 .033	.045 .021	# #	Colorado I registrati	DGT1 lon d	listribut:	ion
.017 .013 .058 .055 .056 .060	.009 . .044 . .051 .	.004 .047 .035 .004	.000	.078 .031	.071 .033	.06 .03	5.3	.062 .033	.045 .021	# #	Colorado I registrati	LDGT2 Lon d	listribut:	ion
.066 .062	.049 .	.050	.052	.084 .025	.096 .027	.06 .02	9 7	.064 .027	.042 .018	# #	Colorado H registrati	IDGV Lon d	listribut:	ion
.014 .011 .049 .065 .058 .052	.007.	.004 .074 .034	.000 .080 .028	.083 .024	.082 .021	.06 .01	8.	.065 .017	.043	# #	Colorado I registrati	LDDV Lon d	listribut:	ion
.007 .005	.003 . .044 .	.001 .047 .035	.001 .047 .032	.078	.071	.06	5.	.062	.045	# #	Colorado I registrati	DDT	listribut:	ion
.017 .013	.009 .	.004	.000	.102	.079	.06	2.	.037	.050	#	Colorado H	HDDV	listvibut	lon
.001 .001	.0044 .	.001 .000 .001	.001	.001	.001	.00	1.	.001	.001	# #	Colorado M	ION C		LOU
.001 .989 .000 .000 2 1 2 1	.000 .	.000 .000	.000	.000	.000	.00	0.	.000	.000	#	registrati	lon d	listribut:	ion
82 20 82 0 82 20 82 0 TECH12RSD8 IMDATRSD80 82 75 02 2	2 00 00 2 00 00 0.D .D 222 12	098) 098) 098.	1 2 1 2 221:	2221 1112 11112	4222 2222	220	61	1.2	1.5 999.					
.001 .999 4 6 21.5	.027 .0 27.0 16	C 20 015 2 5.0	6. ! 8.0 :	52. 12 16.0	2.4 12	2.4	92	2						
01 1 1 .595.214.1 4 6 18.7	.00.026. 27.0 16	.002.0	002.0 8.0 1	061.00 16.0	0	6 A	M	1 CI	BD	F	RINCIPAL A	ARTER	IAL	
01 1 1 .595.214.1 4 6 17.1	.00.026. 27.0 7	.002.0 7.0 1:	002.0 1.0	061.00 7.0	0	6 A	M	1 CI	BD	Ν	IINOR ARTEF	RIAL		
01 1 1 .595.214.1 4 6 11.4	.00.026. 27.0 7	.002.0 7.0 1:	002.0 1.0	061.00 7.0	0	6 A	M	1 CI	BD	C	OLLECTOR			
01 1 1 .595.214.1 4 6 36.3	.00.026. 27.0 8	.002.0	002.0 1.0	061.00 8.0	0	6 A	M	1 CI	BD	I	OCAL			
01 1 1 .571.218.1 4 6 30.4	.02.031. 27.0 8	.002.0 3.0	002.0 1.0	074.00 8.0	0	6 A	M	1 FI	RINGE	F	REEWAY			
01 1 1 .571.218.1 4 6 24.8	02.031. 27.0 41	.002.0	002.0 5.0 4	074.00 42.0	0	6 A	M	1 FI	RINGE	Μ	AJOR REGIO	NAL		
01 1 1 .667.154.0 4 6 22.1	72.030. 27.0 41	.002.0 L.0	002.0 5.0 4	073.00 42.0	0	6 A	M	1 F1	RINGE	F	PRINCIPAL A	ARTER	IAL	
01 1 1 .667.154.0 4 6 21.1	72.030. 27.0 22	.002.0	002.0	073.00 22.0	0	6 A	M	1 F1	RINGE	Ν	IINOR ARTEF	RIAL		
01 1 1 .667.154.0 4 6 30.3	72.030. 27.0 41	.002.0	002.0 5.0 4	073.00 42.0	0	6 A	M	1 F1	RINGE	C	OLLECTOR			
01 1 1 .667.154.0 4 6 13.1	72.030. 27.0 22	.002.0	002.0 1.0 2	073.00 23.0	0	6 A	M	1 FI	RINGE	F	AMP			

01 1 .667	1 .154.()72.	.03	0.0	002.	002.	073.00	00	6	AM	1	FRINGE	LOCAL			
4 6 01 1 .644	40.2 1 .187.0	. 27 . 280	.02	22. 3.0	.0 002.	2.0	22.0 054.00	00	6	AM	1	URBAN	FREEWA	Y		
4 6 01 1	32.8 1	27.	.02	24.	.0	2.0	24.0		_		-					
.584 4 6 01 1	.226 28.8 1	27.	.024	4.0 39.	.0	4.0	40.0	0	6	AM	T	URBAN	MAJOR	REGI	ONAL	
.641 4 6	.190.0 27.2)89. 27.	.022 .0 8	2.0 81.	002. .0	002. 7.0	054.00 83.0	00	6	AM	1	URBAN	PRINCI	PAL	ARTERIAL	
01 1 .683 4 6	1 171.0 23.2)80. 27.	.018 .0 (8.0 69.	002. .0	002. 7.0	044.00 71.0	00	6	AM	1	URBAN	MINOR	ARTE	RIAL	
01 1 .652 4 6	1 .181.(31.7)85. 27.	.023	3.(39.)02. .0	002. 4.0	055.00 40.0	00	б	AM	1	URBAN	COLLEC	TOR		
01 1 .641 4 6	1 .190.0 16.3)89. 27.	.022	2.0 44.)02. .0	002. 4.0	054.00 46.0	00	6	AM	1	URBAN	RAMP			
01 1 .652 4 6	1 .181.(45.6)85. 27.	.023 .023	3.0 28.)02. .0	002. 2.0	055.00 28.0	00	б	AM	1	URBAN	LOCAL			
01 1 .570 4 6	1 .234.3 36.5	L09. 27.	.024 .0 1	4.0 19.)02. .0	003. 2.0	058.00 19.0	00	б	AM	1	SUBURBAN	FREEWA	Y		
01 1 .514 4 6	1 .241.1 34.0	L13. 27.	.03	7.0 39.)02. .0	003. 3.0	090.00 39.0	00	б	AM	1	SUBURBAN	MAJOR	REGI	ONAL	
01 1 .583 4 6	1 .227.1 32.7	L06. 27.	.024 .0	4.0 77.)02. .0	002. 8.0	056.00 77.0	00	б	AM	1	SUBURBAN	PRINCI	PAL	ARTERIAL	
01 1 .637 4 6	1 .194.0 27.6)91. 27.	.022	2.0 73.)02. .0	002. 7.0	052.00 73.0	00	6	AM	1	SUBURBAN	MINOR	ARTE	RIAL	
01 1 .626 4 6	1 .229.3 30.5	L07. 27.	.010 .0 :	0.0 39.)02. .0	002. 3.0	024.00	00	6	AM	1	SUBURBAN	COLLEC	TOR		
01 1 .583 4 6	1 .227.1 19.8	L06. 27.	.024 .0 !	4.(52.)02. .0	002. 5.0	056.00	00	б	AM	1	SUBURBAN	RAMP			
01 1 .626 4 6	1 .229.1 59.0	107. 27.	.010	0.0 36.)02. .0	002. 1.0	024.00	00	б	AM	1	SUBURBAN	LOCAL			
01 1 .389 4 6	1 .222.1 45.0	104. 27.	.083 .0	3.0 8.)01. .0	002.	199.00 8.0	00	б	AM	1	RURAL	FREEWA	Y		
01 1 .493 4 6	1 .225.2 42.3	105. 27.	.05	1.(13.)02. .0	002. 1.0	122.00 13.0	00	б	AM	1	RURAL	MAJOR	REGI	ONAL	
01 1 .564 4 6	1 .238.2 41.5	L11. 27.	.024 .0	4.0 13.)02. .0	003. 1.0	058.00 13.0	00	б	AM	1	RURAL	PRINCI	PAL .	ARTERIAL	
01 1 .564 4 6	1 .238.3 31.7	111. 27.	.024 .0 !	4.(57.)02. .0	003.	058.00	00	б	AM	1	RURAL	MINOR	ARTE	RIAL	
01 1 .564 4 6	1 .238.3 34.9	111. 27.	.024	4.0 13.)02. .0	003.	058.00	00	б	AM	1	RURAL	COLLEC	TOR		
01 1 .564 4 6	1 .238.3 21.9	111. 27.	.024 .0 !	4.(57.)02. .0	003.	058.00	00	б	AM	1	RURAL	RAMP			
01 1 .564 4 6	1 .238.1 16.3	111. 27.	.024	4.0 16.)02. .0	003.	058.00	00	6	AM	1	RURAL	LOCAL			
01 1 .595 4 6	1 .214.1 14.5	L00.	.020	6.0	002.	002.	061.00	00	6	AM	2	CBD	PRINCI	PAL .	ARTERIAL	
01 1 .595 4 6	1 .214.1 15.2	L00. 27	.020	6.0 7)02. .0 1	002.	061.00	00	6	AM	2	CBD	MINOR	ARTE	RIAL	
01 1 .595 4 6	1 .214.1	L00.	.020	6.0 7	002.	002.	061.00	00	б	AM	2	CBD	COLLEC	TOR		
01 1	1 .214.1	L00.	.020	، ، 6.0	002.	002.	061.00	00	б	AM	2	CBD	LOCAL			
01 1 .571 4 6	1 .218.1 23 1	ر م 102. 27	.032	1.0 8		1.0	074.00	00	6	AM	2	FRINGE	FREEWA	Y		

01 1 .571 4 6	1 .218.102.031.002 19.1 27.0 41.0	.002.074.000 5.0 42.0	6 AM	2	FRINGE	MAJOR REGIONAL
01 1 .667 4 6	1 .154.072.030.002 17.3 27.0 41.0	2.002.073.000 5.0 42.0	6 AM	2	FRINGE	PRINCIPAL ARTERIAL
01 1 .667 4 6	1 .154.072.030.002 17.9 27.0 22.0	2.002.073.000 2.0 22.0	6 AM	2	FRINGE	MINOR ARTERIAL
01 1 .667 4 6	1 .154.072.030.002 26.3 27.0 41.0	2.002.073.000 5.0 42.0	6 AM	2	FRINGE	COLLECTOR
.667 4 6	154.072.030.002 13.1 27.0 22.0	2.002.073.000 1.0 23.0	6 AM	2	FRINGE	RAMP
.667 4 6 01 1	.154.072.030.002 32.2 27.0 22.0	2.002.073.000 2.0 22.0	6 AM	2	FRINGE	LOCAL
.644 4 6 01 1	.187.088.023.002 27.9 27.0 24.0 1	2.002.054.000 2.0 24.0	6 AM	2	URBAN	FREEWAY
.584 4 6 01 1	.226.106.024.002 23.2 27.0 39.0 1	2.002.056.000 4.0 40.0	6 AM	2	URBAN	MAJOR REGIONAL
.641 4 6 01 1	.190.089.022.002 22.1 27.0 81.0 1	2.002.054.000 7.0 83.0	6 AM	2	URBAN	PRINCIPAL ARTERIAL
.683 4 6 01 1	.171.080.018.002 20.6 27.0 69.0 1	2.002.044.000 7.0 71.0	6 AM	2	URBAN	MINOR ARTERIAL
.652 4 6 01 1	.181.085.023.002 28.5 27.0 39.0 1	2.002.055.000 4.0 40.0	6 AM	2	URBAN	COLLECTOR
.641 4 6 01 1	.190.089.022.002 16.3 27.0 44.0 1	.002.054.000 4.0 46.0	6 AM	2	URBAN	RAMP
.652 4 6 01 1	.181.085.023.002 38.7 27.0 28.0 1	2.002.055.000 2.0 28.0	6 AM	2	URBAN	LOCAL
.570 4 6 01 1	.234.109.024.002 30.8 27.0 19.0 1	2.003.058.000 2.0 19.0	6 AM	2	SUBURBAN	FREEWAY
.514 4 6 01 1	.241.113.037.002 27.6 27.0 39.0 1	2.003.090.000 3.0 39.0	6 AM	2	SUBURBAN	MAJOR REGIONAL
.583 4 6 01 1	.227.106.024.002 27.3 27.0 77.0 1	2.002.056.000 8.0 77.0	6 AM	2	SUBURBAN	PRINCIPAL ARTERIAL
.637 4 6 01 1	.194.091.022.002 24.3 27.0 73.0 1	2.002.052.000 7.0 73.0	6 AM	2	SUBURBAN	MINOR ARTERIAL
.626 4 6 01 1	.229.107.010.002 27.9 27.0 39.0	2.002.024.000 3.0 39.0	6 AM	2	SUBURBAN	COLLECTOR
.583 4 6 01 1	.227.106.024.002 19.8 27.0 52.0	2.002.056.000 5.0 52.0	6 AM	2	SUBURBAN	RAMP
.626 4 6	.229.107.010.002 53.5 27.0 36.0	1.0 35.0	6 AM	2	SUBURBAN	LOCAL
.389 4 6	.222.104.083.001 39.9 27.0 8.0	002.199.000 0.0 8.0	6 AM	2	RURAL	FREEWAY
.493 4 6	.225.105.051.002 38.5 27.0 13.0	2.002.122.000 1.0 13.0	6 AM	2	RURAL	MAJOR REGIONAL
.564 4 6	.238.111.024.002 38.5 27.0 13.0	2.003.058.000 1.0 13.0	6 AM	2	RURAL	PRINCIPAL ARTERIAL
.564 4 6	.238.111.024.002 29.7 27.0 57.0	2.003.058.000 2.0 57.0	6 AM	2	RURAL	MINOR ARTERIAL
.564 4 6	.238.111.024.002 31.1 27.0 13.0	2.003.058.000 1.0 13.0	6 AM	2	RURAL	COLLECTOR
.564 4 6	.238.111.024.002 21.9 27.0 57.0	2.003.058.000 2.0 57.0	6 AM	2	RURAL	RAMP
.564 4 6	.238.111.024.002 11.8 27.0 16.0	.003.058.000 8.0 16.0	6 AM	2	RURAL	LOCAL

01 1 .595 4 6	1 .214.100.026.002. 11.3 27.0 16.0	002.061.000 8.0 16.0	6	AM	3	CBD	PRINCIPAL ARTERIAL
01 1 .595 4 6	1 .214.100.026.002. 12.9 27.0 7.0 1	002.061.000 1.0 7.0	6	AM	3	CBD	MINOR ARTERIAL
01 1 .595 4 6	1 .214.100.026.002. 11.4 27.0 7.0 1	002.061.000 1.0 7.0	6	AM	3	CBD	COLLECTOR
01 1 .595 4 6	1 .214.100.026.002. 21.1 27.0 8.0	002.061.000 1.0 8.0	6	AM	3	CBD	LOCAL
01 1 .571 4 6	1 .218.102.031.002. 17.8 27.0 8.0	002.074.000 1.0 8.0	6	AM	3	FRINGE	FREEWAY
01 1 .571 4 6	1 .218.102.031.002. 14.1 27.0 41.0	002.074.000 5.0 42.0	6	AM	3	FRINGE	MAJOR REGIONAL
01 1 .667 4 6	1 .154.072.030.002. 12.9 27.0 41.0	002.073.000 5.0 42.0	6	AM	3	FRINGE	PRINCIPAL ARTERIAL
01 1 .667 4 6	1 .154.072.030.002. 14.5 27.0 22.0	002.073.000 2.0 22.0	6	AM	3	FRINGE	MINOR ARTERIAL
01 1 .667 4 6	1 .154.072.030.002. 22.0 27.0 41.0	002.073.000 5.0 42.0	6	AM	3	FRINGE	COLLECTOR
01 1 .667 4 6	1 .154.072.030.002. 13.1 27.0 22.0	002.073.000 1.0 23.0	6	AM	3	FRINGE	RAMP
01 1 .667 4 6	1 .154.072.030.002. 25.6 27.0 22.0	002.073.000 2.0 22.0	6	AM	3	FRINGE	LOCAL
01 1 .644 4 6	1 .187.088.023.002. 22.3 27.0 24.0	002.054.000 2.0 24.0	6	AM	3	URBAN	FREEWAY
01 1 .584 4 6	1 .226.106.024.002. 18.2 27.0 39.0	002.056.000 4.0 40.0	б	AM	3	URBAN	MAJOR REGIONAL
01 1 .641 4 6	1 .190.089.022.002. 17.3 27.0 81.0	002.054.000 7.0 83.0	6	AM	3	URBAN	PRINCIPAL ARTERIAL
01 1 .683 4 6	1 .171.080.018.002. 17.4 27.0 69.0	002.044.000 7.0 71.0	6	AM	3	URBAN	MINOR ARTERIAL
01 1 .652 4 6	1 .181.085.023.002. 25.1 27.0 39.0	002.055.000 4.0 40.0	6	AM	3	URBAN	COLLECTOR
01 1 .641 4 6	1 .190.089.022.002. 16.3 27.0 44.0	002.054.000 4.0 46.0	6	AM	3	URBAN	RAMP
01 1 .652 4 6	1 .181.085.023.002. 31.7 27.0 28.0	002.055.000 2.0 28.0	6	AM	3	URBAN	LOCAL
01 1 .570 4 6	1 .234.109.024.002. 26.5 27.0 19.0	003.058.000	6	AM	3	SUBURBAN	FREEWAY
01 1 .514 4 6	1 .241.113.037.002. 21.8 27.0 39.0	003.090.000 3.0 39.0	6	AM	3	SUBURBAN	MAJOR REGIONAL
01 1 .583 4 6	1 .227.106.024.002. 21.3 27.0 77.0	002.056.000 8.0 77.0	6	AM	3	SUBURBAN	PRINCIPAL ARTERIAL
01 1 .637 4 6	1 .194.091.022.002. 20.9 27.0 73.0	002.052.000 7.0 73.0	б	AM	3	SUBURBAN	MINOR ARTERIAL
01 1 .626 4 6	1 .229.107.010.002. 25.2 27.0 39.0	002.024.000 3.0 39.0	6	AM	3	SUBURBAN	COLLECTOR
01 1 .583 4 6	1 .227.106.024.002. 19.8 27.0 52.0	002.056.000 5.0 52.0	б	AM	3	SUBURBAN	RAMP
01 1 .626 4 6	1 .229.107.010.002. 47.5 27.0 36.0	002.024.000	6	AM	3	SUBURBAN	LOCAL
01 1 .389 4 6	1 .222.104.083.001. 34.3 27.0 8.0	002.199.000 0.0 8.0	б	AM	3	RURAL	FREEWAY
01 1 .493 4 6	1 .225.105.051.002. 34.5 27.0 13.0	002.122.000 1.0 13.0	6	AM	3	RURAL	MAJOR REGIONAL

01 1 .564 4 6	1 .238.111.024.002.003.058.0 34.5 27.0 13.0 1.0 13.0	00 6	AM	3	RURAL	PRINCIPAL ARTERIAL
01 1 .564 4 6	1 .238.111.024.002.003.058.0 27.7 27.0 57.0 2.0 57.0	00 6	AM	3	RURAL	MINOR ARTERIAL
01 1 .564 4 6	1 .238.111.024.002.003.058.0 26.1 27.0 13.0 1.0 13.0	00 6	AM	3	RURAL	COLLECTOR
01 1 .564 4 6	1 .238.111.024.002.003.058.0 .21.9 27.0 57.0 2.0 57.0	00 6	AM	3	RURAL	RAMP
01 1 .564 4 6	1 238.111.024.002.003.058.0 23.2 52.0 46.0 12.0 59.0	00 6	AM	3	RURAL	LOCAL
.648 4 6	1 173.081.028.002.002.066.0 19.9 52.0 46.0 12.0 59.0	00 6	РМ	4	CBD	PRINCIPAL ARTERIAL
.648 4 6	173.081.028.002.002.066.0 17.5 52.0 45.0 8.0 56.0	00 6	PM	4	CBD	MINOR ARTERIAL
.648 4 6	173.081.028.002.002.066.0 11.4 52.0 45.0 8.0 56.0	00 6	PM	4	CBD	COLLECTOR
.648 4 6	173.081.028.002.002.066.0 37.1 52.0 8.0 7.0 12.0	00 6	PM	4	CBD	LOCAL
.547 4 6	241.113.028.002.003.066.0 33.9 52.0 8.0 7.0 12.0	00 6	РМ	4	FRINGE	FREEWAY
.547 4 6	241.113.028.002.003.066.0 27.0 52.0 30.0 19.0 43.0	00 6	PM	4	FRINGE	MAJOR REGIONAL
.629 4 6 01 1	193.090.025.002.002.059.0 23.2 52.0 30.0 19.0 43.0	00 6	PM	4	FRINGE	PRINCIPAL ARTERIAL
.629 4 6 01 1	193.090.025.002.002.059.0 22.5 52.0 34.0 14.0 46.0	00 6	PM	4	FRINGE	MINOR ARTERIAL
.629 4 6 01 1	193.090.025.002.002.059.0 29.3 52.0 30.0 19.0 43.0 1	00 6	PM	4	FRINGE	COLLECTOR
.629 4 6 01 1	.193.090.025.002.002.059.0 13.1 52.0 34.0 14.0 46.0	00 6	PM	4	FRINGE	RAMP
.629 4 6 01 1	.193.090.025.002.002.059.0 41.2 52.0 8.0 7.0 12.0	00 6	PM	4	FRINGE	LOCAL
.618 4 6 01 1	207.097.022.002.002.052.0 31.5 52.0 15.0 14.0 23.0 1	00 6	PM	4	URBAN	FREEWAY
.587 4 6 01 1	241.113.016.002.003.038.0 29.8 52.0 19.0 17.0 30.0 1	00 6	PM	4	URBAN	MAJOR REGIONAL
.624 4 6 01 1	207.097.020.002.002.048.0 28.6 52.0 39.0 37.0 60.0	00 6	PM	4	URBAN	PRINCIPAL ARTERIAL
.648 4 6 01 1	207.097.013.002.002.031.0 23.9 52.0 24.0 24.0 38.0	00 6	PM	4	URBAN	MINOR ARTERIAL
.698 4 6 01 1	.180.084.010.002.002.024.0 31.4 52.0 19.0 17.0 30.0	00 6	PM	4	URBAN	COLLECTOR
.624 4 6 01 1	207.097.020.002.002.048.0 16.3 52.0 19.0 19.0 31.0	00 6	PM	4	URBAN	RAMP
.698 4 6 01 1	.180.084.010.002.002.024.0 49.1 52.0 13.0 10.0 19.0	00 6	PM	4	URBAN	LOCAL
.577 4 6	232.109.023.002.002.055.0 38.0 52.0 14.0 23.0 22.0	00 6	PM	4	SUBURBAN	FREEWAY
.478 4 6 01 1	.281.132.031.002.003.073.0 36.0 52.0 12.0 11.0 18.0	00 6	РМ	4	SUBURBAN	MAJOR REGIONAL
.558 4 6	.254.119.019.002.003.045.0 35.6 52.0 25.0 24.0 37.0	00 6	РМ	4	SUBURBAN	PRINCIPAL ARTERIAL
.599 4 6	229.107.018.002.002.043.0 28.9 52.0 28.0 26.0 43.0	00 6	PM	4	SUBURBAN	MINOR ARTERIAL

$\begin{smallmatrix}01&1\\.648\\4&6\end{smallmatrix}$	1 .207.097.013.002.002.031. 32.8 52.0 12.0 11.0 18.0	000 6	5 F	PM	4	SUBURBAN	COLLECTOR
01 1 .558 4 6	1 .254.119.019.002.003.045. 19.8 52.0 19.0 18.0 29.0	000 6	5 F	PM	4	SUBURBAN	RAMP
01 1 .648 4 6	1 .207.097.013.002.002.031. 60.7 52.0 16.0 9.0 23.0	000 6	5 F	M	4	SUBURBAN	LOCAL
.418 4 6	$\begin{array}{c} 1\\ .241.113.066.001.003.158.\\ 48.4 52.0 3.0 2.0 5.0\\ 1\end{array}$	000 6	бF	PM	4	RURAL	FREEWAY
.498 4 6	261.122.034.002.003.080. 45.2 52.0 16.0 13.0 24.0	000 6	бF	PM	4	RURAL	MAJOR REGIONAL
.619 4 6 01 1	220.103.016.002.002.038. 42.6 52.0 16.0 13.0 24.0	000 6	5 F	M	4	RURAL	PRINCIPAL ARTERIAL
.619 4 6 01 1	220.103.016.002.002.038. 33.8 52.0 23.0 13.0 34.0 1	000 6	6 F	PM	4	RURAL	MINOR ARTERIAL
.619 4 6 01 1	.220.103.016.002.002.038. 38.3 52.0 16.0 13.0 24.0 1	000 6	6 F	PM	4	RURAL	COLLECTOR
.619 4 6 01 1	.220.103.016.002.002.038. 21.7 52.0 23.0 13.0 34.0 1	000 6	6 F	PM	4	RURAL	RAMP
.619 4 6 01 1	.220.103.016.002.002.038. 16.9 52.0 46.0 12.0 59.0 1	000 6	5 F	M	4	RURAL	LOCAL
.648 4 6 01 1	.173.081.028.002.002.066. 14.4 52.0 46.0 12.0 59.0 1	000 6	6 F	PM	5	CBD	PRINCIPAL ARTERIAL
.648 4 6 01 1	.173.081.028.002.002.066. 15.3 52.0 45.0 8.0 56.0 1	000 6	6 F	PM	5	CBD	MINOR ARTERIAL
.648 4 6 01 1	.173.081.028.002.002.066. 11.4 52.0 45.0 8.0 56.0 1	000 6	6 F	PM	5	CBD	COLLECTOR
.648 4 6 01 1	.173.081.028.002.002.066. 27.7 52.0 8.0 7.0 12.0 1	000 6	6 F	PM	5	CBD	LOCAL
.547 4 6 01 1	.241.113.028.002.003.066. 25.0 52.0 8.0 7.0 12.0 1	000 6	5 F	M	5	FRINGE	FREEWAY
.547 4 6 01 1	.241.113.028.002.003.066. 18.7 52.0 30.0 19.0 43.0 1	000 6	6 F	PM	5	FRINGE	MAJOR REGIONAL
.629 4 6 01 1	.193.090.025.002.002.059. 16.6 52.0 30.0 19.0 43.0 1	000 6	бF	PM	5	FRINGE	PRINCIPAL ARTERIAL
.629 4 6 01 1	.193.090.025.002.002.059. 18.4 52.0 34.0 14.0 46.0 1	000 6	бF	PM	5	FRINGE	MINOR ARTERIAL
.629 4 6 01 1	.193.090.025.002.002.059. 24.0 52.0 30.0 19.0 43.0 1	000 6	5 F	PM	5	FRINGE	COLLECTOR
.629 4 6 01 1	.193.090.025.002.002.059. 13.1 52.0 34.0 14.0 46.0 1	000 6	5 F	PM	5	FRINGE	RAMP
.629 4 6 01 1	.193.090.025.002.002.059. 29.5 52.0 8.0 7.0 12.0 1	000 6	5 F	PM	5	FRINGE	LOCAL
.618 4 6 01 1	207.097.022.002.002.052. 26.3 52.0 15.0 14.0 23.0 1	000 6	6 F	PM	5	URBAN	FREEWAY
.587 4 6 01 1	241.113.016.002.003.038. 22.4 52.0 19.0 17.0 30.0	000 6	6 F	PM	5	URBAN	MAJOR REGIONAL
.624 4 6 01 1	207.097.020.002.002.048. 21.0 52.0 39.0 37.0 60.0	000 6	6 F	PM	5	URBAN	PRINCIPAL ARTERIAL
.648 4 6 01 1	.207.097.013.002.002.031. 21.0 52.0 24.0 24.0 38.0	000 6	5 F	PM	5	URBAN	MINOR ARTERIAL
.698 4 6	.180.084.010.002.002.024. 27.4 52.0 19.0 17.0 30.0	000 6	6 F	PM	5	URBAN	COLLECTOR
.624 4 6	207.097.020.002.002.048. 16.3 52.0 19.0 19.0 31.0	000 6	бF	M	5	URBAN	RAMP

01 1 1 .698.180.084.010.002.002.024.000 6 PM 5 URBAN LOCAL 4 6 39.3 52.0 13.0 10.0 19.0 01 1 1 .577.232.109.023.002.002.055.000 6 PM 5 SUBURBAN FREEWAY 4 6 32.5 52.0 14.0 23.0 22.0 01 1 1 .478.281.132.031.002.003.073.000 6 PM 5 SUBURBAN MAJOR REGIONAL 4 6 28.2 52.0 12.0 11.0 18.0 01 1 .558.254.119.019.002.003.045.000 6 PM 5 SUBURBAN PRINCIPAL ARTERIAL 4 6 28.5 52.0 25.0 24.0 37.0 01 1 1 .599.229.107.018.002.002.043.000 6 PM 5 SUBURBAN MINOR ARTERIAL 4 6 25.3 52.0 28.0 26.0 43.0 01 1 1 .648.207.097.013.002.002.031.000 6 PM 5 SUBURBAN COLLECTOR 4 6 29.8 52.0 12.0 11.0 18.0 01 1 1 .558.254.119.019.002.003.045.000 6 PM 5 SUBURBAN RAMP 4 6 19.8 52.0 19.0 18.0 29.0 01 1 1 .648.207.097.013.002.002.031.000 6 PM 5 SUBURBAN LOCAL 4 6 55.1 52.0 16.0 9.0 23.0 01 1 1 .418.241.113.066.001.003.158.000 6 PM 5 RURAL FREEWAY 4 6 44.1 52.0 3.0 2.0 5.0 01 1 1 .498.261.122.034.002.003.080.000 6 PM 5 RURAL MAJOR REGIONAL 4 6 41.0 52.0 16.0 13.0 24.0 01 1 1 .619.220.103.016.002.002.038.000 6 PM 5 RURAL PRINCIPAL ARTERIAL 4 6 40.2 52.0 16.0 13.0 24.0 01 1 .619.220.103.016.002.002.038.000 6 PM 5 RURAL MINOR ARTERIAL 4 6 31.7 52.0 23.0 13.0 34.0 01 1 .619.220.103.016.002.002.038.000 6 PM 5 RURAL COLLECTOR 4 6 36.5 52.0 16.0 13.0 24.0 01 1 .619.220.103.016.002.002.038.000 6 PM 5 RURAL RAMP 4 6 21.7 52.0 23.0 13.0 34.0 01 1 1 .619.220.103.016.002.002.038.000 6 PM 5 RURAL LOCAL 4 6 12.4 52.0 46.0 12.0 59.0 01 1 1 .648.173.081.028.002.002.066.000 6 PM 6 CBD PRINCIPAL ARTERIAL 4 6 10.8 52.0 46.0 12.0 59.0 01 1 1 .648.173.081.028.002.002.066.000 6 PM 6 CBD MINOR ARTERIAL 4 6 12.9 52.0 45.0 8.0 56.0 01 1 1 .648.173.081.028.002.002.066.000 6 PM 6 CBD COLLECTOR 4 6 11.4 52.0 45.0 8.0 56.0 01 1 1 .648.173.081.028.002.002.066.000 6 PM 6 CBD LOCAL 4 6 21.8 52.0 8.0 7.0 12.0 01 1 1 .547.241.113.028.002.003.066.000 4 6 20.1 52.0 8.0 7.0 12.0 6 PM 6 FRINGE FREEWAY 1 01 1 .547.241.113.028.002.003.066.000 6 PM 6 FRINGE MAJOR REGIONAL 4 6 14.3 52.0 30.0 19.0 43.0 01 1 1 .629.193.090.025.002.002.059.000 6 PM 6 FRINGE PRINCIPAL ARTERIAL 4 6 12.1 52.0 30.0 19.0 43.0 01 1 1 .629.193.090.025.002.002.059.000 6 PM 6 FRINGE MINOR ARTERIAL 4 6 15.1 52.0 34.0 14.0 46.0 01 1 .629.193.090.025.002.002.059.000 бPM 6 FRINGE COLLECTOR 4 6 20.4 52.0 30.0 19.0 43.0 01 1 .629.193.090.025.002.002.059.000 6 PM 6 FRINGE RAMP 4 6 13.1 52.0 34.0 14.0 46.0 01 1 .629.193.090.025.002.002.059.000 6 PM 6 FRINGE LOCAL 4 6 22.6 52.0 8.0 7.0 12.0 01 1 1 .618.207.097.022.002.002.052.000 6 PM 6 URBAN FREEWAY 4 6 20.6 52.0 15.0 14.0 23.0

01 1	1 241 113 016 00	2 003 038 000	6	рм	6	TIPBAN	MATOR REGIONAL
4 6 01 1	17.3 52.0 19.0	17.0 30.0	0	E M	0	ORBAN	MAUOR REGIONAL
.624 4 6	207.097.020.00 16.6 52.0 39.0	2.002.048.000 37.0 60.0	6	PM	6	URBAN	PRINCIPAL ARTERIAL
.648 4 6	207.097.013.00 17.8 52.0 24.0	2.002.031.000 24.0 38.0	6	PM	б	URBAN	MINOR ARTERIAL
.698 4 6	180.084.010.00 24.4 52.0 19.0	2.002.024.000 17.0 30.0	б	PM	6	URBAN	COLLECTOR
.624 4 6	1 207.097.020.00 16.3 52.0 19.0	2.002.048.000 19.0 31.0	6	РМ	6	URBAN	RAMP
.698 4 6	180.084.010.00 32.6 52.0 13.0	2.002.024.000 10.0 19.0	6	РМ	6	URBAN	LOCAL
.577 4 6	1 232.109.023.00 28.3 52.0 14.0	2.002.055.000 23.0 22.0	6	PM	6	SUBURBAN	FREEWAY
.478 4 6	281.132.031.00 22.7 52.0 12.0	2.003.073.000 11.0 18.0	6	РМ	6	SUBURBAN	MAJOR REGIONAL
.558 4 6	1 254.119.019.00 23.2 52.0 25.0	2.003.045.000 24.0 37.0	6	PM	6	SUBURBAN	PRINCIPAL ARTERIAL
.599 4 6	1 229.107.018.00 22.5 52.0 28.0	2.002.043.000 26.0 43.0	6	PM	6	SUBURBAN	MINOR ARTERIAL
.648 4 6	1 207.097.013.00 27.6 52.0 12.0	2.002.031.000 11.0 18.0	6	PM	6	SUBURBAN	COLLECTOR
.558 4 6	1 254.119.019.00 19.8 52.0 19.0	2.003.045.000 18.0 29.0	6	PM	6	SUBURBAN	RAMP
01 1 .648 4 6	1 207.097.013.00 50.1 52.0 16.0	2.002.031.000 9.0 23.0	6	PM	6	SUBURBAN	LOCAL
01 1 .418 4 6	1 241.113.066.00 40.1 52.0 3.0	1.003.158.000 2.0 5.0	6	PM	6	RURAL	FREEWAY
01 1 .498 4 6	1 261.122.034.00 37.2 52.0 16.0	2.003.080.000 13.0 24.0	б	PM	6	RURAL	MAJOR REGIONAL
01 1 .619 4 6	1 220.103.016.00 37.0 52.0 16.0	2.002.038.000 13.0 24.0	6	PM	6	RURAL	PRINCIPAL ARTERIAL
01 1 .619 4 6	1 220.103.016.00 30.0 52.0 23.0	2.002.038.000 13.0 34.0	б	PM	6	RURAL	MINOR ARTERIAL
01 1 .619 4 6	1 220.103.016.00 35.2 52.0 16.0	2.002.038.000 13.0 24.0	6	PM	6	RURAL	COLLECTOR
01 1 .619 4 6	1 220.103.016.00 21.7 52.0 23.0	2.002.038.000 13.0 34.0	б	PM	6	RURAL	RAMP
01 1 .619 4 6	1 220.103.016.00 27.0 36.0 21.0	2.002.038.000 17.0 43.0	б	PM	6	RURAL	LOCAL
01 1 .589 4 6	1 213.100.028.00 25.1 36.0 21.0	2.002.066.000 17.0 43.0	б	OFF	7	CBD	PRINCIPAL ARTERIAL
01 1 .589 4 6	1 213.100.028.00 20.0 36.0 16.0	2.002.066.000 12.0 35.0	6	OFF	7	CBD	MINOR ARTERIAL
01 1 .589 4 6	1 213.100.028.00 11.3 36.0 16.0	2.002.066.000 12.0 35.0	6	OFF	7	CBD	COLLECTOR
01 1 .589 4 6	1 213.100.028.00 55.0 36.0 9.0	2.002.066.000 10.0 16.0	6	OFF	7	CBD	LOCAL
01 1 .517 4 6	1 241.113.037.00 39.8 36.0 9.0	2.003.087.000 10.0 16.0	6	OFF	7	FRINGE	FREEWAY
01 1 .517 4 6	1 241.113.037.00 35.0 36.0 22.0	2.003.087.000 25.0 39.0	6	OFF	7	FRINGE	MAJOR REGIONAL
01 1 .648 4 6	1 187.087.022.00 30.0 36.0 22.0	2.002.052.000 25.0 39.0	6	OFF	7	FRINGE	PRINCIPAL ARTERIAL

$\begin{array}{ccc} 01 & 1 \\ .648 \\ 4 & 6 \end{array}$	1 .187.08 25.0 30	7.022 5.0 1	.002.0 5.0 19	02. .0	052.000	6	OFI	7	FRINGE	MINOR ARTERIAL
$\begin{smallmatrix}01&1\\.648\\4&6\end{smallmatrix}$	1 .187.08 38.9 30	7.022 5.0 2	.002.0 2.0 25	02. .0	052.000 39.0	б	OFI	7 ז	FRINGE	COLLECTOR
$\begin{smallmatrix}01&1\\.648\\4&6\end{smallmatrix}$	1 .187.08 13.1 30	7.022 5.0 1	.002.0 5.0 19	02. .0	052.000	б	OFI	7 ז	FRINGE	RAMP
$\begin{smallmatrix}01&1\\.648\\4&6\end{smallmatrix}$	1 .187.08 58.0 30	7.022 5.0 1	.002.0 4.0 14	02.	052.000	б	OFI	7 ז	FRINGE	LOCAL
01 1 .618 4 6	1 .200.09 45.0 30	4.025 5.0 1	.002.0 4.0 14	02.	059.000 24.0	6	OFI	7 ז	URBAN	FREEWAY
01 1 .547 4 6	1 .248.11 37.0 3	5.025 5.0 2	.002.0 0.0 21	03.	059.000 34.0	6	OFI	7	URBAN	MAJOR REGIONAL
01 1 .630 4 6	1 .210.09 35.0 3	8.017 5.0 3	.002.0 3.0 33	02. .0	041.000 54.0	6	OFI	7 י	URBAN	PRINCIPAL ARTERIAI
01 1 .658 4 6	1 .180.08 25.0 3	4.022 5.0 2	.002.0 6.0 28	02. .0	052.000 43.0	6	OFI	י 7	URBAN	MINOR ARTERIAL
01 1 .658 4 6	1 .207.09 39.1 3	7.010 6.0 2	.002.0 0.0 21	02.	024.000 34.0	б	OFI	7	URBAN	COLLECTOR
01 1 .630 4 6	1 .210.098 16.3 30	8.017 5.0 1	.002.0 8.0 20	02. .0	041.000 20.0	6	OFI	7 י	URBAN	RAMP
01 1 .658 4 6	1 .207.09 58.0 30	7.010 5.0 1	.002.0 3.0 11	02.	024.000 21.0	6	OFI	7 י	URBAN	LOCAL
01 1 .549 4 6	1 .233.109 45.0 30	9.031 5.0 1	.002.0 5.0 15	03. .0	073.000 25.0	6	OFI	7 י	SUBURBAN	FREEWAY
01 1 .477 4 6	1 .275.129 45.0 30	9.034 5.0 2	.002.0 2.0 21	03.	080.000 36.0	6	OFI	7 י	SUBURBAN	MAJOR REGIONAL
01 1 .608 4 6	1 .207.09 39.8 30	7.025 5.0 3	.002.0 2.0 30	02. .0	059.000 52.0	6	OFI	7 י	SUBURBAN	PRINCIPAL ARTERIAL
01 1 .609 4 6	1 .212.099 30.0 30	9.022 5.0 2	.002.0 3.0 22	02. .0	054.000 37.0	6	OFI	י 7	SUBURBAN	MINOR ARTERIAL
01 1 .568 4 6	1 .268.12 39.0 30	5.010 5.0 2	.002.0 2.0 21	03.	024.000 36.0	6	OFI	י 7	SUBURBAN	COLLECTOR
01 1 .608 4 6	1 .207.09 19.7 3	7.025 5.0 1	.002.0 9.0 19	02. .0	059.000 32.0	6	OFI	7 י	SUBURBAN	RAMP
01 1 .568 4 6	1 .268.12 63.0 3	5.010 5.0 1	.002.0 5.0 9	03. .0	024.000 25.0	6	OFI	י 7	SUBURBAN	LOCAL
01 1 .440 4 6	1 .220.103 49.0 30	3.069 5.0	.001.0 4.0 2	02. .0	165.000 6.0	6	OFI	7 י	RURAL	FREEWAY
.487 4 6	.241.11 47.9 3	3.045 5.0 1	.002.0 8.0 12	03. .0	109.000 29.0	6	OFI	7	RURAL	MAJOR REGIONAL
.458 4 6	$ \begin{array}{c} 1 \\ .288.139 \\ 44.0 \\ 1 \end{array} $	5.034 6.0 1	.002.0 8.0 12	03. .0	080.000 29.0	б	OFI	7 י	RURAL	PRINCIPAL ARTERIAL
.458 4 6	.288.13 35.0 3	5.034 6.0 2	.002.0 3.0 13	03. .0	080.000 48.0	6	OFI	7	RURAL	MINOR ARTERIAL
.458 4 6	1 .288.13! 39.6 30	5.034 6.0 1	.002.0 8.0 12	03. .0	080.000 29.0	6	OFI	7	RURAL	COLLECTOR
.458 4 6	.288.13 21.1 3	5.034 6.0 2	.002.0 3.0 13	03. .0	080.000 48.0	6	OFI	7 י	RURAL	RAMP
.458 4 6	.288.13 26.7 3	5.034 6.0 2	.002.0 1.0 17	03. .0	080.000 43.0	6	OFI	7	RURAL	LOCAL
.589 4 6	1 .213.10 24.5 3	0.028 5.0 2	.002.0 1.0 17	02. .0	066.000 43.0	6	OFI	א 8	CBD	PRINCIPAL ARTERIAI
∪⊥ 1 .589 4 6	1 213.10 19.6 3	0.028 5.0 1	.002.0 6.0 12	02. .0	066.000 35.0	6	OFI	r 8	CBD	MINOR ARTERIAL

01 1 .589 4 6	1 .213.100.028.002.002.066.000 11.3 36.0 16.0 12.0 35.0	6	OFF	8	CBD	COLLECTOR
01 1 .589 4 6	1 .213.100.028.002.002.066.000 52.2 36.0 9.0 10.0 16.0	6	OFF	8	CBD	LOCAL
01 1 .517 4 6	1 .241.113.037.002.003.087.000 38.4 36.0 9.0 10.0 16.0	6	OFF	8	FRINGE	FREEWAY
.517 4 6	1 .241.113.037.002.003.087.000 33.9 36.0 22.0 25.0 39.0	6	OFF	8	FRINGE	MAJOR REGIONAL
.648 4 6	1 .187.087.022.002.002.052.000 29.1 36.0 22.0 25.0 39.0	6	OFF	8	FRINGE	PRINCIPAL ARTERIAL
.648 4 6 01 1	187.087.022.002.002.052.000 24.8 36.0 15.0 19.0 29.0	6	OFF	8	FRINGE	MINOR ARTERIAL
.648 4 6 01 1	.187.087.022.002.002.052.000 35.8 36.0 22.0 25.0 39.0 1	6	OFF	8	FRINGE	COLLECTOR
.648 4 6 01 1	187.087.022.002.002.052.000 13.1 36.0 15.0 19.0 29.0 1	6	OFF	8	FRINGE	RAMP
.648 4 6 01 1	.187.087.022.002.002.052.000 55.2 36.0 14.0 14.0 23.0 1	6	OFF	8	FRINGE	LOCAL
.618 4 6 01 1	.200.094.025.002.002.059.000 39.9 36.0 14.0 14.0 24.0 1	6	OFF	8	URBAN	FREEWAY
.547 4 6 01 1	.248.116.025.002.003.059.000 36.2 36.0 20.0 21.0 34.0 1	6	OFF	8	URBAN	MAJOR REGIONAL
.630 4 6 01 1	.210.098.017.002.002.041.000 34.4 36.0 33.0 33.0 54.0 1	6	OFF	8	URBAN	PRINCIPAL ARTERIAL
.658 4 6 01 1	.180.084.022.002.002.052.000 24.8 36.0 26.0 28.0 43.0 1	6	OFF	8	URBAN	MINOR ARTERIAL
.658 4 6 01 1	.207.097.010.002.002.024.000 36.7 36.0 20.0 21.0 34.0 1	6	OFF	8	URBAN	COLLECTOR
.630 4 6 01 1	.210.098.017.002.002.041.000 16.3 36.0 18.0 20.0 20.0 1	6	OFF	8	URBAN	RAMP
.658 4 6 01 1	.207.097.010.002.002.024.000 57.2 36.0 13.0 11.0 21.0 1	6	OFF	8	URBAN	LOCAL
.549 4 6 01 1	.233.109.031.002.003.073.000 44.3 36.0 15.0 15.0 25.0 1	6	OFF	8	SUBURBAN	FREEWAY
.477 4 6 01 1	.275.129.034.002.003.080.000 43.5 36.0 22.0 21.0 36.0 1	6	OFF	8	SUBURBAN	MAJOR REGIONAL
.608 4 6 01 1	.207.097.025.002.002.059.000 39.2 36.0 32.0 30.0 52.0 1	6	OFF	8	SUBURBAN	PRINCIPAL ARTERIAL
.609 4 6 01 1	.212.099.022.002.002.054.000 29.9 36.0 23.0 22.0 37.0 1	6	OFF	8	SUBURBAN	MINOR ARTERIAL
.568 4 6 01 1	268.125.010.002.003.024.000 37.1 36.0 22.0 21.0 36.0 1	6	OF'F'	8	SUBURBAN	COLLECTOR
.608 4 6 01 1	19.7 36.0 19.0 19.0 32.0 19.7 36.0 19.0 19.0 32.0	6	OF.F.	8	SUBURBAN	RAMP
.568 4 6 01 1	228.125.010.002.003.024.000 62.9 36.0 15.0 9.0 25.0 1 220 102 002 165 000	6	OFF	8	SUBURBAN	LUCAL
.440 4 6 01 1	49.0 36.0 4.0 2.0 6.0 1	р с	OF.F.	ð o	RUKAL	FREEWAI
.48/ 4 6 01 1	47.5 36.0 18.0 12.0 29.0 1 289 125 024 002 002 002 000	р С	OFF	ъ С	KURAL	DEINCIDAL ADTERIAL
.458 4 6 01 1	43.9 36.0 18.0 12.0 29.0 1	б	OF'F'	8	KUKAL	PRINCIPAL ARTERIAL
.458 4 6	34.9 36.0 23.0 13.0 48.0	б	OF.F.	8	KUKAL	MINOR ARTERIAL

01 1 .458 4 6	1 288.135.034.002.003.080.000 39.4 36.0 18.0 12.0 29.0	6	OFF	8	RURAL	COLLECTOR
01 1 .458 4 6	1 288.135.034.002.003.080.000 21.0 36.0 23.0 13.0 48.0	6	OFF	8	RURAL	RAMP
01 1 .458 4 6	1 288.135.034.002.003.080.000 26.0 36.0 21.0 17.0 43.0	6	OFF	8	RURAL	LOCAL
.589	213.100.028.002.002.066.000 23.5 36.0 21.0 17.0 43.0	6	OFF	9	CBD	PRINCIPAL ARTERIAL
.589 4 6	1 213.100.028.002.002.066.000 19.0 36.0 16.0 12.0 35.0	6	OFF	9	CBD	MINOR ARTERIAL
.589 4 6	1 213.100.028.002.002.066.000 11.3 36.0 16.0 12.0 35.0	6	OFF	9	CBD	COLLECTOR
.589 4 6	1 213.100.028.002.002.066.000 47.5 36.0 9.0 10.0 16.0	6	OFF	9	CBD	LOCAL
.517 4 6	1 241.113.037.002.003.087.000 37.2 36.0 9.0 10.0 16.0	6	OFF	9	FRINGE	FREEWAY
.517 4 6	1 241.113.037.002.003.087.000 32.2 36.0 22.0 25.0 39.0	6	OFF	9	FRINGE	MAJOR REGIONAL
.648 4 6	1 187.087.022.002.002.052.000 27.9 36.0 22.0 25.0 39.0	6	OFF	9	FRINGE	PRINCIPAL ARTERIAL
.648 4 6	1 187.087.022.002.002.052.000 24.3 36.0 15.0 19.0 29.0	6	OFF	9	FRINGE	MINOR ARTERIAL
.648 4 6	1 187.087.022.002.002.052.000 34.1 36.0 22.0 25.0 39.0	6	OFF	9	FRINGE	COLLECTOR
.648	1 .187.087.022.002.002.052.000 13.1 36.0 15.0 19.0 29.0	6	OFF	9	FRINGE	RAMP
.648 4 6	1 .187.087.022.002.002.052.000 50.5 36.0 14.0 14.0 23.0	6	OFF	9	FRINGE	LOCAL
.618 4 6	1 200.094.025.002.002.059.000 38.2 36.0 14.0 14.0 24.0	6	OFF	9	URBAN	FREEWAY
.547	1 248.116.025.002.003.059.000 34.7 36.0 20.0 21.0 34.0	6	OFF	9	URBAN	MAJOR REGIONAL
.630 4 6	1 210.098.017.002.002.041.000 33.1 36.0 33.0 33.0 54.0	6	OFF	9	URBAN	PRINCIPAL ARTERIAL
.658 4 6	1 180.084.022.002.002.052.000 24.7 36.0 26.0 28.0 43.0	6	OFF	9	URBAN	MINOR ARTERIAL
.658 4 6	1 207.097.010.002.002.024.000 35.1 36.0 20.0 21.0 34.0	6	OFF	9	URBAN	COLLECTOR
.630 4 6	1 .210.098.017.002.002.041.000 16.3 36.0 18.0 20.0 20.0	6	OFF	9	URBAN	RAMP
.658 4 6	1 207.097.010.002.002.024.000 55.1 36.0 13.0 11.0 21.0	6	OFF	9	URBAN	LOCAL
.549	1 .233.109.031.002.003.073.000 43.2 36.0 15.0 15.0 25.0	6	OFF	9	SUBURBAN	FREEWAY
.477 4 6	1 .275.129.034.002.003.080.000 41.3 36.0 22.0 21.0 36.0	6	OFF	9	SUBURBAN	MAJOR REGIONAL
.608 4 6	1 .207.097.025.002.002.059.000 38.7 36.0 32.0 30.0 52.0	6	OFF	9	SUBURBAN	PRINCIPAL ARTERIAL
01 1 .609 4 6	L 212.099.022.002.002.054.000 29.8 36.0 23.0 22.0 37.0	6	OFF	9	SUBURBAN	MINOR ARTERIAL
01 1 .568 4 6	L 268.125.010.002.003.024.000 35.6 36.0 22.0 21.0 36.0	6	OFF	9	SUBURBAN	COLLECTOR
01 1 .608 4 6	1 .207.097.025.002.002.059.000 19.8 36.0 19.0 19.0 32.0	6	OFF	9	SUBURBAN	RAMP

01 1 .568 4 6	1 .268.125.010.002.003.024.000 62.5 36.0 15.0 9.0 25.0	6	OFF 9	SUBURBAN	LOCAL
01 1 .440 4 6	1 .220.103.069.001.002.165.000 49.0 36.0 4.0 2.0 6.0	6	OFF 9	RURAL	FREEWAY
01 1 .487 4 6	1 .241.113.045.002.003.109.000 47.1 36.0 18.0 12.0 29.0	6	OFF 9	RURAL	MAJOR REGIONAL
.458 4 6	1 288.135.034.002.003.080.000 43.7 36.0 18.0 12.0 29.0	6	OFF 9	RURAL	PRINCIPAL ARTERIAL
.458 4 6 01 1	288.135.034.002.003.080.000 34.7 36.0 23.0 13.0 48.0	6	OFF 9	RURAL	MINOR ARTERIAL
.458 4 6 01 1	288.135.034.002.003.080.000 39.2 36.0 18.0 12.0 29.0 1	6	OFF 9	RURAL	COLLECTOR
.458 4 6 01 1	288.135.034.002.003.080.000 21.0 36.0 23.0 13.0 48.0 1	6	OFF 9	RURAL	RAMP
.458 4 6 01 1	.288.135.034.002.003.080.000 25.2 36.0 21.0 17.0 43.0 1	6	OFF 9	RURAL	LOCAL
.589 4 6 01 1	.213.100.028.002.002.066.000 22.3 36.0 21.0 17.0 43.0 1	6	OFF10	CBD	PRINCIPAL ARTERIAL
.589 4 6 01 1	.213.100.028.002.002.066.000 18.4 36.0 16.0 12.0 35.0 1	6	OFF10	CBD	MINOR ARTERIAL
.589 4 6 01 1	.213.100.028.002.002.066.000 11.3 36.0 16.0 12.0 35.0 1	6	OFF10	CBD	COLLECTOR
.589 4 6 01 1	.213.100.028.002.002.066.000 42.9 36.0 9.0 10.0 16.0 1	6	OFF10	CBD	LOCAL
.517 4 6 01 1	.241.113.037.002.003.087.000 34.3 36.0 9.0 10.0 16.0 1	6	OFF10	FRINGE	FREEWAY
.517 4 6 01 1	.241.113.037.002.003.087.000 29.5 36.0 22.0 25.0 39.0 1	6	OFF10	FRINGE	MAJOR REGIONAL
.648 4 6 01 1	.187.087.022.002.002.052.000 25.7 36.0 22.0 25.0 39.0 1	6	OFF10	FRINGE	PRINCIPAL ARTERIAL
.648 4 6 01 1	.187.087.022.002.002.052.000 23.6 36.0 15.0 19.0 29.0 1	6	OFF10	FRINGE	MINOR ARTERIAL
.648 4 6 01 1	.187.087.022.002.002.052.000 32.6 36.0 22.0 25.0 39.0 1	6	OFF10	FRINGE	COLLECTOR
.648 4 6 01 1	.187.087.022.002.002.052.000 13.1 36.0 15.0 19.0 29.0 1	6	OFF10	FRINGE	RAMP
.648 4 6 01 1	.187.087.022.002.002.052.000 45.6 36.0 14.0 14.0 23.0 1	6	OFF10	FRINGE	LOCAL
.618 4 6 01 1	.200.094.025.002.002.059.000 36.4 36.0 14.0 14.0 24.0 1	6	OFF10	URBAN	FREEWAY
.547 4 6 01 1	.248.116.025.002.003.059.000 32.6 36.0 20.0 21.0 34.0 1	6	OFF10	URBAN	MAJOR REGIONAL
.630 4 6 01 1	.210.098.017.002.002.041.000 31.3 36.0 33.0 33.0 54.0 1	6	OFF10	URBAN	PRINCIPAL ARTERIAL
.658 4 6 01 1	.180.084.022.002.002.052.000 24.5 36.0 26.0 28.0 43.0 1	6	OFF10	URBAN	MINOR ARTERIAL
.658 4 6 01 1	.207.097.010.002.002.024.000 33.7 36.0 20.0 21.0 34.0 1	6	OFF10	URBAN	COLLECTOR
.630 4 6 01 1	.210.098.017.002.002.041.000 16.3 36.0 18.0 20.0 20.0 1	6	OFF10	URBAN	RAMP
.658 4 6 01 1	.207.097.010.002.002.024.000 52.2 36.0 13.0 11.0 21.0 1	6	OFF10	URBAN	LOCAL
.549 4 6	.233.109.031.002.003.073.000 41.4 36.0 15.0 15.0 25.0	6	OFF10	SUBURBAN	FREEWAY

01 1 1 .477.275.129.034.002.003.080.000 4 6 38.9 36.0 22.0 21.0 36.0	6 OFF10 SUBURBAN MAJOR REGIONAL
.608.207.097.025.002.002.059.000 4 6 37.3 36.0 32.0 30.0 52.0	6 OFF10 SUBURBAN PRINCIPAL ARTERIAL
.609.212.099.022.002.002.054.000 4 6 29.6 36.0 23.0 22.0 37.0	6 OFF10 SUBURBAN MINOR ARTERIAL
.568.268.125.010.002.003.024.000 4 6 34.2 36.0 22.0 21.0 36.0	6 OFF10 SUBURBAN COLLECTOR
.608.207.097.025.002.002.059.000 4 6 19.8 36.0 19.0 19.0 32.0	6 OFF10 SUBURBAN RAMP
.568.268.125.010.002.003.024.000 4 6 6 1.2 36.0 15.0 9.0 25.0	6 OFF10 SUBURBAN LOCAL
.440.220.103.069.001.002.165.000 4 6 48.9 36.0 4.0 2.0 6.0	6 OFF10 RURAL FREEWAY
.487.241.113.045.002.003.109.000 4 6 46.5 36.0 18.0 12.0 29.0	6 OFF10 RURAL MAJOR REGIONAL
.458.288.135.034.002.003.080.000 4 6 43.4 36.0 18.0 12.0 29.0	6 OFF10 RURAL PRINCIPAL ARTERIAL
.458.288.135.034.002.003.080.000 4 6 34.5 36.0 23.0 13.0 48.0	6 OFF10 RURAL MINOR ARTERIAL
.458.288.135.034.002.003.080.000 4 6 39.0 36.0 18.0 12.0 29.0	6 OFF10 RURAL COLLECTOR
.458.288.135.034.002.003.080.000 4 6 21.0 36.0 23.0 13.0 48.0	6 OFF10 RURAL RAMP
.458.288.135.034.002.003.080.000	6 OFF10 RURAL LOCAL

12006 MOBILE5b (14-Sep-96) 0 -M 22 Warning: 0.346E-01 mileage with zero registration -M 22 Warning: 0.626E-01 mileage with zero registration -M 22 Warning: 0.373E-01 mileage with zero registration -M 22 Warning: 0.222E-01 mileage with zero registration + 0r Ρ е Amb. 0 Composite Emission Factors Vehicle Mix g CY Tmp Cold/Hot Start l LDGV LDGT1 LDGT2 LDGT HDGV LDDV LDDT HDDV MC Allveh LDGV LDGT1LDGT2HDGV LDDV LDDT HDDV MC OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 16.0 8.0 16.0 2 14.64 20.57 23.28 21.43 18.25 1.14 9.78 16.51 .595 .214 .100 .026 .002 .002 .061 .000 1.27 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 16.0 8.0 16.0 2 16.78 23.29 26.34 24.26 21.22 1.32 1.47 11.29 0.00 18.85 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.0 11.0 7.0 2 16.13 21.92 25.12 22.94 23.31 1.37 1 6 27 0.00 18.16 .595 .214 .100 .026 .002 .002 .061 .000 1.53 12.34 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.0 11.0 7.0 2 20.33 27.27 31.31 28.56 34.08 1.95 1 6 27 2.19 17.58 0.00 23.03 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 8.0 1.0 8.0 2 6.95 10.43 12.01 10.93 10.97 5.79 8.24 .571 .218 .102 .031 .002 .002 .074 .000 0.62 0.69 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 1.0 8.0 2 8.82 12.82 14.74 13.43 12.68 1 6 27 0.73 0.81 6.80 0.00 10.24 .571 .218 .102 .031 .002 .002 .074 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 15.46 22.87 25.21 23.61 15.63 1.17 1.30 8.40 0.00 16.74 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 17.79 25.97 28.59 26.80 17.71 1.33 1.47 9.50 0.00 19.15 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 22.0 2.0 22.0 2 15.80 22.45 25.23 23.33 18.63 1.19 1.32 9.97 0.00 17.10 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 12.01 18.26 20.18 18.87 12.72 0.95 1.06 6.82 0.00 13.16 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 22.0 1.0 23.0 2 21.68 30.21 33.95 31.40 30.20 1.87 2.08 15.72 0.00 23.62 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 22.0 2.0 22.0 2 6.85 10.75 12.18 11.21 10.39 0.64 0.71 5.39 0.00 8.03 .644 .187 .088 .023 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 24.0 2.0 24.0 2 9.26 13.98 15.74 14.54 11.85 0.77 0.85 6.32 0.00 10.88 .584 .226 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 4.0 40.0 2 12.62 19.01 21.03 19.65 13.37 0.99 1.10 7.18 0.00 14.26 .641 .190 .089 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits $1 \ 6 \ 27 \ 81.0 \ 7.0 \ 83.0 \ 2 \ 22.52 \ 34.13 \ 36.48 \ 34.88 \ 14.17 \ 1.51 \ 1.67 \ 7.62$ 0.00 24.73 .683 .171 .080 .018 .002 .002 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 165 CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 69.0 7.0 71.0 2 23.78 35.28 37.93 36.12 16.80 1.61 1.79 9.02 0.00 26.00 .652 .181 .085 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 4.0 40.0 2 11.15 17.04 18.88 17.63 12.20 0.90 1.00 6.53 0.00 12.69 .641 .190 .089 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 44.0 4.0 46.0 2 23.62 33.90 37.18 34.95 24.48 1.85 2.05 12.92 0.00 25.98 .652 .181 .085 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 28.0 2.0 28.0 2 6.01 9.83 11.09 10.23 10.19 0.64 7.48 .570 .234 .109 .024 .002 .003 .058 .000 0.71 5.11 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 19.0 2.0 19.0 2 7.65 11.69 13.27 12.19 10.93 0.67 5.76 0.75 0.00 9.18 .514 .241 .113 .037 .002 .003 .090 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 3.0 39.0 2 10.06 15.56 17.28 16.11 11.50 0.92 6.12 0.00 11.85 .583 .227 .106 .024 .002 .002 .056 .000 0.83 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 77.0 8.0 77.0 2 16.62 25.89 27.84 26.51 11.88 1.20 1.33 6.34 0.00 18.74 .637 .194 .091 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 73.0 7.0 73.0 2 19.59 29.71 31.97 30.43 13.96 1.37 1.51 7.51 0.00 22.81 .626 .229 .107 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 3.0 39.0 2 11.61 17.63 19.54 18.24 12.64 0.92 1.02 6.78 0.00 13.53 .583 .227 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 52.0 5.0 52.0 2 22.79 33.08 36.05 34.02 19.96 1.62 1.79 10.65 0.00 26.16 .626 .229 .107 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 36.0 1.0 35.0 2 8.12 13.41 15.15 13.96 12.81 0.74 0.82 5.62 0.00 9.89 .389 .222 .104 .083 .001 .002 .199 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 0.0 8.0 2 5.08 8.04 9.29 1 6 27 8.43 10.18 0.55 0.61 5.13 0.00 6.44 .493 .225 .105 .051 .002 .002 .122 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 5.85 9.17 10.52 9.60 10.23 0.58 0.65 5.25 0.00 7.21 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 6.02 9.39 10.76 9.83 10.28 0.59 0.65 5.29 0.00 7.38 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 57.0 2.0 57.0 2 13.31 20.59 22.49 21.20 12.20 1.02 1.12 6.53 0.00 15.58 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 7.69 11.55 13.20 12.07 11.27 0.67 0.74 5.98 0.00 9.17 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 57.0 2.0 57.0 2 21.14 31.13 33.84 31.99 17.89 1.49 9.59 0.00 24.08 .564 .238 .111 .024 .002 .003 .058 .000 1.65 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 16.0 8.0 16.0 2 18.01 24.89 28.17 25.94 24.48 1.51 1.68 12.92 0.00 20.29 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 16.0 8.0 16.0 2 19.21 26.44 29.94 27.56 27.47 1.68 1.88 14.39 0.00 21.68 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.0 11.0 7.0 2 17.18 23.26 26.67 24.35 26.24 1.53 1.72 13.79 1 6 27 0.00 19.40 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.0 11.0 7.0 2 20.33 27.27 31.31 28.56 34.08 1.95 1 6 27 0.00 23.03 .595 .214 .100 .026 .002 .002 .061 .000 2.19 17.58 166 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 8.0 1.0 8.0 2 9.90 14.20 16.30 14.87 13.85 0.80 0.89 7.45 0.00 11.40 .571 .218 .102 .031 .002 .002 .074 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 8.0 1.0 8.0 2 12.46 17.49 20.04 18.30 16.88 0.98 1.08 9.06 0.00 14.17 .571 .218 .102 .031 .002 .002 .074 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 20.85 30.00 32.99 30.95 20.75 1.54 1.71 11.05 0.00 22.34 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 21.92 31.46 34.61 32.46 23.03 1.70 1.89 12.20 0.00 23.55 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 22.0 2.0 22.0 2 18.11 25.43 28.56 26.42 22.22 1.41 1.56 11.80 0.00 19.58 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 14.38 21.42 23.63 22.12 14.68 1.10 1.22 7.90 0.00 15.61 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 22.0 1.0 23.0 2 21.68 30.21 33.95 31.40 30.20 1.87 2.08 15.72 0.00 23.62 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 22.0 2.0 22.0 2 9.31 13.96 15.76 14.54 12.04 0.77 0.85 6.43 0.00 10.62 .644 .187 .088 .023 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 24.0 2.0 24.0 2 11.43 16.82 18.91 17.48 13.80 0.90 1.00 7.42 0.00 13.23 .584 .226 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 4.0 40.0 2 16.52 24.20 26.71 25.00 16.80 1.24 1.38 9.02 0.00 18.42 .641 .190 .089 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 81.0 7.0 83.0 2 29.06 42.96 45.80 43.86 17.71 1.88 2.08 9.50 0.00 31.60 .683 .171 .080 .018 .002 .002 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 69.0 7.0 71.0 2 27.42 40.18 43.14 41.13 19.12 1.83 2.03 10.22 0.00 29.82 .652 .181 .085 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 4.0 40.0 2 12.79 19.24 21.28 19.89 13.51 1.00 1.11 7.26 0.00 14.44 .641 .190 .089 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 44.0 4.0 46.0 2 23.62 33.90 37.18 34.95 24.48 1.85 2.05 12.92 0.00 25.98 .652 .181 .085 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 28.0 2.0 28.0 2 7.65 11.99 13.49 12.47 10.57 0.69 0.76 5.52 0.00 9.21 .570 .234 .109 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 19.0 2.0 19.0 2 9.61 14.25 16.13 14.85 12.53 0.78 0.87 6.71 0.00 11.27 .514 .241 .113 .037 .002 .003 .090 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 3.0 39.0 2 13.20 19.74 21.85 20.42 13.96 1.02 1.13 7.51 0.00 15.25 .583 .227 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 77.0 8.0 77.0 2 20.98 31.77 34.07 32.50 14.12 1.44 1.60 7.59 0.00 23.34 .637 .194 .091 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 73.0 7.0 73.0 2 22.95 34.24 36.79 35.05 15.98 1.56 1.73 8.59 0.00 26.51 .626 .229 .107 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 3.0 39.0 2 13.02 19.50 21.59 20.17 13.80 1.01 1.12 7.42 0.00 15.06 .583 .227 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

1 6 27 52.0 5.0 52.0 2 22.79 33.08 36.05 34.02 19.96 1.62 1.79 10.65 0.00 26.16 .626 .229 .107 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 36.0 1.0 35.0 2 5.90 9.91 11.12 10.29 11.12 0.68 0.75 5.20 0.00 7.61 .389 .222 .104 .083 .001 .002 .199 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 8.0 0.0 8.0 2 6.08 9.31 10.74 9.76 10.42 0.58 0.64 5.41 0.00 7.41 .493 .225 .105 .051 .002 .002 .122 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 6.71 10.28 11.77 10.75 10.59 0.68 8.12 .564 .238 .111 .024 .002 .003 .058 .000 0.62 5.54 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 6.71 10.28 11.77 10.75 10.59 0.62 0.68 5.54 0.00 8.12 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 57.0 2.0 57.0 2 14.49 22.18 24.20 22.82 12.97 1.08 1.20 6.96 0.00 16.86 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 8.97 13.20 15.07 13.80 12.42 0.74 6.65 0.00 10.56 .564 .238 .111 .024 .002 .003 .058 .000 0.82 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 57.0 2.0 57.0 2 21.14 31.13 33.84 31.99 17.89 1.49 1.65 9.59 0.00 24.08 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 16.0 8.0 16.0 2 21.68 29.66 33.61 30.92 33.10 2.00 2.23 17.11 0.00 24.52 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 16.0 8.0 16.0 2 22.27 30.42 34.49 31.71 34.33 2.06 2.31 17.69 25.19 .595 .214 .100 .026 .002 .002 .061 .000 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 7.0 11.0 7.0 2 18.86 25.41 29.15 26.60 30.62 1.76 1.98 15.92 21.35 .595 .214 .100 .026 .002 .002 .061 .000 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.0 11.0 7.0 2 20.33 27.27 31.31 28.56 34.08 1.95 1 6 27 2.19 17.58 0.00 23.03 .595 .214 .100 .026 .002 .002 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 8.0 1.0 8.0 2 13.90 19.33 22.13 20.22 18.63 1.07 1.19 9.97 0.00 15.73 .571 .218 .102 .031 .002 .002 .074 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 8.0 1.0 8.0 2 15.97 21.95 25.12 22.96 22.35 1.28 1.42 11.86 0.00 18.04 .571 .218 .102 .031 .002 .002 .074 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 24.51 34.96 38.51 36.09 28.21 2.06 2.29 14.75 0.00 26.44 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 25.81 36.72 40.47 37.91 30.62 2.22 2.47 15.92 0.00 27.87 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 22.0 2.0 22.0 2 20.27 28.28 31.80 29.40 27.47 1.71 1.90 14.39 0.00 22.05 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 41.0 5.0 42.0 2 17.88 26.10 28.73 26.94 17.80 1.33 1.48 9.54 0.00 19.25 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits $1 \ 6 \ 27 \ 22.0 \ 1.0 \ 23.0 \ 2 \ 21.68 \ 30.21 \ 33.95 \ 31.40 \ 30.20 \ 1.87 \ 2.08 \ 15.72$ 0.00 23.62 .667 .154 .072 .030 .002 .002 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 22.0 2.0 22.0 2 12.49 18.12 20.40 18.85 15.10 0.97 1.07 8.13 0.00 14.02 .644 .187 .088 .023 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 24.0 2.0 24.0 2 15.08 21.59 24.22 22.43 17.54 1.14 1.26 9.41 $0.00 \quad 17.21 \quad .584 \quad .226 \quad .106 \quad .024 \quad .002 \quad .002 \quad .056 \quad .000$ OEmission factors are as of Jan. 1st of the indicated calendar year. 168 CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 4.0 40.0 2 21.03 30.17 33.25 31.16 21.84 1.59 1.77 11.60 0.00 23.29 .641 .190 .089 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 81.0 7.0 83.0 2 35.81 52.04 55.44 53.12 23.03 2.42 2.68 12.20 0.00 38.75 .683 .171 .080 .018 .002 .002 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 69.0 7.0 71.0 2 30.98 44.94 48.26 46.00 22.89 2.17 2.40 12.13 0.00 33.64 .652 .181 .085 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 4.0 40.0 2 15.00 22.18 24.50 22.92 15.43 1.14 8.30 0.00 16.80 .641 .190 .089 .022 .002 .002 .054 .000 1.27 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 44.0 4.0 46.0 2 23.62 33.90 37.18 34.95 24.48 1.85 2.05 12.92 0.00 25.98 .652 .181 .085 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 28.0 2.0 28.0 2 10.04 15.14 16.97 15.72 12.20 0.90 6.53 0.00 11.79 .570 .234 .109 .024 .002 .003 .058 .000 0.81 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 19.0 2.0 19.0 2 11.65 16.90 19.10 17.60 14.56 0.91 1.01 7.83 0.00 13.47 .514 .241 .113 .037 .002 .003 .090 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 3.0 39.0 2 17.64 25.66 28.33 26.51 17.98 1.31 1.45 9.64 0.00 20.09 .583 .227 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 77.0 8.0 77.0 2 28.42 41.80 44.70 42.73 18.44 1.88 2.08 9.87 0.00 31.21 .637 .194 .091 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 73.0 7.0 73.0 2 27.51 40.41 43.34 41.34 18.83 1.84 2.03 10.07 0.00 31.55 .626 .229 .107 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 39.0 3.0 39.0 2 14.79 21.86 24.17 22.60 15.36 1.12 1.25 8.26 0.00 16.98 .583 .227 .106 .024 .002 .002 .056 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 52.0 5.0 52.0 2 22.79 33.08 36.05 34.02 19.96 1.62 1.79 10.65 0.00 26.16 .626 .229 .107 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 36.0 1.0 35.0 2 6.00 10.04 11.26 10.43 10.28 0.67 0.74 5.08 0.00 7.60 .389 .222 .104 .083 .001 .002 .199 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 0.0 8.0 2 7.51 11.14 12.82 11.68 11.42 0.65 1 6 27 0.72 6.07 0.00 8.88 .493 .225 .105 .051 .002 .002 .122 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 7.81 11.70 13.37 12.24 11.37 0.67 0.75 6.04 0.00 9.30 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 7.81 11.70 13.37 12.24 11.37 0.67 0.75 6.04 0.00 9.30 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 57.0 2.0 57.0 2 15.84 23.99 26.15 24.68 13.91 1.16 1.28 7.48 0.00 18.32 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 13.0 1.0 13.0 2 11.23 16.12 18.36 16.83 14.80 0.89 0.98 7.96 0.00 13.03 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 27 57.0 2.0 57.0 2 21.14 31.13 33.84 31.99 17.89 1.49 1.65 9.59 0.00 24.08 .564 .238 .111 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 46.0 12.0 59.0 2 15.57 21.64 23.89 22.36 15.95 1.44 1.63 9.02 0.00 16.82 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 46.0 12.0 59.0 2 18.71 25.59 28.22 26.43 18.84 1.69 1.91 10.60 0.00 20.07 .648 .173 .081 .028 .002 .002 .066 .000 169 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 45.0 8.0 56.0 2 19.23 26.18 28.95 27.06 21.60 1.85 2.08 12.06 0.00 20.74 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 45.0 8.0 56.0 2 24.54 33.00 36.59 34.15 32.35 2.70 3.03 17.58 0.00 26.65 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 8.0 7.0 12.0 2 5.75 8.29 9.57 8.70 10.27 0.64 0.71 5.69 0.00 6.89 .547 .241 .113 .028 .002 .003 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 8.0 7.0 12.0 2 6.51 9.23 10.62 9.67 10.94 0.69 0.77 6.14 0.00 7.70 .547 .241 .113 .028 .002 .003 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 11.40 15.94 17.81 16.53 13.55 1.11 1.27 7.68 0.00 12.65 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 13.76 18.87 21.05 19.56 15.95 1.31 1.49 9.02 0.00 15.13 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 34.0 14.0 46.0 2 14.36 19.74 21.99 20.45 16.49 1.35 9.32 0.00 15.79 .629 .193 .090 .025 .002 .002 .059 .000 1.54 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 10.28 14.53 16.26 15.08 12.48 1.02 1.17 7.06 0.00 11.46 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 34.0 14.0 46.0 2 21.10 28.22 31.46 29.25 28.67 2.29 2.59 15.72 0.00 23.20 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 8.0 7.0 12.0 2 4.95 7.31 8.45 7.68 9.78 0.59 0.67 5.31 0.00 5.89 .618 .207 .097 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 15.0 14.0 23.0 2 7.77 10.98 12.51 11.47 11.65 0.81 0.92 6.57 0.00 9.06 .587 .241 .113 .016 .002 .003 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 17.0 30.0 2 8.76 12.35 13.97 12.87 12.27 0.90 1.03 6.94 0.00 9.96 .624 .207 .097 .020 .002 .002 .048 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 39.0 37.0 60.0 2 14.05 19.60 21.59 20.24 12.78 1.31 1.53 7.24 0.00 15.65 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 24.0 24.0 38.0 2 12.93 17.67 19.79 18.35 15.44 1.24 8.74 0.00 14.24 .698 .180 .084 .010 .002 .002 .024 .000 1.43 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 17.0 30.0 2 8.18 11.63 13.17 12.12 11.68 0.86 0.97 6.59 0.00 9.34 .624 .207 .097 .020 .002 .002 .048 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 19.0 31.0 2 16.49 21.90 24.65 22.77 23.24 1.70 1.95 12.92 0.00 18.07 .698 .180 .084 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 13.0 10.0 19.0 2 4.12 6.41 7.38 6.72 9.88 0.60 0.67 5.08 0.00 5.18 .577 .232 .109 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 14.0 23.0 22.0 2 6.02 8.78 10.03 9.18 10.13 0.71 0.81 5.59 0.00 7.40 .478 .281 .132 .031 .002 .003 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 12.0 11.0 18.0 2 6.25 9.02 10.34 9.44 10.47 0.68 0.77 5.83 0.00 7.48 .558 .254 .119 .019 .002 .003 .045 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 25.0 24.0 37.0 2 7.66 11.12 12.53 11.57 10.55 0.83 0.96 5.88 0.00 8.92 .599 .229 .107 .018 .002 .002 .043 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

1 6 52 28.0 26.0 43.0 2 10.85 15.22 17.01 15.79 12.65 1.07 1.23 7.16 0.00 12.22 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 12.0 11.0 18.0 2 7.10 10.05 11.51 10.52 11.24 0.74 0.84 6.32 0.00 8.39 .558 .254 .119 .019 .002 .003 .045 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 18.0 29.0 2 14.41 19.32 21.79 20.11 18.95 1.38 1.58 10.65 0.00 16.03 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 9.0 23.0 2 6.48 9.91 11.47 10.40 12.87 0.70 0.79 5.83 0.00 8.16 .418 .241 .113 .066 .001 .003 .158 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 3.0 2.0 5.0 2 3.72 5.70 6.64 6.00 9.82 0.53 0.59 5.07 0.00 4.89 .498 .261 .122 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 4.69 7.20 8.25 7.54 9.67 0.72 5.12 0.00 5.69 .619 .220 .103 .016 .002 .002 .038 .000 0.63 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 5.13 7.75 8.86 8.10 9.70 0.65 0.73 5.23 0.00 6.15 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 23.0 13.0 34.0 2 7.58 10.98 12.41 11.43 10.97 0.81 0.92 6.15 0.00 8.80 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 5.99 8.80 10.05 9.20 10.08 0.69 0.78 5.56 0.00 7.05 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 23.0 13.0 34.0 2 13.27 18.08 20.33 18.80 17.15 1.27 9.68 14.93 .619 .220 .103 .016 .002 .002 .038 .000 1.45 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 46.0 12.0 59.0 2 20.61 27.97 30.85 28.89 22.39 1.99 2.25 12.48 22.15 .648 .173 .081 .028 .002 .002 .066 .000 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 46.0 12.0 59.0 2 22.49 30.38 33.55 31.39 26.25 2.31 24.25 .648 .173 .081 .028 .002 .002 .066 .000 2.61 14.48 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 45.0 8.0 56.0 2 20.65 28.01 31.00 28.96 24.75 2.10 2.36 13.71 0.00 22.35 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 45.0 8.0 56.0 2 24.54 33.00 36.59 34.15 32.35 2.70 3.03 17.58 0.00 26.65 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 8.0 7.0 12.0 2 8.48 11.64 13.37 12.19 13.20 0.84 0.94 7.48 0.00 9.82 .547 .241 .113 .028 .002 .003 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 8.0 7.0 12.0 2 9.65 13.06 14.99 13.68 14.71 0.93 1.05 8.33 0.00 11.09 .547 .241 .113 .028 .002 .003 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 17.28 23.23 25.88 24.07 20.14 1.64 1.87 11.29 0.00 18.86 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 18.38 24.61 27.44 25.51 22.81 1.84 2.10 12.70 0.00 20.11 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits $1 \ 6 \ 52 \ 34.0 \ 14.0 \ 46.0 \ 2 \ 17.53 \ 23.67 \ 26.34 \ 24.52 \ 20.49 \ 1.67 \ 1.89 \ 11.48$ 0.00 19.16 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 13.20 18.17 20.29 18.85 15.37 1.26 1.44 8.70 0.00 14.54 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 34.0 14.0 46.0 2 21.10 28.22 31.46 29.25 28.67 2.29 2.59 15.72 0.00 23.20 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 171 CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 8.0 7.0 12.0 2 7.82 10.83 12.45 11.35 12.39 0.78 0.88 7.01 0.00 8.93 .618 .207 .097 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 15.0 14.0 23.0 2 9.80 13.48 15.33 14.07 13.93 0.97 7.90 1.10 0.00 11.26 .587 .241 .113 .016 .002 .003 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 17.0 30.0 2 12.51 17.00 19.17 17.69 16.57 1.22 1.39 9.36 0.00 13.97 .624 .207 .097 .020 .002 .002 .048 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 39.0 37.0 60.0 2 20.56 27.63 30.32 28.49 17.78 1.82 2.12 10.02 0.00 22.53 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 24.0 24.0 38.0 2 15.12 20.38 22.79 21.15 17.78 1.42 1.64 10.02 0.00 16.56 .698 .180 .084 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 17.0 30.0 2 9.75 13.58 15.35 14.15 13.35 0.98 1.12 7.56 0.00 11.02 .624 .207 .097 .020 .002 .002 .048 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 19.0 31.0 2 16.49 21.90 24.65 22.77 23.24 1.70 1.95 12.92 0.00 18.07 .698 .180 .084 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 13.0 10.0 19.0 2 5.56 8.18 9.39 8.57 9.96 0.64 0.73 5.47 0.00 6.66 .577 .232 .109 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 14.0 23.0 22.0 2 7.46 10.54 12.02 11.02 11.33 0.81 0.92 6.38 0.00 8.94 .478 .281 .132 .031 .002 .003 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 12.0 11.0 18.0 2 8.64 11.96 13.66 12.50 12.96 0.86 0.97 7.34 0.00 10.07 .558 .254 .119 .019 .002 .003 .045 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 25.0 24.0 37.0 2 10.28 14.36 16.13 14.92 12.82 1.03 1.18 7.26 0.00 11.72 .599 .229 .107 .018 .002 .002 .043 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 28.0 26.0 43.0 2 12.83 17.68 19.72 18.33 14.52 1.23 1.42 8.23 0.00 14.34 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 12.0 11.0 18.0 2 8.05 11.23 12.84 11.74 12.27 0.82 0.92 6.94 0.00 9.42 .558 .254 .119 .019 .002 .003 .045 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 18.0 29.0 2 14.41 19.32 21.79 20.11 18.95 1.38 1.58 10.65 0.00 16.03 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 9.0 23.0 2 4.26 6.66 7.65 6.97 10.92 0.64 0.72 5.29 0.00 5.81 .418 .241 .113 .066 .001 .003 .158 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 3.0 2.0 5.0 2 4.24 6.33 7.37 6.66 9.66 0.54 0.60 5.16 0.00 5.41 .498 .261 .122 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 5.43 8.11 9.27 8.48 9.80 0.66 0.75 5.33 0.00 6.46 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 5.59 8.31 9.49 8.69 9.86 0.67 0.75 5.39 0.00 6.63 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 23.0 13.0 34.0 2 8.25 11.82 13.35 12.31 11.58 0.86 0.97 6.53 0.00 9.52 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 6.41 9.32 10.63 9.74 10.37 0.71 0.81 5.76 0.00 7.50 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits $1 \ 6 \ 52 \ \ 23.0 \ \ 13.0 \ \ 34.0 \ 2 \ \ 13.27 \ \ 18.08 \ \ 20.33 \ \ 18.80 \ \ 17.15 \ \ 1.27 \ \ 1.45$ 9.68 0.00 14.93 .619 .220 .103 .016 .002 .002 .038 .000 172 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 46.0 12.0 59.0 2 24.54 33.01 36.48 34.11 30.11 2.63 2.97 16.45 0.00 26.51 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 46.0 12.0 59.0 2 26.72 35.81 39.61 37.02 33.81 2.92 3.30 18.31 0.00 28.89 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 45.0 8.0 56.0 2 22.77 30.72 34.04 31.78 29.07 2.44 2.75 15.92 0.00 24.70 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 45.0 8.0 56.0 2 24.54 33.00 36.59 34.15 32.35 2.70 3.03 17.58 0.00 26.65 .648 .173 .081 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 8.0 7.0 12.0 2 11.40 15.21 17.44 15.92 17.07 1.08 1.21 9.64 0.00 12.99 .547 .241 .113 .028 .002 .003 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 7.0 12.0 2 12.56 16.63 19.05 17.40 18.64 1.17 1 6 52 1.32 10.49 0.00 14.25 .547 .241 .113 .028 .002 .003 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 19.94 26.59 29.67 27.57 26.43 2.11 2.41 14.57 0.00 21.88 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 22.00 29.19 32.60 30.27 30.76 2.43 2.77 16.77 0.00 24.17 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 34.0 14.0 46.0 2 19.46 26.13 29.10 27.07 25.07 2.02 2.29 13.88 0.00 21.36 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 30.0 19.0 43.0 2 16.05 21.73 24.22 22.52 18.35 1.50 1.71 10.33 0.00 17.54 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 34.0 14.0 46.0 2 21.10 28.22 31.46 29.25 28.67 2.29 2.59 15.72 0.00 23.20 .629 .193 .090 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 8.0 7.0 12.0 2 10.91 14.62 16.76 15.30 16.41 1.04 9.28 0.00 12.24 .618 .207 .097 .022 .002 .002 .052 .000 1.16 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 15.0 14.0 23.0 2 13.19 17.68 20.04 18.43 18.15 1.26 1.43 10.22 0.00 14.96 .587 .241 .113 .016 .002 .003 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 17.0 30.0 2 15.67 20.90 23.55 21.75 21.86 1.58 1.80 12.20 0.00 17.42 .624 .207 .097 .020 .002 .002 .048 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 39.0 37.0 60.0 2 24.36 32.31 35.46 33.31 22.81 2.30 2.69 12.70 0.00 26.61 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 24.0 24.0 38.0 2 17.27 23.02 25.74 23.89 21.22 1.68 1.94 11.86 0.00 18.87 .698 .180 .084 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 17.0 30.0 2 11.27 15.46 17.45 16.10 15.10 1.11 1.27 8.55 0.00 12.64 .624 .207 .097 .020 .002 .002 .048 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 19.0 31.0 2 16.49 21.90 24.65 22.77 23.24 1.70 1.95 12.92 0.00 18.07 .698 .180 .084 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 13.0 10.0 19.0 2 7.20 10.20 11.66 10.67 11.30 0.75 0.85 6.36 0.00 8.40 .577 .232 .109 .023 .002 .002 .055 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 14.0 23.0 22.0 2 8.94 12.35 14.06 12.90 12.91 0.92 1.06 7.31 0.00 10.54 .478 .281 .132 .031 .002 .003 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

1 6 52 12.0 11.0 18.0 2 11.32 15.25 17.38 15.93 16.33 1.08 1.22 9.23 0.00 12.99 .558 .254 .119 .019 .002 .003 .045 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 25.0 24.0 37.0 2 13.28 18.08 20.25 18.77 15.95 1.28 1.47 9.02 0.00 14.94 .599 .229 .107 .018 .002 .002 .043 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 28.0 26.0 43.0 2 14.81 20.13 22.43 20.87 16.49 1.39 1.60 9.32 0.00 16.45 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 12.0 11.0 18.0 2 8.88 12.25 13.99 12.81 13.25 0.88 1.00 7.51 0.00 10.33 .558 .254 .119 .019 .002 .003 .045 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 19.0 18.0 29.0 2 14.41 19.32 21.79 20.11 18.95 1.38 1.58 10.65 0.00 16.03 .648 .207 .097 .013 .002 .002 .031 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 9.0 23.0 2 4.22 6.60 7.58 6.91 9.99 0.69 5.09 0.00 5.68 .418 .241 .113 .066 .001 .003 .158 .000 0.61 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 3.0 2.0 5.0 2 4.88 7.11 8.27 7.48 9.87 0.56 5.40 0.00 6.07 .498 .261 .122 .034 .002 .003 .080 .000 1 6 52 0.63 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 6.24 9.11 10.40 9.52 10.25 0.70 0.79 5.68 0.00 7.32 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 6.29 9.17 10.46 9.58 10.29 0.70 0.80 5.70 0.00 7.37 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 23.0 13.0 34.0 2 8.87 12.59 14.21 13.11 12.19 0.91 1.03 6.89 0.00 10.18 .619 .220 .103 .016 .002 .002 .038 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 16.0 13.0 24.0 2 6.73 9.72 11.09 10.16 10.64 0.73 5.94 7.85 .619 .220 .103 .016 .002 .002 .038 .000 0.83 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 52 23.0 13.0 34.0 2 13.27 18.08 20.33 18.80 17.15 1.27 14.93 .619 .220 .103 .016 .002 .002 .038 .000 1.45 9.68 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 21.0 17.0 43.0 2 13.07 19.06 21.03 19.69 13.53 1.07 1.23 7.68 0.00 14.75 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 21.0 17.0 43.0 2 14.32 20.68 22.79 21.36 14.61 1.15 1.33 8.30 0.00 16.08 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 16.0 12.0 35.0 2 16.70 23.54 26.11 24.36 18.70 1.35 1.55 10.54 0.00 18.69 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 16.0 12.0 35.0 2 23.32 32.21 35.83 33.37 32.52 2.27 2.60 17.69 0.00 26.27 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 9.0 10.0 16.0 2 4.37 7.01 8.03 7.33 10.87 0.61 0.69 5.28 0.00 5.72 .517 .241 .113 .037 .002 .003 .087 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 9.0 10.0 16.0 2 5.79 8.81 10.06 9.21 9.88 0.62 0.70 5.42 0.00 7.10 .517 .241 .113 .037 .002 .003 .087 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 9.18 13.83 15.35 14.32 10.66 0.85 0.98 5.97 0.00 10.42 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 11.26 16.52 18.29 17.08 12.17 0.98 1.13 6.89 0.00 12.61 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 19.0 29.0 2 12.16 17.35 19.39 18.00 14.68 1.07 1.23 8.33 0.00 13.57 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 174 CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 7.93 12.22 13.59 12.65 9.99 0.78 0Emission factors are as of Jan. 1st of the indicated calendar year. 0.90 5.50 0.00 9.11 .648 .187 .087 .022 .002 .002 .052 .000 LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 19.0 29.0 2 20.32 27.87 31.13 28.90 28.61 2.02 2.32 15.72 0.00 22.54 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 14.0 14.0 23.0 2 6.00 9.58 10.96 10.02 11.77 0.68 0.77 5.52 0.00 7.28 .618 .200 .094 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 14.0 14.0 24.0 2 5.22 8.29 9.40 8.65 9.64 0.63 6.55 .547 .248 .116 .025 .002 .003 .059 .000 0.71 5.13 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 20.0 21.0 34.0 2 7.86 11.97 13.37 12.42 10.26 5.70 0.77 0.89 0.00 9.19 .630 .210 .098 .017 .002 .002 .041 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 33.0 33.0 54.0 2 11.57 17.47 19.11 17.99 10.66 1.00 5.97 0.00 12.91 .658 .180 .084 .022 .002 .002 .052 .000 1.16 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 26.0 28.0 43.0 2 15.14 21.66 23.82 22.35 14.68 1.25 8.33 0.00 17.11 .658 .207 .097 .010 .002 .002 .024 .000 1.44 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 20.0 21.0 34.0 2 7.28 11.22 12.54 11.64 9.96 0.74 0.85 5.48 0.00 8.57 .630 .210 .098 .017 .002 .002 .041 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 20.0 20.0 2 16.54 22.52 25.37 23.43 23.19 1.62 1.84 12.92 0.00 18.55 .658 .207 .097 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 13.0 11.0 21.0 2 5.87 9.35 10.72 9.79 11.77 0.66 0.74 5.52 0.00 7.34 .549 .233 .109 .031 .002 .003 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 15.0 25.0 2 5.27 8.39 9.51 8.75 9.64 0.64 0.72 5.13 0.00 6.79 .477 .275 .129 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 21.0 36.0 2 6.07 9.72 10.89 10.10 9.64 0.71 0.81 5.13 0.00 7.31 .608 .207 .097 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 32.0 30.0 52.0 2 9.30 14.47 15.90 14.93 9.88 0.88 1.02 5.42 0.00 10.82 .609 .212 .099 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 22.0 37.0 2 10.86 15.93 17.68 16.49 12.17 0.96 1.10 6.89 0.00 12.94 .568 .268 .125 .010 .002 .003 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 21.0 36.0 2 7.49 11.55 12.89 11.98 9.97 0.76 0.87 5.49 0.00 8.77 .608 .207 .097 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 19.0 19.0 32.0 2 16.89 23.53 26.14 24.36 19.01 1.42 1.62 10.71 0.00 19.62 .568 .268 .125 .010 .002 .003 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 9.0 25.0 2 8.33 13.19 15.14 13.81 14.02 0.75 0.84 6.17 0.00 10.11 .440 .220 .103 .069 .001 .002 .165 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 4.0 2.0 6.0 2 3.94 6.23 7.23 6.55 9.85 0.54 0.60 5.08 0.00 5.23 .487 .241 .113 .045 .002 .003 .109 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 4.96 8.11 9.16 8.44 9.76 0.64 0.73 5.07 0.00 6.58 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 5.65 9.00 10.15 9.37 9.64 0.65 0.74 5.16 0.00 7.30 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 13.0 48.0 2 9.72 14.88 16.42 15.37 10.66 0.00 11.80 .458 .288 .135 .034 .002 .003 .080 .000 0.84 0.97 5.97 175 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 6.60 10.22 11.50 10.63 9.90 0.69 0.78 5.44 0.00 8.29 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 13.0 48.0 2 18.42 26.28 28.81 27.09 17.65 1.40 1.61 9.97 0.00 21.30 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 21.0 17.0 43.0 2 13.26 19.30 21.29 19.94 13.69 1.08 1.25 7.77 0.00 14.95 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 21.0 17.0 43.0 2 14.75 21.24 23.41 21.93 15.00 1.19 1.36 8.51 0.00 16.54 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 16.0 12.0 35.0 2 17.16 24.09 26.71 24.93 19.12 1.38 1.58 10.76 0.00 19.16 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 2.60 17.69 1 6 36 16.0 12.0 35.0 2 23.32 32.21 35.83 33.37 32.52 2.27 0.00 26.27 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 9.0 10.0 16.0 2 4.37 7.01 8.03 7.33 10.28 0.59 0.67 5.14 0.00 5.69 .517 .241 .113 .037 .002 .003 .087 .000 1 6 36 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 9.0 10.0 16.0 2 6.09 9.20 10.50 9.61 10.05 0.64 0.72 5.55 0.00 7.41 .517 .241 .113 .037 .002 .003 .087 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 9.59 14.36 15.92 14.85 10.92 0.87 1.01 6.14 0.00 10.84 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 11.71 17.10 18.92 17.68 12.53 1.01 1.17 7.11 0.00 13.09 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 19.0 29.0 2 12.28 17.51 19.56 18.16 14.80 1.08 8.40 0.00 13.70 .648 .187 .087 .022 .002 .002 .052 .000 1.24 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 8.90 13.47 14.96 13.95 10.49 0.83 0.96 5.86 0.00 10.13 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 19.0 29.0 2 20.32 27.87 31.13 28.90 28.61 2.02 2.32 15.72 0.00 22.54 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 14.0 14.0 23.0 2 4.77 7.72 8.78 8.06 10.92 0.65 0.74 5.29 0.00 5.91 .618 .200 .094 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 14.0 14.0 24.0 2 6.23 9.59 10.85 9.99 9.87 0.66 0.75 5.41 0.00 7.62 .547 .248 .116 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 20.0 21.0 34.0 2 8.11 12.28 13.72 12.74 10.41 0.79 0.90 5.80 0.00 9.45 .630 .210 .098 .017 .002 .002 .041 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 33.0 33.0 54.0 2 11.84 17.83 19.49 18.36 10.80 1.01 1.18 6.06 0.00 13.20 .658 .180 .084 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 26.0 28.0 43.0 2 15.29 21.85 24.03 22.55 14.80 1.26 1.46 8.40 0.00 17.27 .658 .207 .097 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 20.0 21.0 34.0 2 7.95 12.09 13.50 12.54 10.32 0.78 0Emission factors are as of Jan. 1st of the indicated calendar year. 0.89 5.74 0.00 9.29 .630 .210 .098 .017 .002 .002 .041 .000 LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 20.0 20.0 2 16.54 22.52 25.37 23.43 23.19 1.62 1.84 12.92 0.00 18.55 .658 .207 .097 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits
1 6 36 13.0 11.0 21.0 2 5.53 8.83 10.11 9.24 11.50 0.65 0.73 5.45 0.00 6.95 .549 .233 .109 .031 .002 .003 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 15.0 25.0 2 5.40 8.55 9.69 8.91 9.64 0.64 0.73 5.15 0.00 6.92 .477 .275 .129 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 21.0 36.0 2 6.39 10.13 11.34 10.52 9.65 0.71 0.82 5.18 0.00 7.63 .608 .207 .097 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 32.0 30.0 52.0 2 9.51 14.74 16.19 15.20 9.95 0.89 1.03 5.47 0.00 11.03 .609 .212 .099 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 22.0 37.0 2 10.90 15.99 17.75 16.55 12.21 0.96 1.11 6.92 0.00 12.99 .568 .268 .125 .010 .002 .003 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 21.0 36.0 2 8.03 12.26 13.67 12.71 10.25 0.78 0.90 5.69 0.00 9.34 .608 .207 .097 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 19.0 19.0 32.0 2 16.89 23.53 26.14 24.36 19.01 1.42 1.62 10.71 0.00 19.62 .568 .268 .125 .010 .002 .003 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 9.0 25.0 2 8.28 13.12 15.06 13.74 13.97 0.75 0.84 6.15 0.00 10.06 .440 .220 .103 .069 .001 .002 .165 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 4.0 2.0 6.0 2 3.94 6.23 7.23 6.55 9.85 0.54 1 6 36 5.08 0.60 0.00 5.23 .487 .241 .113 .045 .002 .003 .109 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 5.03 8.19 9.26 8.53 9.73 0.64 0.73 5.08 0.00 6.65 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 5.67 9.02 10.18 9.39 9.65 0.65 7.32 .458 .288 .135 .034 .002 .003 .080 .000 0.74 5.17 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 13.0 48.0 2 9.75 14.93 16.48 15.42 10.68 0.84 0.97 5.98 0.00 11.84 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 6.64 10.28 11.57 10.69 9.93 0.69 0.78 5.46 0.00 8.34 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 13.0 48.0 2 18.53 26.42 28.96 27.23 17.74 1.41 1.62 10.02 0.00 21.42 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 21.0 17.0 43.0 2 13.70 19.88 21.92 20.54 14.07 1.11 1.28 7.99 0.00 15.43 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 21.0 17.0 43.0 2 15.52 22.25 24.50 22.97 15.69 1.24 1.43 8.90 0.00 17.36 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 16.0 12.0 35.0 2 17.43 24.44 27.11 25.29 19.76 1.43 1.63 11.11 0.00 19.47 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 16.0 12.0 35.0 2 23.32 32.21 35.83 33.37 32.52 2.27 2.60 17.69 0.00 26.27 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 9.0 10.0 16.0 2 4.44 7.10 8.13 7.43 9.73 0.58 0.66 5.08 0.00 5.73 .517 .241 .113 .037 .002 .003 .087 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 9.0 10.0 16.0 2 6.37 9.55 10.90 9.98 10.23 0.65 0.74 5.68 0.00 7.70 .517 .241 .113 .037 .002 .003 .087 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 10.27 15.23 16.88 15.76 11.40 0.92 1.06 6.43 0.00 11.56 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 177 CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 12.36 17.93 19.83 18.54 13.08 1.06 1.22 7.42 0.00 13.77 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits $1 \ 6 \ 36 \ 15.0 \ 19.0 \ 29.0 \ 2 \ 12.59 \ 17.91 \ 20.00 \ 18.57 \ 15.13 \ 1.11 \ 1.27$ 8.59 0.00 14.03 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 9.51 14.26 15.82 14.75 10.87 0.87 1.00 6.10 0.00 10.77 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 19.0 29.0 2 20.32 27.87 31.13 28.90 28.61 2.02 2.32 15.72 0.00 22.54 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 14.0 14.0 23.0 2 4.69 7.59 8.63 7.92 10.02 0.62 0.71 5.09 0.00 5.78 .618 .200 .094 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 14.0 14.0 24.0 2 6.63 10.10 11.42 10.52 10.08 0.68 0.78 5.57 0.00 8.04 .547 .248 .116 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 20.0 21.0 34.0 2 8.59 12.91 14.40 13.38 10.73 0.81 0.93 6.01 0.00 9.96 .630 .210 .098 .017 .002 .002 .041 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 33.0 33.0 54.0 2 12.47 18.64 20.36 19.19 11.14 1.05 1.22 6.27 0.00 13.85 .658 .180 .084 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 26.0 28.0 43.0 2 15.37 21.95 24.14 22.65 14.87 1.26 8.44 1.46 0.00 17.35 .658 .207 .097 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 20.0 21.0 34.0 2 8.46 12.73 14.21 13.20 10.64 0.81 0.93 5.95 0.00 9.82 .630 .210 .098 .017 .002 .002 .041 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 20.0 20.0 2 16.54 22.52 25.37 23.43 23.19 1.62 1.84 12.92 0.00 18.55 .658 .207 .097 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 13.0 11.0 21.0 2 4.62 7.47 8.51 7.80 10.90 0.63 0.71 5.29 0.00 5.93 .549 .233 .109 .031 .002 .003 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 15.0 25.0 2 5.61 8.82 9.98 9.19 9.66 0.65 0.73 5.20 0.00 7.14 .477 .275 .129 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 21.0 36.0 2 6.89 10.79 12.06 11.19 9.75 0.73 0.84 5.31 0.00 8.16 .608 .207 .097 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 32.0 30.0 52.0 2 9.68 14.96 16.43 15.43 10.01 0.90 1.04 5.52 0.00 11.22 .609 .212 .099 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 22.0 37.0 2 10.95 16.05 17.82 16.61 12.25 0.97 1.11 6.94 0.00 13.04 .568 .268 .125 .010 .002 .003 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 21.0 36.0 2 8.50 12.86 14.33 13.33 10.53 0.81 0.93 5.88 0.00 9.84 .608 .207 .097 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 19.0 19.0 32.0 2 16.79 23.40 25.99 24.22 18.91 1.41 1.61 10.65 0.00 19.51 .568 .268 .125 .010 .002 .003 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 9.0 25.0 2 8.10 12.85 14.74 13.45 13.74 0.74 0.83 6.09 0.00 9.86 .440 .220 .103 .069 .001 .002 .165 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 4.0 2.0 6.0 2 3.94 6.23 7.23 1 6 36 6.55 9.85 0.54 0.60 5.08 0.00 5.23 .487 .241 .113 .045 .002 .003 .109 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 5.09 8.28 9.35 8.62 9.71 5.08 6.72 .458 .288 .135 .034 .002 .003 .080 .000 0.64 0.73 0.00 178 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 5.71 9.07 10.24 9.45 9.65 0.65 0.74 5.17 0.00 7.36 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 13.0 48.0 2 9.83 15.03 16.58 15.53 10.73 0.85 0Emission factors are as of Jan. 1st of the indicated calendar year. 0.97 6.01 0.00 11.92 .458 .288 .135 .034 .002 .003 .080 .000 LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 6.69 10.34 11.64 10.76 9.95 0.69 0.78 5.47 0.00 8.40 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 13.0 48.0 2 18.53 26.42 28.96 27.23 17.74 1.41 1.62 10.02 0.00 21.42 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 21.0 17.0 43.0 2 14.25 20.59 22.69 21.26 14.55 1.15 1.32 8.26 0.00 16.00 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 21.0 17.0 43.0 2 16.53 23.57 25.94 24.33 16.62 1.31 1.51 9.41 0.00 18.45 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 16.0 12.0 35.0 2 17.71 24.82 27.52 25.68 20.45 1.47 1.69 11.48 0.00 19.80 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 16.0 12.0 35.0 2 23.32 32.21 35.83 33.37 32.52 2.27 2.60 17.69 0.00 26.27 .589 .213 .100 .028 .002 .002 .066 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 9.0 10.0 16.0 2 5.19 8.05 9.20 8.42 9.67 0.60 5.21 1 6 36 0.68 0.00 6.48 .517 .241 .113 .037 .002 .003 .087 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 9.0 10.0 16.0 2 7.13 10.51 11.97 10.98 10.82 0.70 1 6 36 0.79 6.07 0.00 8.50 .517 .241 .113 .037 .002 .003 .087 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 11.51 16.84 18.64 17.41 12.37 1.00 1.15 7.01 0.00 12.87 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 13.70 19.66 21.73 20.32 14.25 1.15 1.33 8.09 0.00 15.19 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 19.0 29.0 2 13.05 18.50 20.65 19.18 15.62 1.14 1.31 8.86 0.00 14.52 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 25.0 39.0 2 10.10 15.02 16.65 15.54 11.28 0.90 6.36 0.00 11.39 .648 .187 .087 .022 .002 .002 .052 .000 1.04 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 19.0 29.0 2 20.32 27.87 31.13 28.90 28.61 2.02 2.32 15.72 0.00 22.54 .648 .187 .087 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 14.0 14.0 23.0 2 5.08 8.09 9.18 8.44 9.65 0.63 0.71 5.11 0.00 6.16 .618 .200 .094 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 14.0 14.0 24.0 2 7.09 10.70 12.08 11.14 10.37 0.71 0.80 5.78 0.00 8.54 .547 .248 .116 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 20.0 21.0 34.0 2 9.34 13.87 15.46 14.38 11.28 0.86 0.99 6.36 0.00 10.77 .630 .210 .098 .017 .002 .002 .041 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 33.0 33.0 54.0 2 13.43 19.88 21.70 20.46 11.69 1.11 1.29 6.61 0.00 14.84 .658 .180 .084 .022 .002 .002 .052 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 26.0 28.0 43.0 2 15.52 22.15 24.35 22.85 15.00 1.27 1.47 8.51 0.00 17.52 .658 .207 .097 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

1 6 36 20.0 21.0 34.0 2 8.94 13.35 14.89 13.84 10.97 0.84 0.96 6.17 0.00 10.34 .630 .210 .098 .017 .002 .002 .041 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 20.0 20.0 2 16.54 22.52 25.37 23.43 23.19 1.62 1.84 12.92 0.00 18.55 .658 .207 .097 .010 .002 .002 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 13.0 11.0 21.0 2 4.58 7.40 8.43 7.73 10.28 0.61 0.69 5.14 0.00 5.85 .549 .233 .109 .031 .002 .003 .073 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 15.0 25.0 2 5.97 9.28 10.50 9.67 9.75 0.75 5.30 7.52 .477 .275 .129 .034 .002 .003 .080 .000 0.66 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 21.0 36.0 2 7.51 11.59 12.93 12.02 9.99 0.76 0.87 5.50 0.00 8.80 .608 .207 .097 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 32.0 30.0 52.0 2 10.20 15.63 17.15 16.11 10.21 0.92 1.07 5.67 0.00 11.75 .609 .212 .099 .022 .002 .002 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 22.0 37.0 2 11.05 16.18 17.95 16.74 12.33 0.97 6.99 0.00 13.15 .568 .268 .125 .010 .002 .003 .024 .000 1.12 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 22.0 21.0 36.0 2 8.98 13.48 15.01 13.97 10.85 0.84 0.96 6.09 0.00 10.34 .608 .207 .097 .025 .002 .002 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 19.0 19.0 32.0 2 16.79 23.40 25.99 24.22 18.91 1.41 1.61 10.65 0.00 19.51 .568 .268 .125 .010 .002 .003 .024 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 15.0 9.0 25.0 2 7.52 11.96 13.71 12.52 13.08 0.71 0.81 5.90 0.00 9.23 .440 .220 .103 .069 .001 .002 .165 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 4.0 2.0 6.0 2 3.94 6.23 7.23 6.55 9.84 0.54 5.07 5.23 .487 .241 .113 .045 .002 .003 .109 .000 0.60 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 5.20 8.41 9.50 8.76 9.68 0.64 6.82 .458 .288 .135 .034 .002 .003 .080 .000 0.73 5.09 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 5.77 9.15 10.32 9.52 9.66 0.65 0.74 5.19 0.00 7.42 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 13.0 48.0 2 9.91 15.13 16.69 15.63 10.77 0.85 0.98 6.04 0.00 12.00 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 18.0 12.0 29.0 2 6.74 10.41 11.71 10.82 9.97 0.69 0.79 5.49 0.00 8.45 .458 .288 .135 .034 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 6 36 23.0 13.0 48.0 2 18.53 26.42 28.96 27.23 17.74 1.41 1.62 10.02 0.00 21.42 .458 .288 .135 .034 .002 .003 .080 .000

1 1 2 3 1 6 1 2 2 1 2 2 2 2 2 1 3 1 0 49	065	PROMP' TAMFLG SPDFL VMFLA MYMRF NEWFLL IMFLA ALHFLA ALHFLA LOCFLG TEMFL OUTFM PRTFLG IDLFLC NMHFLA 067	H G G G G G G G G G G G G G G G G G G G	080	083	0.82	ſ	######################################	NUUEUUUNAUOM8CNVN0	o p: se l se c ach se c se l se c o ac nti- ncon nly OBII 0 c alco o c 65	rompt: MOBILI one sp scena local MOBILI one I dditio -tampone ntrol: one I LE 5 m olumn ulate dle en emiss: ompone 043	ing per re /M cer LA LA Coni coni coni en	g, vertical format 5 tampering rates ed for all vehicle types io has its own VMT mix egistration distribution 5 BER's programs al correction factors ing, no press/purge check d refueling emission rates P record es max and min temp. escriptive format O only ssions n factors t emission factor output Colorado LDGV
.058 . .007 . .058 .	.052 .005 .055	.045 .003 .044	.034 .001 .047	.028 .001 .047	.024	.021	.0)19)65	.0	17 62	.009	# #	registration distribution Colorado LDGT1 registration distribution
.017 . .058 . .058 .	.013 .055 .060	.009 .044 .051	.004 .047 .035	.000 .047 .032	.078	.033	.0)65)33	.0	62 33	.021 .045 .021	# # #	Colorado LDGT2 registration distribution
.017 . .066 . .052 .	.013 .062 .054	.009 .049 .044	.004 .050 .030	.000 .052 .026	.084 .025	.096 .027	.0)69)27	.0	64 27	.042 .018	# #	Colorado HDGV registration distribution
.014 . .049 . .058 .	.011 .065 .052	.007 .067 .045	.004 .074 .034 .001	.000 .080 .028	.083 .024	.082 .021	.0)68)19	.0 .0	65 17	.043 .009	# #	Colorado LDDV registration distribution
.058 . .058 . .056 .	.055 .060 .013	.044 .051 .009	.047 .035 .004	.047 .032 .000	.078 .031	.071 .033	.()65)33	.0 .0	62 33	.045 .021	# #	Colorado LDDT registration distribution
.110 . .048 . .001 .	.095 .055 .001	.116 .044 .000	.113 .001 .000	.080 .001 .000	.102 .001	.079 .001	.()62)01	.0 .0	37 01	.050 .001	# #	Colorado HDDV registration distribution
.001 . .001 . .000 .	.001 .989 .000	.001 .000 .000	.001 .000 .000	.001 .000 .000	.001	.001	.()01)00	.0	01 00	.001 .000	# #	Colorado MC registration distribution
2 1 2 1 82 20 8 82 20 8 TECH12R IMDATRS 82 75 0	L 32 09 32 09 RSD80 SD80. 39 22	00 0 00 0 .D D 22 12	0 098 0 098 098.	1 2 1 2 2211	2221 1112	4222 2222	22	.6 20.	10 1	.0	1.5 999.		
.001 .9	999 . 9.8 2	027 . 7.0 1	C 2 017 2 6.0	6. 5 8.0 1	52. 12 L6.0	.4 1	2.4	1 92	2	0.0	_		
2 13 18	19.10 3.7 2	1.028 7.01	.002. 6.0	8.0 1	167.00 16.0	0	13	AM	1	CBI	D		PRINCIPAL ARTERIAL
2 13 15	5.9.10 5.9.2	1.028 7.0 1.029	.002. 7.0 1	1.0	7.0	0	12	АМ	1	CBI		1	MINOR ARIERIAL
2 13 11	L9.10 L.2 2	1.028 7.0 1.029	.002. 7.0 1	1.0	7.0	0	12	АМ	1	CBI			COLLECIOR
2 13 35	5.92	7.020	8.0	1.0	8.0	0	10	AM	1	נפט			EDEEMAY
2 13 29	9.52	7.0	8.0	1.0	8.0	0	12	лм	1	FD.	INGE	1	MATOR RECTONAL
2 13 25	5.8 2	7.0 4	1.0	5.0 4	12.0 179 00	0	13	ΔМ	1	FR	INGE	1	PRINCIPAL ARTERIAL
2 13 23	3.0 2	7.0 4	1.0	5.0 4	12.0 79.00	0	13	АМ	1	FR	INGE	1	MINOR ARTERIAL
2 13 19	9.5 2 59.07	7.0 2	2.0	2.0 2	22.0	0	13	AM	1	FR	INGE	(COLLECTOR
2 13 28	3.6 2 59.07	7.0 4	1.0	5.0 4	12.0 079.00	0	13	AM	1	FR	INGE]	RAMP
2 13 14	4.1 2 59.07	7.0 2	2.0	1.0 2	23.0)79.00	0	13	AM	1	FR	INGE		LOCAL
2 13 40 .629.19).4 2 92.08	7.02 9.025	2.0 .002.	2.0 2	22.0 060.00	0	13	AM	1	URI	BAN	J	FREEWAY
2 13 33 .569.23	3.1 2 31.10	7.02 [.] 6.026	4.0 .002.	2.0 2	24.0 062.00	0	13	AM	1	URI	BAN	1	MAJOR REGIONAL
2 13 30 .626.19).2 2 95.09	7.03 0.025	9.0 .002.	4.0 4 003.0	40.0)59.00	0	13	AM	1	URI	BAN	I	PRINCIPAL ARTERIAL
2 13 28 .668.17	3.4 2 76.08	7.0 8 1.020	1.0 .002.	7.0 8 003.0	33.0 050.00	0	13	AM	1	URI	BAN]	MINOR ARTERIAL
2 13 23 .637.18	3.02 36.08	7.0 6 6.025	9.0 .002.	7.0 7 003.0	/1.0 061.00	0	13	AM	1	URI	BAN	(COLLECTOR

.626.195.090.025.002.003.059.000	1
2 13 17.1 27.0 44.0 4.0 46.0 .637.186.086.025.002.003.061.000	1
2 13 46.2 27.0 28.0 2.0 28.0 555 239 110 026 002 004 064 000	1
2 13 35.4 27.0 19.0 2.0 19.0	-
2 13 36.4 27.0 39.0 3.0 39.0	T
.567.232.107.026.002.004.062.000 2 13 32.8 27.0 77.0 8.0 77.0	1
.622.199.092.024.002.003.058.000	1
.610.234.108.012.002.004.030.000	1
.567.232.107.026.002.004.062.000	1
2 13 19.8 27.0 52.0 5.0 52.0 .610.234.108.012.002.004.030.000	1
2 13 60.2 27.0 36.0 1.0 35.0 .373.227.105.085.001.004.205.000	1
2 13 46.6 27.0 8.0 0.0 8.0 477 230 106 053 002 004 128 000	1
2 13 42.5 27.0 13.0 1.0 13.0	1
2 13 43.1 27.0 13.0 1.0 13.0	1
.549.243.112.026.002.004.064.000 2 13 32.2 27.0 57.0 2.0 57.0	1
.549.243.112.026.002.004.064.000	1
.549.243.112.026.002.004.064.000	1
2 13 21.5 27.0 57.0 2.0 57.0 .549.243.112.026.002.004.064.000	1
2 13 15.5 27.0 16.0 8.0 16.0 .580.219.101.028.002.003.067.000	1
2 13 14.1 27.0 16.0 8.0 16.0 580 219 101 028 002 003 067 000	1
2 13 13.5 27.0 7.0 11.0 7.0	-
2 13 11.2 27.0 7.0 11.0 7.0	1
2 13 29.4 27.0 8.0 1.0 8.0	Ţ
.556.223.103.033.002.003.080.000 2 13 22.7 27.0 8.0 1.0 8.0	1
.556.223.103.033.002.003.080.000	1
.652.159.073.032.002.003.079.000	1
.652.159.073.032.002.003.079.000	1
2 13 15.8 27.0 22.0 2.0 22.0 .652.159.073.032.002.003.079.000	1
2 13 24.5 27.0 41.0 5.0 42.0 .652.159.073.032.002.003.079.000	1
2 13 14.1 27.0 22.0 1.0 23.0 652 159 073 032 002 003 079 000	1
2 13 34.0 27.0 22.0 2.0 22.0	-
2 13 27.0 27.0 24.0 2.0 24.0	Ţ
.569.231.106.026.002.004.062.000 2 13 25.3 27.0 39.0 4.0 40.0	1
.626.195.090.025.002.003.059.000 2 13 22 9 27 0 81 0 7 0 83 0	1
.668.176.081.020.002.003.050.000	1
.637.186.086.025.002.003.061.000	1
2 13 28.6 27.0 39.0 4.0 40.0 .626.195.090.025.002.003.059.000	1
2 13 17.1 27.0 44.0 4.0 46.0 .637.186.086.025.002.003.061.000	1
2 13 39.6 27.0 28.0 2.0 28.0 555 239 110 026 002 004 064 000	1
2 13 28.5 27.0 19.0 2.0 19.0	Ţ
2 13 29.9 27.0 39.0 3.0 39.0	Ţ
.567.232.107.026.002.004.062.000 2 13 26.6 27.0 77.0 8.0 77.0	1
.622.199.092.024.002.003.058.000	1
.610.234.108.012.002.004.030.000	1
2 13 26.2 27.0 39.0 3.0 39.0 .567.232.107.026.002.004.062.000	1
2 13 19.8 27.0 52.0 5.0 52.0	

13	AM	1	URBAN	RAMP
13	AM	1	URBAN	LOCAL
13	AM	1	SUBURBAN	FREEWAY
13	AM	1	SUBURBAN	MAJOR REGIONAL
13	AM	1	SUBURBAN	PRINCIPAL ARTERIAL
13	AM	1	SUBURBAN	MINOR ARTERIAL
13	AM	1	SUBURBAN	COLLECTOR
13	AM	1	SUBURBAN	RAMP
13	AM	1	SUBURBAN	LOCAL
13	AM	1	RURAL	FREEWAY
13	AM	1	RURAL	MAJOR REGIONAL
13	AM	1	RURAL	PRINCIPAL ARTERIAL
13	AM	1	RURAL	MINOR ARTERIAL
13	AM	1	RURAL	COLLECTOR
13	AM	1	RURAL	RAMP
13	AM	1	RURAL	LOCAL
13	AM	2	CBD	PRINCIPAL ARTERIAL
13	AM	2	CBD	MINOR ARTERIAL
13	AM	2	CBD	COLLECTOR
13	AM	2	CBD	LOCAL
13	AM	2	FRINGE	FREEWAY
13	AM	2	FRINGE	MAJOR REGIONAL
13	AM	2	FRINGE	PRINCIPAL ARTERIAL
13	AM	2	FRINGE	MINOR ARTERIAL
13	AM	2	FRINGE	COLLECTOR
13	AM	2	FRINGE	RAMP
13	AM	2	FRINGE	LOCAL
13	AM	2	URBAN	FREEWAY
13	AM	2	URBAN	MAJOR REGIONAL
13	AM	2	URBAN	PRINCIPAL ARTERIAL
13	AM	2	URBAN	MINOR ARTERIAL
13	AM	2	URBAN	COLLECTOR
13	AM	2	URBAN	RAMP
13	AM	2	URBAN	LOCAL
13	AM	2	SUBURBAN	FREEWAY
13	AM	2	SUBURBAN	MAJOR REGIONAL
13	AM	2	SUBURBAN	PRINCIPAL ARTERIAL
13	AM	2	SUBURBAN	MINOR ARTERIAL
13	AM	2	SUBURBAN	COLLECTOR
13	AM	2	SUBURBAN	RAMP

.610	234.108.012.002.004	.030.000	13	AM	2	SUBURBAN	LOCAL
.373	.227.105.085.001.004	.205.000	13	AM	2	RURAL	FREEWAY
2 ± 3 .477	41.0 27.0 8.0 0.0	.128.000	13	AM	2	RURAL	MAJOR REGIONAL
.549	243.112.026.002.004	.064.000	13	AM	2	RURAL	PRINCIPAL ARTERIAL
.549	243.112.026.002.004	.064.000	13	AM	2	RURAL	MINOR ARTERIAL
.549	243.112.026.002.004	.064.000	13	AM	2	RURAL	COLLECTOR
.549	243.112.026.002.004	.064.000	13	AM	2	RURAL	RAMP
.549	243.112.026.002.004	.064.000	13	AM	2	RURAL	LOCAL
.580	.219.101.028.002.003 10 6 27 0 16 0 8 0	.067.000	13	AM	3	CBD	PRINCIPAL ARTERIAL
.580	.219.101.028.002.003 11 1 27 0 7 0 11 0	.067.000	13	AM	3	CBD	MINOR ARTERIAL
.580	.219.101.028.002.003 11.2.27.0.7.0.11.0	.067.000	13	AM	3	CBD	COLLECTOR
.580	219.101.028.002.003	.067.000	13	AM	3	CBD	LOCAL
.556	223.103.033.002.003	.080.000	13	AM	3	FRINGE	FREEWAY
.556	$10.3 \ 27.0 \ 0.0 \ 1.0$ 223.103.033.002.003 $15 \ 0 \ 27 \ 0 \ 41 \ 0 \ 5 \ 0$.080.000	13	AM	3	FRINGE	MAJOR REGIONAL
.652	$15.0 \ 27.0 \ 41.0 \ 5.0$ 159.073.032.002.003 $14 \ 5 \ 27 \ 0 \ 41 \ 0 \ 5 \ 0$.079.000	13	AM	3	FRINGE	PRINCIPAL ARTERIAL
.652	159.073.032.002.003	.079.000	13	AM	3	FRINGE	MINOR ARTERIAL
.652	159.073.032.002.003	.079.000	13	AM	3	FRINGE	COLLECTOR
.652	159.073.032.002.003	.079.000	13	AM	3	FRINGE	RAMP
.652	.159.073.032.002.003	.079.000	13	AM	3	FRINGE	LOCAL
.629	.192.089.025.002.003	.060.000	13	AM	3	URBAN	FREEWAY
.569	21.2 27.0 24.0 2.0 231.106.026.002.004 20.7 27.0 39.0 4.0	.062.000	13	AM	3	URBAN	MAJOR REGIONAL
.626	195.090.025.002.003	.059.000	13	AM	3	URBAN	PRINCIPAL ARTERIAL
.668	176.081.020.002.003	.050.000	13	AM	3	URBAN	MINOR ARTERIAL
.637	17.9 27.0 09.0 7.0 186.086.025.002.003 25 5 27 0 39 0 4 0	.061.000	13	AM	3	URBAN	COLLECTOR
.626	195.090.025.002.003	.059.000	13	AM	3	URBAN	RAMP
.637	186.086.025.002.003	.061.000	13	AM	3	URBAN	LOCAL
.555	239.110.026.002.004	.064.000	13	AM	3	SUBURBAN	FREEWAY
.498	247.114.039.002.004	.096.000	13	AM	3	SUBURBAN	MAJOR REGIONAL
.567	232.107.026.002.004	.062.000	13	AM	3	SUBURBAN	PRINCIPAL ARTERIAL
.622	21.2 27.0 77.0 8.0 .199.092.024.002.003 21.3 27 0 73 0 7 0	.058.000	13	AM	3	SUBURBAN	MINOR ARTERIAL
.610	234.108.012.002.004	.030.000	13	AM	3	SUBURBAN	COLLECTOR
.567	232.107.026.002.004	.062.000	13	AM	3	SUBURBAN	RAMP
.610	$13.8 \ 27.0 \ 52.0 \ 5.0$.234.108.012.002.004 $51.6 \ 27.0 \ 36.0 \ 1.0$.030.000	13	AM	3	SUBURBAN	LOCAL
.373	.227.105.085.001.004	.205.000	13	AM	3	RURAL	FREEWAY
.477	230.106.053.002.004	.128.000	13	AM	3	RURAL	MAJOR REGIONAL
.549	243.112.026.002.004	.064.000	13	AM	3	RURAL	PRINCIPAL ARTERIAL
.549	.243.112.026.002.004	.064.000	13	AM	3	RURAL	MINOR ARTERIAL
∠ ⊥3 .549	243.112.026.002.004	.064.000	13	AM	3	RURAL	COLLECTOR
∠ ⊥3 .549	243.112.026.002.004	.064.000	13	AM	3	RURAL	RAMP
∠ ⊥3 .549	243.112.026.002.004	.064.000	13	AM	3	RURAL	LOCAL
∠ ⊥3 .633	178.082.030.002.003	.072.000	13	PM	4	CBD	PRINCIPAL ARTERIAL

.633.178.082.030.002.003.072.000	13	PM
2 13 16.4 52.0 45.0 8.0 56.0 .633.178.082.030.002.003.072.000	13	PM
2 13 11.2 52.0 45.0 8.0 56.0 .633.178.082.030.002.003.072.000	13	PM
2 13 36.7 52.0 8.0 7.0 12.0 .533.246.113.030.002.004.072.000	13	РM
2 13 31.6 52.0 8.0 7.0 12.0 .533.246.113.030.002.004.072.000	13	РМ
2 13 27.0 52.0 30.0 19.0 43.0 .614.198.091.027.002.003.065.000	13	РМ
2 13 23.8 52.0 30.0 19.0 43.0 614 198 091 027 002 003 065 000	13	рм
2 13 20.8 52.0 34.0 14.0 46.0 614 198 091 027 002 003 065 000	13	л.
2 13 27.4 52.0 30.0 19.0 43.0 614 198 091 027 002 003 065 000	13	DM
2 13 14.1 52.0 34.0 14.0 46.0	10	
2 13 41.7 52.0 8.0 7.0 12.0	10	PM
2 13 35.5 52.0 15.0 14.0 23.0	13	РМ
2 13 31.0 52.0 19.0 17.0 30.0	13	РМ
.609.212.098.022.002.003.054.000 2 13 29.1 52.0 39.0 37.0 60.0	13	ΡM
.633.212.098.015.002.003.037.000 2 13 23.8 52.0 24.0 24.0 38.0	13	ΡM
.683.185.085.012.002.003.030.000 2 13 31.3 52.0 19.0 17.0 30.0	13	ΡM
.609.212.098.022.002.003.054.000 2 13 17.1 52.0 19.0 19.0 31.0	13	ΡM
.683.185.085.012.002.003.030.000	13	ΡM
.562.237.109.025.002.004.061.000	13	ΡM
.462.287.132.033.002.005.079.000	13	ΡM
.544.259.119.021.002.004.051.000	13	PM
.583.234.108.020.002.004.049.000	13	ΡM
2 13 28.9 52.0 28.0 26.0 43.0 .633.212.098.015.002.003.037.000	13	ΡM
2 13 31.9 52.0 12.0 11.0 18.0 .544.259.119.021.002.004.051.000	13	PM
2 13 19.8 52.0 19.0 18.0 29.0 .633.212.098.015.002.003.037.000	13	PM
2 13 61.5 52.0 16.0 9.0 23.0 .404.246.113.068.001.004.164.000	13	PM
2 13 48.4 52.0 3.0 2.0 5.0 .483.266.123.036.002.004.086.000	13	PM
2 13 45.2 52.0 16.0 13.0 24.0 .602.226.104.018.002.004.044.000	13	PM
2 13 43.5 52.0 16.0 13.0 24.0 .602.226.104.018.002.004.044.000	13	PM
2 13 33.9 52.0 23.0 13.0 34.0 .602.226.104.018.002.004.044.000	13	РM
2 13 37.6 52.0 16.0 13.0 24.0 .602.226.104.018.002.004.044.000	13	РM
2 13 21.3 52.0 23.0 13.0 34.0 .602.226.104.018.002.004.044.000	13	РМ
2 13 15.5 52.0 46.0 12.0 59.0 633.178.082.030.002.003.072.000	13	РМ
2 13 13.5 52.0 46.0 12.0 59.0 633 178 082 030 002 003 072 000	13	рм
2 13 13.1 52.0 45.0 8.0 56.0 633 178 082 030 002 003 072 000	13	DM
2 13 11.2 52.0 45.0 8.0 56.0	10	
2 13 28.3 52.0 8.0 7.0 12.0 522 246 112 000 002 004 072 000	1 J	
2 13 25.0 52.0 8.0 7.0 12.0	10	PM
2 13 19.6 52.0 30.0 19.0 43.0	13	ΡМ
.614.198.091.027.002.003.065.000 2 13 17.8 52.0 30.0 19.0 43.0	13	РM
.614.198.091.027.002.003.065.000 2 13 17.7 52.0 34.0 14.0 46.0	13	ΡM
.614.198.091.027.002.003.065.000 2 13 23.0 52.0 30.0 19.0 43.0	13	ΡM

M	4	CBD	MINOR ARTERIAL
M	4	CBD	COLLECTOR
M	4	CBD	LOCAL
M	4	FRINGE	FREEWAY
M	4	FRINGE	MAJOR REGIONAL
M	4	FRINGE	PRINCIPAL ARTERIAL
M	4	FRINGE	MINOR ARTERIAL
M	4	FRINGE	COLLECTOR
M	4	FRINGE	RAMP
M	4	FRINGE	LOCAL
M	4	URBAN	FREEWAY
M	4	URBAN	MAJOR REGIONAL
M	4	URBAN	PRINCIPAL ARTERIAL
M	4	URBAN	MINOR ARTERIAL
M	4	URBAN	COLLECTOR
M	4	URBAN	RAMP
M	4	URBAN	LOCAL
M	4	SUBURBAN	FREEWAY
M	4	SUBURBAN	MAJOR REGIONAL
M	4	SUBURBAN	PRINCIPAL ARTERIAL
M	4	SUBURBAN	MINOR ARTERIAL
M	4	SUBURBAN	COLLECTOR
M	4	SUBURBAN	RAMP
M	4	SUBURBAN	LOCAL
M	4	RURAL	FREEWAY
M	4	RURAL	MAJOR REGIONAL
M	4	RURAL	PRINCIPAL ARTERIAL
M	4	RURAL	MINOR ARTERIAL
M	4	RURAL	COLLECTOR
M	4	RURAL	RAMP
M	4	RURAL	LOCAL
M	5	CBD	PRINCIPAL ARTERIAL
M	5	CBD	MINOR ARTERIAL
M	5	CBD	COLLECTOR
M	5	CBD	LOCAL
M	5	FRINGE	FREEWAY
M	5	FRINGE	MAJOR REGIONAL
M	5	FRINGE	PRINCIPAL ARTERIAL
M	5	FRINGE	MINOR ARTERIAL
M	5	FRINGE	COLLECTOR

.614.	198.091.027.002.003.	065.000	13	PM	5	FRINGE	RAMP
2 13 .614.	14.1 52.0 34.0 14.0 198.091.027.002.003.	46.0 065.000	13	PM	5	FRINGE	LOCAL
2 13 .603.	31.7 52.0 8.0 7.0 212.098.024.002.003.	12.0 058.000	13	PM	5	URBAN	FREEWAY
2 13 .573.	26.0 52.0 15.0 14.0 246.113.018.002.004.	23.0 044.000	13	PM	5	URBAN	MAJOR REGIONAL
2 13 .609.	24.3 52.0 19.0 17.0 212.098.022.002.003.	30.0 054.000	13	PM	5	URBAN	PRINCIPAL ARTERIAL
2 13 .633.	22.6 52.0 39.0 37.0 212.098.015.002.003.	60.0 037.000	13	PM	5	URBAN	MINOR ARTERIAL
2 13	21.2 52.0 24.0 24.0 185.085.012.002.003.	38.0	13	РМ	5	URBAN	COLLECTOR
2 13	27.5 52.0 19.0 17.0	30.0	13	рм	5	URBAN	RAMD
2 13	17.1 52.0 19.0 19.0	31.0	12	DM	5		LOCAL
2 13	41.7 52.0 13.0 10.0	19.0	10	PM	5	CUDUDDAN	EDERMAN
2 13	237.109.025.002.004. 30.8 52.0 14.0 23.0	22.0	13	РМ	5	SUBURBAN	FREEWAY
.462. 2 13	287.132.033.002.005. 31.1 52.0 12.0 11.0	18.0	13	PM	5	SUBURBAN	MAJOR REGIONAL
.544. 2 13	259.119.021.002.004. 29.9 52.0 25.0 24.0	051.000 37.0	13	ΡM	5	SUBURBAN	PRINCIPAL ARTERIAL
.583. 2 13	234.108.020.002.004. 26.1 52.0 28.0 26.0	049.000 43.0	13	PM	5	SUBURBAN	MINOR ARTERIAL
.633.	212.098.015.002.003.	037.000	13	PM	5	SUBURBAN	COLLECTOR
.544.	259.119.021.002.004.	051.000	13	ΡM	5	SUBURBAN	RAMP
.633.	212.098.015.002.003.	037.000	13	PM	5	SUBURBAN	LOCAL
.404.	246.113.068.001.004.	164.000	13	PM	5	RURAL	FREEWAY
.483.	44.5 52.0 3.0 2.0 266.123.036.002.004.	086.000	13	PM	5	RURAL	MAJOR REGIONAL
2 13	40.8 52.0 16.0 13.0 226.104.018.002.004.	24.0 044.000	13	PM	5	RURAL	PRINCIPAL ARTERIAL
2 13 .602.	42.7 52.0 16.0 13.0 226.104.018.002.004.	24.0 044.000	13	PM	5	RURAL	MINOR ARTERIAL
2 13 .602.	32.8 52.0 23.0 13.0 226.104.018.002.004.	34.0 044.000	13	PM	5	RURAL	COLLECTOR
2 13 .602.	35.4 52.0 16.0 13.0 226.104.018.002.004.	24.0 044.000	13	PM	5	RURAL	RAMP
2 13 .602.	21.3 52.0 23.0 13.0 226.104.018.002.004.	34.0 044.000	13	PM	5	RURAL	LOCAL
2 13 .633.	11.6 52.0 46.0 12.0 178.082.030.002.003.	59.0 072.000	13	PM	6	CBD	PRINCIPAL ARTERIAL
2 13	9.7 52.0 46.0 12.0 178.082.030.002.003	59.0 072.000	13	РМ	6	CBD	MINOR ARTERIAL
2 13	10.4 52.0 45.0 8.0 178 082 030 002 003	56.0	13	DM	6	CBD	COLLECTOR
2 13	11.2 52.0 45.0 8.0	56.0	12	DM	6	CBD	LOCAL
2 13	178.082.030.002.003. 22.6 52.0 8.0 7.0	12.0	10	PM	6		EDEENIN
.533.	246.113.030.002.004. 19.5 52.0 8.0 7.0	12.0	13	РМ	6	FRINGE	FREEWAY
.533. 2 13	15.1 52.0 30.0 19.0	43.0	13	PM	6	FRINGE	MAJOR REGIONAL
.614. 2 13	198.091.027.002.003. 13.6 52.0 30.0 19.0	065.000 43.0	13	ΡM	6	FRINGE	PRINCIPAL ARTERIAL
.614. 2 13	198.091.027.002.003. 14.1 52.0 34.0 14.0	065.000 46.0	13	PM	6	FRINGE	MINOR ARTERIAL
.614. 2 13	198.091.027.002.003. 19.5 52.0 30.0 19.0	065.000 43.0	13	PM	6	FRINGE	COLLECTOR
.614.	198.091.027.002.003. 14 1 52 0 34 0 14 0	065.000	13	PM	б	FRINGE	RAMP
.614.	198.091.027.002.003.	065.000	13	PM	6	FRINGE	LOCAL
.603.	212.098.024.002.003.	058.000	13	PM	6	URBAN	FREEWAY
.573.	246.113.018.002.004.	044.000	13	PM	6	URBAN	MAJOR REGIONAL
∠ ⊥3 .609.	19.4 52.0 19.0 17.0 212.098.022.002.003.	30.0 054.000	13	PM	6	URBAN	PRINCIPAL ARTERIAL
2 13 .633.	17.5 52.0 39.0 37.0 212.098.015.002.003.	60.0 037.000	13	PM	6	URBAN	MINOR ARTERIAL
2 13 .683.	18.5 52.0 24.0 24.0 185.085.012.002.003.	38.0 030.000	13	PM	6	URBAN	COLLECTOR
2 13 .609.	24.9 52.0 19.0 17.0 212.098.022.002.003.	30.0 054.000	13	PM	6	URBAN	RAMP
2 13 .683	17.1 52.0 19.0 19.0 185.085.012.002.003	31.0 030.000	13	PM	6	URBAN	LOCAL
					-		

2 13 34.6 52.0 13.0 10.0 19.0 .562.237.109.025.002.004.061.000	13	PM
2 13 25.2 52.0 14.0 23.0 22.0 .462.287.132.033.002.005.079.000	13	PM
2 13 25.4 52.0 12.0 11.0 18.0 .544.259.119.021.002.004.051.000	13	PM
2 13 24.2 52.0 25.0 24.0 37.0 .583.234.108.020.002.004.049.000	13	PM
2 13 23.3 52.0 28.0 26.0 43.0 .633.212.098.015.002.003.037.000	13	РМ
2 13 25.4 52.0 12.0 11.0 18.0 .544.259.119.021.002.004.051.000	13	РМ
2 13 19.8 52.0 19.0 18.0 29.0 .633.212.098.015.002.003.037.000	13	PM
2 13 53.9 52.0 16.0 9.0 23.0 .404.246.113.068.001.004.164.000	13	РM
2 13 39.0 52.0 3.0 2.0 5.0 .483.266.123.036.002.004.086.000	13	РМ
2 13 37.1 52.0 16.0 13.0 24.0 .602.226.104.018.002.004.044.000	13	РМ
2 13 39.9 52.0 16.0 13.0 24.0 .602.226.104.018.002.004.044.000	13	РМ
2 13 31.7 52.0 23.0 13.0 34.0 .602.226.104.018.002.004.044.000	13	PM
2 13 32.9 52.0 16.0 13.0 24.0 .602.226.104.018.002.004.044.000	13	PM
2 13 21.3 52.0 23.0 13.0 34.0 .602.226.104.018.002.004.044.000	13	PM
2 13 27.0 36.0 21.0 17.0 43.0 .575.218.100.030.002.003.072.000	13	OFF
2 13 25.1 36.0 21.0 17.0 43.0 .575.218.100.030.002.003.072.000	13	OFF
2 13 20.0 36.0 16.0 12.0 35.0 .575.218.100.030.002.003.072.000	13	OFF
2 13 11.2 36.0 16.0 12.0 35.0 .575.218.100.030.002.003.072.000	13	OFF
2 13 55.0 36.0 9.0 10.0 16.0 .503.246.113.039.002.004.093.000	13	OFF
2 13 39.8 36.0 9.0 10.0 16.0 .503.246.113.039.002.004.093.000	13	OFF
2 13 35.0 36.0 22.0 25.0 39.0 .633.192.088.024.002.003.058.000	13	OFF
2 13 30.0 36.0 22.0 25.0 39.0 .633.192.088.024.002.003.058.000	13	OFF
2 13 25.0 36.0 15.0 19.0 29.0 .633.192.088.024.002.003.058.000	13	OFF
2 13 38.9 36.0 22.0 25.0 39.0 .633.192.088.024.002.003.058.000	13	OFF
2 13 14.1 36.0 15.0 19.0 29.0 .633.192.088.024.002.003.058.000	13	OFF
2 13 58.0 36.0 14.0 14.0 23.0 .603.205.095.027.002.003.065.000	13	OFF
2 13 45.0 36.0 14.0 14.0 24.0 .533.253.116.027.002.004.065.000	13	OFF
2 13 37.0 36.0 20.0 21.0 34.0 .615.215.099.019.002.003.047.000	13	OFF
2 13 35.0 36.0 33.0 33.0 54.0 .643.185.085.024.002.003.058.000	13	OFF
2 13 25.0 36.0 26.0 28.0 43.0 .643.212.098.012.002.003.030.000	13	OFF
2 13 39.0 36.0 20.0 21.0 34.0 .615.215.099.019.002.003.047.000	13	OFF
.643.212.098.012.002.003.030.000	13	OFF
2 13 58.0 38.0 13.0 11.0 21.0 .534.238.110.033.002.004.079.000	13	OFF
.463.280.129.036.002.004.086.000	13	OFF
.593.212.098.027.002.003.065.000	13	OFF
.594.217.100.025.002.003.059.000	13	OFF
.553.273.126.012.002.004.030.000	13	OFF
.593.212.098.027.002.003.065.000 2 13 19.7 36.0 19.0 19.0 32.0	13	OFF
.553.273.126.012.002.004.030.000	13	OFF
.423.226.104.071.001.004.171.000 2 13 49.0 36.0 4.0 2.0 6.0	13	OFF
	$\begin{array}{c} 2 13 34.6 52.0 13.0 10.0 19.0 \\ 562.237.109.025.002.004.061.000 \\ 2 13 25.2 52.0 14.0 23.0 22.0 \\ .462.287.132.033.002.005.079.000 \\ 2 13 24.2 52.0 25.0 24.0 37.0 \\ .583.234.108.020.002.004.051.000 \\ 2 13 23.3 52.0 28.0 26.0 43.0 \\ .633.212.098.015.002.003.037.000 \\ 2 13 25.4 52.0 12.0 11.0 18.0 \\ .544.259.119.021.002.004.051.000 \\ 2 13 29.5 2.0 19.0 18.0 29.0 \\ .633.212.098.015.002.003.037.000 \\ 2 13 53.9 52.0 16.0 9.0 23.0 \\ .404.246.113.068.001.004.164.000 \\ 2 13 39.0 52.0 3.0 2.0 5.0 \\ .483.266.123.036.002.004.0464.000 \\ 2 13 39.0 52.0 3.0 2.0 5.0 \\ .483.266.123.036.002.004.044.000 \\ 2 13 39.0 52.0 3.0 2.0 5.0 \\ .483.266.123.036.002.004.044.000 \\ 2 13 39.9 52.0 16.0 13.0 24.0 \\ .602.226.104.018.002.004.044.000 \\ 2 13 37.1 52.0 16.0 13.0 24.0 \\ .602.226.104.018.002.004.044.000 \\ 2 13 32.9 52.0 16.0 13.0 24.0 \\ .602.226.104.018.002.004.044.000 \\ 2 13 32.9 52.0 16.0 13.0 24.0 \\ .602.226.104.018.002.004.044.000 \\ 2 13 27.0 36.0 21.0 17.0 43.0 \\ .575.218.100.030.002.003.072.000 \\ 2 13 25.1 36.0 21.0 17.0 43.0 \\ .575.218.100.030.002.003.072.000 \\ 2 13 25.1 36.0 21.0 17.0 43.0 \\ .575.218.100.030.002.003.072.000 \\ 2 13 25.1 36.0 9.0 10.0 16.0 \\ .503.246.113.039.002.004.093.000 \\ 2 13 35.0 36.0 9.0 10.0 16.0 \\ .503.246.113.039.002.003.072.000 \\ 2 13 35.0 36.0 9.0 10.0 16.0 \\ .503.246.113.039.002.003.072.000 \\ 2 13 35.0 36.0 9.0 10.0 16.0 \\ .503.246.113.039.002.003.058.000 \\ 2 13 35.0 36.0 22.0 25.0 39.0 \\ .633.192.088.024.002.003.058.000 \\ 2 13 35.0 36.0 12.0 19.0 29.0 \\ .633.192.088.024.002.003.058.000 \\ 2 13 35.0 36.0 12.0 19.0 29.0 \\ .633.192.088.024.002.003.058.000 \\ 2 13 35.0 36.0 12.0 19.0 29.0 \\ .633.192.088.024.002.003.058.000 \\ 2 13 35.0 36.0 14.0 14.0 24.0 \\ .533.253.116.027.002.003.058.000 \\ 2 13 35.0 36.0 13.0 19.0 29.0 \\ .633.192.088.024.002.003.058.000 \\ 2 13 35.0 36.0 13.0 14.0 14.0 23.0 \\ .643.212.098.012.002.003.058.000 \\ 2 13 35.0 36.0 13.0 11.0 21.0 \\ .533.273.126.012.002.003.058.000 \\ 2 13 39.8 36.0 32.0 30.055.000 \\ 2 13 39.8 36.0 32.0 30.055.000 \\ 2 13 39.8 36.0 32.0 30.055.000 \\ 2 13 39$	213 34.6 52.0 13.0 10.0 19.0 552.237.109.025.002.004.061.000 13 213 25.2 52.0 14.0 23.0 22.0 .462.287.132.033.002.005.079.000 13 213 25.4 52.0 12.0 11.0 18.0 .544.259.119.021.002.004.03 037.00 13 213 25.4 52.0 12.0 13.0 213 25.4 52.0 12.002.004.051.000 13 213 25.4 52.0 12.0 13.0 13 213 19.8 52.0 19.0 18.0 29.0 .633.212.098.015.002.003.037.000 13 13 13.0 13 13.3 13.3 13.3 13.3 13.3 13.3 13.2 14.0 13 .612.226.104.018.002.004.04.044.000 13 13 13.3 13.3 13.2 13.2 13.2 13.0 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13

13	PM	6	SUBURBAN	FREEWAY
13	PM	б	SUBURBAN	MAJOR REGIONAL
13	PM	б	SUBURBAN	PRINCIPAL ARTERIAL
13	PM	6	SUBURBAN	MINOR ARTERIAL
13	PM	б	SUBURBAN	COLLECTOR
13	PM	6	SUBURBAN	RAMP
13	PM	6	SUBURBAN	LOCAL
13	PM	6	RURAL	FREEWAY
13	PM	б	RURAL	MAJOR REGIONAL
13	PM	б	RURAL	PRINCIPAL ARTERIAL
13	PM	6	RURAL	MINOR ARTERIAL
13	PM	б	RURAL	COLLECTOR
13	PM	б	RURAL	RAMP
13	PM	б	RURAL	LOCAL
13	OFF	7	CBD	PRINCIPAL ARTERIAL
13	OFF	7	CBD	MINOR ARTERIAL
13	OFF	7	CBD	COLLECTOR
13	OFF	7	CBD	LOCAL
13	OFF	7	FRINGE	FREEWAY
13	OFF	7	FRINGE	MAJOR REGIONAL
13	OFF	7	FRINGE	PRINCIPAL ARTERIAL
13	OFF	7	FRINGE	MINOR ARTERIAL
13	OFF	7	FRINGE	COLLECTOR
13	OFF	7	FRINGE	RAMP
13	OFF	7	FRINGE	LOCAL
13	OFF	7	URBAN	FREEWAY
13	OFF	7	URBAN	MAJOR REGIONAL
13	OFF	7	URBAN	PRINCIPAL ARTERIAL
13	OFF	7	URBAN	MINOR ARTERIAL
13	OFF	7	URBAN	COLLECTOR
13	OFF	7	URBAN	RAMP
13	OFF	7	URBAN	LOCAL
13	OFF	7	SUBURBAN	FREEWAY
13	OFF	7	SUBURBAN	MAJOR REGIONAL
13	OFF	7	SUBURBAN	PRINCIPAL ARTERIAL
13	OFF	7	SUBURBAN	MINOR ARTERIAL
13	OFF	7	SUBURBAN	COLLECTOR
13	OFF	7	SUBURBAN	RAMP
13	OFF	7	SUBURBAN	LOCAL
13	OFF	7	RURAL	FREEWAY

.473.	.246.113	.047.	002.0	04.11	15.000	13	OFF	7	RURAL	MAJOR REGIONAL
2 13 .443.	48.0 36 293.135	.0 18 .036.	.0 12	2.0 29	9.0 36.000	13	OFF	7	RURAL	PRINCIPAL ARTERIAL
2 13 .443.	44.0 36 293.135	.0 18 .036.	.0 12	2.0 29 05.08	9.0 36.000	13	OFF	7	RURAL	MINOR ARTERIAL
2 13 .443.	35.0 36 293.135	.0 23	.0 13	8.0 48 05.08	3.0 36.000	13	OFF	7	RURAL	COLLECTOR
2 13	39.1 36	.0 18	.0 12	2.029	9.0 36.000	13	OFF	7	RURAL	RAMP
2 13	20.6 36	.0 23	.0 13	3.0 48	3.0	13	 770	7	RIIRAT.	LOCAL
2 13	26.2 36	.0 21	.0 17	7.0 43	3.0	10	OFF	, 0	CDD	DEINGIDAL ADTERIAL
2 13	24.3 36	.030.	.0 17	7.0 43	3.0	10	OFF	0	CBD	PRINCIPAL ARIERIAL
.575. 2 13	.218.100 19.3 36	.030. .0 16	.0 12	2.03.01	72.000 5.0	13	OF'F'	8	CBD	MINOR ARTERIAL
.575. 2 13	.218.100 11.2 36	.030. .0 16	002.0	03.07 2.0 35	72.000 5.0	13	OFF	8	CBD	COLLECTOR
.575. 2 13	.218.100 51.3 36	.030. .0 9	002.0)03.07).0 10	72.000 5.0	13	OFF	8	CBD	LOCAL
.503.	246.113	.039.	002.0	04.09	93.000	13	OFF	8	FRINGE	FREEWAY
.503.	.246.113	.039.	002.0	04.09	93.000	13	OFF	8	FRINGE	MAJOR REGIONAL
.633.	.192.088	.024.	002.0	03.05	58.000	13	OFF	8	FRINGE	PRINCIPAL ARTERIAL
.633.	192.088	.0 22	002.0	03.05	58.000	13	OFF	8	FRINGE	MINOR ARTERIAL
2 13 .633.	24.4 36 192.088	.0 15 .024.	.0 19	0.029	9.0 58.000	13	OFF	8	FRINGE	COLLECTOR
2 13 .633.	36.2 36 192.088	.0 22 .024.	.0 25 002.0	5.0 39 03.05	9.0 58.000	13	OFF	8	FRINGE	RAMP
2 13	14.1 36 192.088	.0 15	.0 19	0.029	9.0 58.000	13	OFF	8	FRINGE	LOCAL
2 13	54.7 36	.0 14	.0 14	1.0 23	3.0 55.000	13	0FF	8	URBAN	FREEWAY
2 13	43.3 36	.0 14	.0 14	1.0 24	1.0	12	OFF	0	UDDAN	
2 13	36.3 36	.0 20	.0 21		1.0	10	OFF	0	UDDAN	PROVINCE ADDEDIAL
2 13	34.3 36	.019.	.0 33	8.0 54	1.0	13	OFF	0	URBAN	PRINCIPAL ARIERIAL
.643. 2 13	24.8 36	.024. .0 26	.0 28	3.03.05	3.0 3.0	13	OF.F.	8	URBAN	MINOR ARTERIAL
.643. 2 13	.212.098 36.7 36	.012. .0 20	002.0)03.03 0 34	30.000 1.0	13	OFF	8	URBAN	COLLECTOR
.615. 2 13	.215.099 17.1 36	.019. .0 18	002.0)03.04).0 20	17.000).0	13	OFF	8	URBAN	RAMP
.643.	212.098 57.0 36	.012.	002.0	03.03	30.000	13	OFF	8	URBAN	LOCAL
.534.	238.110	.033.	002.0	04.07	79.000	13	OFF	8	SUBURBAN	FREEWAY
.463.	.280.129	.036.	002.0	04.08	36.000	13	OFF	8	SUBURBAN	MAJOR REGIONAL
.593.	.212.098	.0 22	002.0		5.000	13	OFF	8	SUBURBAN	PRINCIPAL ARTERIAL
.594.	39.3 36	.0 32	002.0	0.0 52	2.0 59.000	13	OFF	8	SUBURBAN	MINOR ARTERIAL
2 13 .553.	29.9 36 273.126	.0 23 .012.	.0 22	2.0 31	7.0 30.000	13	OFF	8	SUBURBAN	COLLECTOR
2 13 .593.	36.6 36 212.098	.0 22 .027.	.0 21 002.0	0 36 03.06	5.0 55.000	13	OFF	8	SUBURBAN	RAMP
2 13	19.8 36 273.126	.0 19	.0 19	0.0 32	2.0 30.000	13	OFF	8	SUBURBAN	LOCAL
2 13 423	62.9 36 226 104	.0 15	.0 9	0.025	5.0	13	TTO	8	RURAL	FREEWAY
2 13	49.0 36	.0 4	.0 2	2.0 6	5.0	12	OFF	0		
2 13	47.6 36	.047.	.0 12	2.0 29	9.0	10	OFF	0	RURAL	MAUOR REGIONAL
.443. 2 13	44.0 36	.036.	.0 12	2.0 29	36.000 9.0	13	OF.F.	8	RURAL	PRINCIPAL ARTERIAL
.443. 2 13	.293.135 34.8 36	.036. .0 23	002.0	05.08 3.0 48	36.000 3.0	13	OFF	8	RURAL	MINOR ARTERIAL
.443. 2 13	.293.135 38.9 36	.036. .0 18	002.0	005.08	36.000 9.0	13	OFF	8	RURAL	COLLECTOR
.443.	293.135	.036.	002.0	05.08	36.000 3.0	13	OFF	8	RURAL	RAMP
.443.	.293.135	.036.	002.0	05.08	36.000	13	OFF	8	RURAL	LOCAL
.575.	.218.100	.030.	002.0	03.07	72.000	13	OFF	9	CBD	PRINCIPAL ARTERIAL
∠ ⊥3 .575.	23.336.218.100	.030.	002.0	03.07	72.000	13	OFF	9	CBD	MINOR ARTERIAL
2 13 .575.	18.7 36 218.100	.0 16 .030.	.0 12 002.0	4.0 35 03.07	5.0 72.000	13	OFF	9	CBD	COLLECTOR

2 13	11.2.36	0 16 0 12	0 35.0						
.575.	218.100	.030.002.0	03.072.0	000 1	L 3	OFF	9	CBD	LOCAL
2 13	46.5 36	.0 9.0 10	.0 16.0			~~~	~		
.503.	.246.113. 35 9 36	039.002.0		100 1	L 3	OF'F'	9	FRINGE	FREEWAY
.503.	.246.113	.039.002.0	04.093.0	000 1	L 3	OFF	9	FRINGE	MAJOR REGIONAL
2 13	31.9 36	.0 22.0 25	.0 39.0			_	_		
.633.	.192.088.			000 1	L 3	OFF	9	FRINGE	PRINCIPAL ARTERIAL
∠ ⊥3 .633.	27.0 30.	.024.002.0	03.058.0	000 1	13	OFF	9	FRINGE	MINOR ARTERIAL
2 13	23.2 36	.0 15.0 19	.0 29.0				-		
.633.	.192.088.	.024.002.0	03.058.0	000 1	L 3	OFF	9	FRINGE	COLLECTOR
∠ ⊥3 633	33.0 36. 192 088	.0 22.0 25 024 002 0	0.0 39.0 03 058 0	100 1	13	ਰਜ਼ਹ	9	FRINGE	RAMP
2 13	14.1 36	0 15.0 19	.0 29.0			011	-	1111102	11111
.633.	192.088	.024.002.0	03.058.0	000 1	L 3	OFF	9	FRINGE	LOCAL
2 13	205.095	0 14.0 14	.0 23.0 03.065.0	000 1	13	ਜਜ	9	URBAN	FREEWAY
2 13	41.3 36	.0 14.0 14	.0 24.0				-		
.533.	.253.116.	.027.002.0	04.065.0	000 1	L 3	OFF	9	URBAN	MAJOR REGIONAL
615	35.1 36. 215 099	.0 20.0 21 019 002 0	U 34.U 103 047 1	100 1	13	ਹਸਤ	9	IIRBAN	PRINCIPAL ARTERIAL
2 13	33.0 36	0 33.0 33	.0 54.0	100 1	2.5	011	2	OICDAIN	INIMCITAL ANIMIAD
.643.	185.085	.024.002.0	03.058.0	000 1	L 3	OFF	9	URBAN	MINOR ARTERIAL
2 13	24.6 36.	$.0\ 26.0\ 28$		100 1	13	$\cap \nabla \nabla$	۵	TIDDAN	COLLECTOR
2 13	35.1 36.	012.002.0	.0 34.0	100 1	13	OFF	9	UKBAN	COLLECTOR
.615.	215.099	.019.002.0	03.047.0	000 1	L 3	OFF	9	URBAN	RAMP
2 13	17.1 36.	.0 18.0 20		100 1	12		۵	TIDDAN	TOCAT
2 13	54.9 36.	.012.002.0	.0 21.0	100 1	13	OFF	9	UKBAN	LUCAL
.534	238.110	.033.002.0	04.079.0	000 1	L 3	OFF	9	SUBURBAN	FREEWAY
2 13	43.2 36	.0 15.0 15	.0 25.0	200 1	1.2	OPP	0	OTIDI DO AN	MATOD DEGIONAL
2 13	42.4 36	0.036.002.0	.0 36.0	100 1	13	OFF	9	SUBURBAN	MAJOR REGIONAL
.593.	.212.098	.027.002.0	03.065.0	000 1	L 3	OFF	9	SUBURBAN	PRINCIPAL ARTERIAL
2 13	38.6 36.	.0 32.0 30	.0 52.0	200 1	1 2	0.000	~	GUDUDDAN	MINON ADDIDIAL
.594.	29.7.36	.0∠5.00∠.0 0 23 0 22		100 1	L 3	OF.F.	9	SUBURBAN	MINOR ARTERIAL
	22. 7 200								
.553.	.273.126	.012.002.0	04.030.0	000 1	L3	OFF	9	SUBURBAN	COLLECTOR
.553. 2 13	273.126	012.002.0	04.030.0	000 1	L3	OFF	9	SUBURBAN	COLLECTOR
.553. 2 13 .593. 2 13	273.126 35.3 36 212.098	.012.002.0 .0 22.0 21 .027.002.0 0 19 0 19	04.030.0	000 1 000 1	L3 L3	OFF OFF	9 9	SUBURBAN SUBURBAN	COLLECTOR RAMP
.553. 2 13 .593. 2 13 .553.	.273.126 35.3 36 .212.098 19.8 36 .273.126	.012.002.0 .0 22.0 21 .027.002.0 .0 19.0 19 .012.002.0	04.030.0 03.065.0 03.065.0 04.030.0	000 1 000 1 000 1	L3 L3 L3	OFF OFF OFF	9 9 9	SUBURBAN SUBURBAN SUBURBAN	COLLECTOR RAMP LOCAL
.553. 2 13 .593. 2 13 .553. 2 13	.273.126 35.3 36 212.098 19.8 36 273.126 62.6 36	012.002.0 0 22.0 21 027.002.0 0 19.0 19 012.002.0 0 15.0 9	04.030.0 .036.0 03.065.0 04.030.0 .025.0	000 1 000 1 000 1 000 1	L3 L3 L3	OFF OFF OFF	9 9 9	SUBURBAN SUBURBAN SUBURBAN	COLLECTOR RAMP LOCAL
.553. 2 13 .593. 2 13 .553. 2 13 .423. 2 13	.273.126 35.3 36 .212.098 19.8 36 .273.126 62.6 36 .226.104 49.0 36	012.002.0 022.021 027.002.0 019.019 012.002.0 015.09 071.001.0 04.02	04.030.0 03.065.0 04.030.0 04.030.0 04.171.0	DOO 1 DOO 1 DOO 1 DOO 1 DOO 1	L3 L3 L3 L3	OFF OFF OFF OFF	9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL	COLLECTOR RAMP LOCAL FREEWAY
.553. 2 13 .593. 2 13 .553. 2 13 .423. 2 13 .473.	273.126 35.3 36 212.098 19.8 36 273.126 62.6 36 226.104 49.0 36 246.113	012.002.0 0 22.0 21 027.002.0 0 19.0 19 012.002.0 0 15.0 9 071.001.0 0 4.0 2 047.002.0	04.030.0 03.065.0 04.030.0 04.030.0 04.171.0 04.115.0	DOO 1	L3 L3 L3 L3 L3	OFF OFF OFF OFF OFF	9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL
.553. 2 13 .593. 2 13 .553. 2 13 .423. 2 13 .473. 2 13	273.126 35.3 36 212.098 19.8 36 273.126 62.6 36 226.104 49.0 36 246.113 47.2 36	012.002.0 0 22.0 21 027.002.0 0 19.0 19 012.002.0 0 15.0 9 071.001.0 0 4.0 2 047.002.0 0 18.0 12	04.030. .0 36.0 03.065.0 04.030.0 04.030.0 04.171.0 .0 6.0 04.115.0 .0 29.0	DOO 1	L3 L3 L3 L3 L3	OFF OFF OFF OFF	9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL
.553. 2 13 .593. 2 13 .553. 2 13 .423. 2 13 .473. 2 13 .443. 2 13	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 43.936	012.002.0 0 22.0 21 027.002.0 0 19.0 19 012.002.0 0 15.0 9 071.001.0 0 4.0 2 047.002.0 0 18.0 12 036.002.0 0 18.0 12	04.030.0 .0 36.0 03.065.0 .0 32.0 04.030.0 04.171.0 .0 6.0 04.115.0 .0 29.0 05.086.0 0 29.0	DOO 1	L3 L3 L3 L3 L3 L3	OFF OFF OFF OFF OFF	9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL
.553. 2 13 .593. 2 13 .553. 2 13 .423. 2 13 .473. 2 13 .443. 2 13 .443.	$\begin{array}{c} 273.126\\ 35.3\\ 212.098\\ 19.8\\ 36\\ 273.126\\ 62.6\\ 36\\ 226.104\\ 49.0\\ 36\\ 246.113\\ 47.2\\ 36\\ 293.135\\ 43.9\\ 36\\ 293.135\\ \end{array}$	012.002.0 0 22.0 21 027.002.0 0 19.0 19 012.002.0 0 15.0 9 071.001.0 0 4.0 2 047.002.0 0 18.0 12 036.002.0 0 18.0 12	04.030.0 .0 36.0 03.065.0 .0 32.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.115.0 .0 29.0 05.086.0 .0 29.0	DOO 1	L3 L3 L3 L3 L3 L3 L3	OFF OFF OFF OFF OFF OFF	9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL
.553. 2 13 .593. 2 13 .553. 2 13 .423. 2 13 .473. 2 13 .443. 2 13 .443. 2 13	$\begin{array}{c} 273.126\\ 35.3\\ 212.098\\ 19.8\\ 36\\ 273.126\\ 62.6\\ 36\\ 226.104\\ 49.0\\ 36\\ 246.113\\ 47.2\\ 36\\ 293.135\\ 34.7\\ 36\\ 293.135\\ 34.7\\ 36\\ 293.135\\ 34.7\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$	012.002.0 022.021 027.002.0 012.002.0 012.002.0 0012.002.0 012.002.0 015.09 00171.001.0 047.002.0 018.012 036.002.0 018.012 036.002.0 023.013	04.030.0 .0 36.0 04.030.0 04.030.0 04.171.0 04.171.0 04.115.0 05.086.0 05.086.0 05.086.0 05.086.0	DOOD 1	L3 L3 L3 L3 L3 L3 L3 L3	OFF OFF OFF OFF OFF OFF	9 9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL
.553. 2 13 .593. 2 13 .553. 2 13 .423. 2 13 .473. 2 13 .473. 2 13 .473. 2 13 .443. 2 13 .443. .2 13 .443. .2 13 .443. .2 13 .443. .2 13 .443. .2 13. .443. .2 13. .43. .2 13. .43. .2 13. .2	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 38.736 38.736 38.736 38.736 38.736 38.7366 38.7566 38.7566 38.7566 38.7566 38.75666 38.75666 38.756666 38.75666666666666666666666666666666666666	012.002.0 0 22.0 21 027.002.0 0 19.0 19 012.002.0 0 15.0 9 071.001.0 0 4.0 2 047.002.0 0 18.0 12 036.002.0 0 18.0 12 036.002.0 0 23.0 13 036.002.0 0 18.0 12	04.030.0 .0 36.0 03.065.0 .0 32.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.115.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 48.0 05.086.0	0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1	13 13 13 13 13 13 13 13	OFF OFF OFF OFF OFF OFF	9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR
.553 2 13 .593 2 13 .553 2 13 .423 2 13 .423 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443	$\begin{array}{c} 273.126\\ 35.3\\ 212.098\\ 19.8\\ 36\\ 273.126\\ 62.6\\ 36\\ 226.104\\ 49.0\\ 36\\ 246.113\\ 47.2\\ 36\\ 293.135\\ 34.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 38.7\\ 38.7\\ 36\\ 38.7\\ 36\\ 38.7\\ 36\\ 38.7\\ 38\\ 38.7\\ 38\\ 38.7\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38$	012.002.0 027.002.0 007.002.0 0012.002.0 0012.002.0 0012.002.0 0012.002.0 0013.001.0 0014.001.0 0014.001.0 0014.002.0 0015.002.0 0018.012 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0	04.030.0 .0 36.0 03.065.0 .0 32.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.171.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 48.0 05.086.0 .0 29.0	D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3	OFF OFF OFF OFF OFF OFF OFF	9 9 9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR RAMP
.553 2 13 .593 2 13 .553 2 13 .423 2 13 .423 2 13 .443 2 13 .443 .2 13 .433	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 38.736 293.135 38.736 293.135 38.736 293.135 38.736 293.135 293.135 38.736 293.135 293.135 38.736 293.135 293.135 38.736 293.135 38.736 293.135 38.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.736 293.135 293.756 293.135 293.756 293.1356 29	012.002.0 022.021 027.002.0 012.002.0 0012.002.0 0012.002.0 0012.002.0 0013.001.0 0014.002.0 0015.002.0 0018.012 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0 0036.002.0	04.030.0 .0 36.0 03.065.0 .0 32.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.171.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 29.0	D000 1	 L3 	OFF OFF OFF OFF OFF OFF OFF	9 9 9 9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR RAMP
.553 2 13 .593 2 13 .553 2 13 .423 2 13 .423 2 13 .443 2 13 .443 .2 13 .2 13 .2 13 .2 13 .2 13 .2 13 .2 13 .2 $.2$ 13 .2 $.2$ $.2$ $.2$	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 38.736 293.135 38.736 293.135 293.135 293.135 293.135 293.135 293.135 293.135 293.135 293.135 293.135 293.135 293.135 293.135 20.736 20.736 20.756 20.756 20.756 20.756 20.756 20.756 20.756 20.756 20.756 20.756 20.756 20.756 20	012.002.0 027.002.0 0012.002.0 0012.002.0 0012.002.0 0012.002.0 0012.002.0 0011.001.0 0012.002.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 0011.001.0 00111.001.0 0011.001.0	04.030.0 .0 36.0 03.065.0 .0 32.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.171.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 48.0 05.086.0 .0 48.0 05.086.0 .0 48.0	D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3	OFF OFF OFF OFF OFF OFF OFF OFF	9 9 9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL RURAL RURAL	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR RAMP LOCAL
.553 2 13 .593 2 13 .553 2 13 .423 2 13 .423 2 13 .443 2 13 .443 .2 13 .4575 .575	$\begin{array}{c} 273.126\\ 35.3\\ 212.098\\ 19.8\\ 36\\ 273.126\\ 62.6\\ 36\\ 226.104\\ 49.0\\ 36\\ 246.113\\ 47.2\\ 36\\ 293.135\\ 34.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 203.135\\ 203.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 20.7\\ $	012.002.0 027.002.0 0012.002.0 0012.002.0 0015.0 9 0071.001.0 0 10071.001.0 0 10071.001.0 0 10071.001.0 0 10071.001.0 0 10071.001.0 0 10071.001.0 0 10071.001.0 0 10071.001.0 0 18.0 12.036.002.0 0 036.002.0 0 036.002.0 0 036.002.0 0 036.002.0 0 036.002.0 0 036.002.0 0 030.002.0	04.030.0 .0 36.0 03.065.0 .0 32.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.171.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 48.0 05.086.0 .0 29.0 05.086.0 .0 48.0 05.086.0 .0 48.0 05.086.0 .0 48.0 05.086.0 .0 43.0 03.072.0	D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3	OFF OFF OFF OFF OFF OFF OFF OFF	9 9 9 9 9 9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL RURAL RURAL CBD	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL
$\begin{array}{c} .553\\ 2 & 13\\ .593\\ .593\\ 2 & 13\\ .423\\ 2 & 13\\ .473\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .575\\ 2 & 13\\ \end{array}$	$\begin{array}{c} 273.126\\ 35.3\\ 212.098\\ 19.8\\ 36\\ 273.126\\ 62.6\\ 36\\ 226.104\\ 49.0\\ 36\\ 246.113\\ 47.2\\ 36\\ 293.135\\ 34.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 20.$	012.002.0 022.021 027.002.0 012.002.0 0015.09 071.001.0 047.002.0 0015.09 0016.002.0 0018.012 036.002.0 0018.012 036.002.0 0018.012 036.002.0 0023.013 036.002.0 023.013 036.002.0 023.013 036.002.0 023.013 036.002.0 023.013 036.002.0 023.013 036.002.0 023.013 036.002.0 021.017	04.030.0 .0 36.0 03.065.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.171.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 48.0 05.086.0 .0 48.0 05.086.0 .0 48.0 05.086.0 .0 43.0	000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1	 L3 L4 <	OFF OFF OFF OFF OFF OFF OFF OFF	9 9 9 9 9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL RURAL RURAL CBD	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL
.553 2 13 .593 2 13 .423 2 13 .423 2 13 .473 2 13 .443 2 13 .443 .2 13 .443 .2 13 .443 .2 13 .575 .2 13 .2 13 .575 .2 13 .2	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 293.135 20.736 293.135 20.736 293.135 24.436 293.135 21.8400 21.936 21.8100 21.936 21.8100 21.936 21.8100 21.936 21.8100 21.936 21.8100 21.936 21.8100 21.936 21.8100 21.936 21.9	012.002.0 012.002.0 022.021 027.002.0 015.09 071.001.0 04.02 047.002.0 048.012 036.002.0 018.012 036.002.0 023.013 036.002.0 023.013 036.002.0 023.013 036.002.0 021.017 030.002.0 021.017	04.030.0 .0 36.0 03.065.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.171.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 48.0 05.086.0 .0 48.0 05.086.0 .0 48.0 05.086.0 .0 43.0 03.072.0	000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3	OFF OFF OFF OFF OFF OFF OFF OFF1	9 9 9 9 9 9 9 9 9 9 9 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL RURAL CBD	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL
$\begin{array}{r} .553 \\ 2 \\ 13 \\ .593 \\ 2 \\ 13 \\ .423 \\ 2 \\ 13 \\ .473 \\ 2 \\ 13 \\ .443 \\ 2 \\ 13 \\ .443 \\ 2 \\ 13 \\ .443 \\ 2 \\ 13 \\ .443 \\ 2 \\ 13 \\ .443 \\ 2 \\ 13 \\ .443 \\ 2 \\ 13 \\ .443 \\ 2 \\ 13 \\ .575 \\ 2 \\ .575 \\ 2 \\ .575 \end{array}$	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 20.736 293.135 20.736 293.135 24.436 293.135 21.9366 21.9366 21.9366 21.9366 21.9366 21.9366 21.9366	012.002.0 012.002.0 022.021 027.002.0 019.019 012.002.0 0015.09 071.001.0 04.02 047.002.0 018.012 036.002.0 023.013 036.002.0 023.013 036.002.0 021.017 030.002.0 021.017 030.002.0 016.012 030.002.0	04.030.0 .0 36.0 03.065.0 04.030.0 .0 25.0 04.171.0 .0 6.0 04.171.0 .0 29.0 05.086.0 .0 29.0 05.086.0 .0 48.0 05.086.0 .0 48.0 05.086.0 .0 43.0 05.086.0 .0 43.0 03.072.0 .0 35.0 03.072.0	000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF OFF1	9 9 9 9 9 9 9 9 9 9 9 9 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL RURAL CBD CBD	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR
$\begin{array}{c} .553\\ 2 & 13\\ .593\\ .593\\ 2 & 13\\ .423\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .575\\ 2 & 13\\ .575\\ 2 & 13\\ .575\\ 2 & 13\\ .575\\ 2 & 13\\ \end{array}$	$\begin{array}{c} 273.126\\ 35.3\\ 212.098\\ 19.8\\ 36\\ 273.126\\ 62.6\\ 36\\ 226.104\\ 49.0\\ 36\\ 246.113\\ 47.2\\ 36\\ 293.135\\ 34.7\\ 36\\ 293.135\\ 38.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 20$	(0) = 2.002.0 (0) = 22.02.0 (0) = 22.02.0 (0) = 22.02.0 (0) = 19.02.0 (0) = 15.09 (0) = 15.09 (0) = 10.02.0 (0) = 10.02.02.0 (0) = 10.02.02.02.02.02.02.02.02.02.02.02.02.02	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 0.043.0 05.086.0 0.043.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0	0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1	9 9 9 9 9 9 9 9 9 9 9 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL RURAL CBD CBD	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR
.553 2 13 .593 2 13 .423 2 13 .423 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .575 2 13 .575	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 293.135 20.736 293.135 24.436 293.135 24.436 293.135 24.436 293.135 24.436 293.135 24.436 293.135 24.436 293.135 24.436 21.936 21.8100 1.236 21.8100 1.236 21.8100	012.002.0 022.02.0 022.02.0 012.002.0 019.019 012.002.0 015.09 071.001.0 04.02 047.002.0 018.012 036.002.0 023.013 036.002.0 023.013 036.002.0 021.017 030.002.0 021.017 030.002.0 016.012 030.002.0 016.012 030.002.0 016.012 030.002.0 016.012 030.002.0 0016.012 030.002.0 0016.012 030.002.0 0016.012 030.002.0 0016.012 030.002.0 0016.012 030.002.0 0016.012 0002.002.0 0002.002.0002.0002.0002.0002.00002.00002.000000	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 06.00000000000000000000000000000000000	000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1	 L3 L4 <	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1	9 9 9 9 9 9 9 9 9 9 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR LOCAL
.553 2 13 .593 2 13 .423 2 13 .423 2 13 .473 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .575 2 13 .575 2 13 .575 2 13 .575 2 13 .575 2 575 2 575 3 575	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 293.135 20.736 293.135 24.436 293.135 24.436 21.936 21.936 21.8.100 11.236 218.100 42.236 246.113	012.002.0 012.002.0 022.021 027.002.0 019.019 012.002.0 015.09 071.001.0 04.022 047.002.0 018.012 036.002.0 023.013 036.002.0 023.013 036.002.0 021.017 030.002.0 021.017 030.002.0 021.017 030.002.0 016.012 030.002.0 016.012 030.002.0 039.002.0	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 06.00 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 0.043.00 03.072.0 03.072.0 03.072.0 03.072.0 0.035.0 03.072.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.03.072.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.035.0 0.04.093.0	D000 1	 L3 	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD FR INGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR LOCAL FREEWAY
$\begin{array}{c} .553\\ 2 & 13\\ .593\\ .2 & 13\\ .553\\ 2 & 13\\ .423\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .575\\ .575\\ 2 & 13\\ .575\\ $	$\begin{array}{c} 273.126\\ 35.3\\ 212.098\\ 19.8\\ 36\\ 273.126\\ 62.6\\ 36\\ 226.104\\ 49.0\\ 36\\ 246.113\\ 47.2\\ 36\\ 293.135\\ 34.7\\ 36\\ 293.135\\ 34.7\\ 36\\ 293.135\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 20.7\\ 36\\ 293.135\\ 21.8\\ 100\\ 21.9\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 11.2\\ 36\\ 218.100\\ 21.2\\ 36\\ 218\\ 32.8\\ 36\\ 32.8\\ 36\\ 32.8\\ 36\\ 36\\ 32.8\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$	(0) = 2.002.0 (0) = 22.02.0 (0) = 22.02.0 (0) = 22.02.0 (0) = 22.02.0 (0) = 19.02.0 (0) = 19.02.0 (0) = 18.02.0 (0) = 10.02.0 (0) = 10.02.0 (0) = 10.02.0 (0) = 10.02.0 (0) = 10.02.0 (0) = 9.010 (0) = 9.010 (0) = 10.02.0 (0) = 9.010 (0) = 20.02.0 (0) = 9.010 (0) = 20.02.0 (0) = 9.010	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 03.072.0 03.072.0 03.072.0 03.072.0 03.072.0 03.072.0 03.072.0 0.035.00 03.072.0 0.035.00 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.04.093.0 0.016.0	0000 1 0000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 0 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR LOCAL COLLECTOR LOCAL
.553 2 13 .593 2 13 .423 2 13 .423 2 13 .473 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .575 2 13 .575 .575 2 13 .575	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 20.736 293.135 24.436 293.135 24.436 21.936 21.936 21.936 21.8100 1.236 21.8100 42.236 21.8100 42.236 22.6113 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.8366 32.8366 32.8366 32.836	(012.002.0) (012.002.0) (012.002.0) (019.0) (019.0) (012.002.0) (015.0) (015.0) (018.0) (047.002.0) (047.002.0) (047.002.0) (018.0) (023.0) (018.0) (023.0) (033.0) (023.0) (033.0) (023.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (033.0) (023.0) (03	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 0.048.00 03.072.0 03.072.0 03.072.0 03.072.0 0.035.00 03.072.0 0.035.00 0.03.072.0 0.035.00 0.03.072.0	0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD CBD FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR COLLECTOR LOCAL COLLECTOR ANINOR ARTERIAL COLLECTOR
.553 2 13 .593 2 13 .423 2 13 .423 2 13 .423 2 13 .423 2 13 .443 2 13 .575 2 13 .503 .2 13 .503 .633	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 20.736 293.135 24.436 293.135 24.436 21.936 21.936 21.936 21.936 21.8100 1.236 21.8100 2.136 2.133 32.836 2.46.1133 2.96.36 2.92.088	(012.002.0) (012.002.0) (012.002.0) (019.0) (019.0) (012.002.0) (015.0) (015.0) (018	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 0.048.0 05.086.0 0.048.0 05.086.0 0.048.0 05.086.0 0.048.0 0.05.086.0 0.048.0 0.05.086.0 0.048.0 0.05.086.0 0.048.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.03.072.0 0.04.093.0 0.04.093.0 0.03.058.0	D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 .0 .0 .0 .0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD CBD FRINGE FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR LOCAL COLLECTOR LOCAL FREEWAY MAJOR REGIONAL
$\begin{array}{c} .553\\ 2 & 13\\ .593\\ 2 & 13\\ .553\\ 2 & 13\\ .423\\ 2 & 13\\ .423\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .575\\ 2 & 13\\ .575\\ 2 & 13\\ .575\\ 2 & 13\\ .575\\ 2 & 13\\ .575\\ 2 & 13\\ .503\\ 2 &$	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 20.736 293.135 24.436 293.135 24.436 21.936 21.936 21.936 21.936 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 21.936 21.8100 21.9366 21.9366 21.9366 21.9366 21.9366 21.936	(012.002.0) (012.002.0) (012.002.0) (019.019) (012.002.0) (015.0) (015.0) (018.0) (04.0) (04.0) (036.002.0) (018.0) (018.0) (023.0) (036.002.0) (023.0) (036.002.0) (023.0) (036.002.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (023.0) (030.002.0) (039.002.0) (039.002.0) (039.002.0) (022.	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 03.072.0 03.0	D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD CBD FRINGE FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR LOCAL COLLECTOR LOCAL FREEWAY MAJOR REGIONAL
.553 2 13 .593 2 13 .423 2 13 .423 2 13 .423 2 13 .423 2 13 .443 2 13 .575 2 13 .575 2 13 .575 2 13 .575 2 13 .575 2 13 .575 2 13 .575 2 13 .575 .2 13 .575 .2 13 .575 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .575 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .575 .2 13 .503 .2 13 .575 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .503 .2 13 .575 .2 13 .503 .2 13 .575 .2 13 .503 .2 13 .575 .2 13 .503 .2 13 .575 .2 13 .503 .2 13 .2 1	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 20.736 20.6636 192.0888 25.636 192.0888 20.446 192.0888 10.0026 10.08666 10.08666 10.08666 10.086666666666666666666666666666	(012.002.0) (012.002.0) (012.002.0) (019.0) (019.0) (012.002.0) (015.0) (015.0) (018	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 03.072.0 03.072.0 03.072.0 03.072.0 03.072.0 03.072.0 03.072.0 03.072.0 0.03.072	D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD CBD FRINGE FRINGE FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR LOCAL COLLECTOR LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL
.553 2 13 .593 2 13 .423 2 13 .423 2 13 .423 2 13 .443 2 13 .213	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 20.736 293.135 20.736 293.135 24.436 293.135 24.436 21.936 21.936 21.936 21.936 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.8100 1.236 21.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.1133 32.836 246.3136 246.3136 246.3136 246.3137	(0) = 2.002.0 (0) = 22.02.0 (0) = 22.02.0 (0) = 22.02.0 (0) = 19.002.0 (0) = 19.002.0 (0) = 15.09 (0) = 15.09 (0) = 15.09 (0) = 15.002.00 (0) = 18.0122 (0) = 16.002.00 (0) = 18.0122 (0) = 16.002.00 (0) = 18.0122 (0) = 16.002.00 (0) = 10.002.00 (0) = 10.002.00 (0) = 10.002.00 (0) = 10.002.00 (0) = 10.002.00 (0) = 10.002.00 (0) = 9.0100 (0) = 2.0250 (0) = 15.0190 (0) = 15.0190	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 03.072.0 03.0	D000 1 D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD CBD FRINGE FRINGE FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL
$\begin{array}{c} .553\\ 2 & 13\\ .593\\ 2 & 13\\ .553\\ 2 & 13\\ .423\\ 2 & 13\\ .423\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .443\\ 2 & 13\\ .575\\ 2 &$	273.126 35.336 212.098 19.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 34.736 293.135 34.736 293.135 20.736 20.8876 29.2088 29.2088 29.936 29.936	(012.002.0) (012.002.0) (012.002.0) (019.0) (019.0) (012.002.0) (015.0) (015.0) (018	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 03.072.0 03.058.0 05.058.0 05.0	D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD CBD CBD FRINGE FRINGE FRINGE FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL
.553 2 13 .593 2 13 .423 2 13 .423 2 43 2 43 .2 43 .2 43 .2 43 .2 43 .2 43 .443 2 13 .443 2 13 .443 2 13 .443 2 13 .2 13	273.126 35.336 212.098 9.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 43.936 293.135 34.736 293.135 24.436 293.135 24.436 293.135 24.436 293.135 24.436 218.100 18.136 218.100 18.136 218.100 18.136 218.100 12.236 246.113 32.836 246.113 32.836 246.113 32.836 246.113 32.836 246.113 32.636 246.1266 246.1236 246.1266 246.1236 246.1236 246.1236 246.1236 246.1236 246.1236 246.1266 246.1236 246.1266 246.1	(012.002.0) (012.002.0) (012.002.0) (019.0) (019.0) (012.002.0) (015.0) (015.0) (018	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 03.072.0 05.00000000000000000000000000000000000	D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD CBD CBD FRINGE FRINGE FRINGE FRINGE FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL MINOR ARTERIAL COLLECTOR MINOR ARTERIAL
.553 2 13 .553 2 13 .423 2 13 .423 2 473 2 43 .2 43 .2 43 .2 43 .2 43 .2 43 .443 2 13 .443 2 13 .443 2 13 .2 43 .2 13 .2 13	273.126 35.336 212.098 9.836 273.126 62.636 226.104 49.036 246.113 47.236 293.135 43.936 293.135 34.736 293.135 24.436 293.135 24.436 293.135 24.436 293.135 24.436 218.100 18.136 218.100 18.136 218.100 11.236 246.113 32.836 246.113 32.836 246.113 32.836 246.113 32.636 246.113 32.636 246.113 32.636 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1266 246.1	(012.002.0) (012.002.0) (012.002.0) (019.0) (019.0) (012.002.0) (015.0) (015.0) (018	04.030.0 03.065.0 04.030.0 04.030.0 04.030.0 04.171.0 05.086.0 04.171.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 05.086.0 03.072.0 03.0	D000 1 D000 1	L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L	OFF OFF OFF OFF OFF OFF OFF OFF1 OFF1 O	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SUBURBAN SUBURBAN SUBURBAN RURAL RURAL RURAL RURAL CBD CBD CBD CBD CBD CBD FRINGE FRINGE FRINGE FRINGE FRINGE FRINGE	COLLECTOR RAMP LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL PRINCIPAL ARTERIAL COLLECTOR LOCAL FREEWAY MAJOR REGIONAL PRINCIPAL ARTERIAL COLLECTOR RAMP LOCAL

.603.205.095.027.002.003.065.000	13	OFF10	URBAN	FREEWAY
.533.253.116.027.002.004.065.000	13	OFF10	URBAN	MAJOR REGIONAL
2 13 33.3 36.0 20.0 21.0 34.0	13	05510	URBAN	PRINCIPAL ARTERIAL
2 13 31.2 36.0 33.0 33.0 54.0	10	01110	on Drillin	
.643.185.085.024.002.003.058.000 2 13 24 4 36 0 26 0 28 0 43 0	13	OFF10	URBAN	MINOR ARTERIAL
.643.212.098.012.002.003.030.000	13	OFF10	URBAN	COLLECTOR
2 13 33.6 36.0 20.0 21.0 34.0 .615.215.099.019.002.003.047.000	13	OFF10	URBAN	RAMP
2 13 17.1 36.0 18.0 20.0 20.0				
2 13 52.6 36.0 13.0 11.0 21.0	13	OFFIO	URBAN	LOCAL
.534.238.110.033.002.004.079.000	13	OFF10	SUBURBAN	FREEWAY
.463.280.129.036.002.004.086.000	13	OFF10	SUBURBAN	MAJOR REGIONAL
2 13 40.5 36.0 22.0 21.0 36.0	12	0.55510	CIIDIIDDAM	DEINCIDAI ADTEDIAI
2 13 37.2 36.0 32.0 30.0 52.0	13	OFFIU	SUBURBAN	PRINCIPAL ARIERIAL
.594.217.100.025.002.003.059.000 2 13 29 4 36 0 23 0 22 0 37 0	13	OFF10	SUBURBAN	MINOR ARTERIAL
.553.273.126.012.002.004.030.000	13	OFF10	SUBURBAN	COLLECTOR
2 13 33.6 36.0 22.0 21.0 36.0 .593.212.098.027.002.003.065.000	13	OFF10	SUBURBAN	RAMP
2 13 19.8 36.0 19.0 19.0 32.0	1 2	00010		1001
2 13 62.0 36.0 15.0 9.0 25.0	13	OFFIC	SUBURBAN	LOCAL
.423.226.104.071.001.004.171.000	13	OFF10	RURAL	FREEWAY
.473.246.113.047.002.004.115.000	13	OFF10	RURAL	MAJOR REGIONAL
2 13 46.6 36.0 18.0 12.0 29.0	13	0.5.5.10	RIIRAT.	DRINCIDAL ARTERIAL
2 13 43.8 36.0 18.0 12.0 29.0	10	01110	Roluin	
.443.293.135.036.002.005.086.000 2 13 34.5 36.0 23.0 13.0 48.0	13	OFF10	RURAL	MINOR ARTERIAL
.443.293.135.036.002.005.086.000	13	OFF10	RURAL	COLLECTOR
2 13 38.5 36.0 18.0 12.0 29.0 .443.293.135.036.002.005.086.000	13	OFF10	RURAL	RAMP
2 13 20.6 36.0 23.0 13.0 48.0	1 2	00010		10011
.443.273.135.030.002.005.086.000	13	OFFIU	RUKAL	LUCAL

12013 RAQC 6/16 strats; I/M 240 w/4 yr exempt, 80%rsd, 1.7% oxy MOBILE5b (14-Sep-96) 0 -M 22 Warning: 0.346E-01 mileage with zero registration + -M 22 Warning: 0.626E-01 mileage with zero registration -M 22 Warning: 0.373E-01 mileage with zero registration -M 22 Warning: 0.222E-01 mileage with zero registration + 0R Ρ Vehicle Mix е Amb. 0 Composite Emission Factors g CY Tmp Cold/Hot Start l LDGV LDGT1 LDGT2 LDGT HDGV LDDV LDDT HDDV MC Allveh LDGV LDGT1LDGT2HDGV LDDV LDDT HDDV MC OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 16.0 8.0 16.0 2 16.77 22.82 25.74 23.74 39.87 1.27 2.28 17.86 0.00 19.65 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 16.0 8.0 16.0 2 17.44 23.63 26.65 24.58 42.38 1.35 2.41 18.93 0.00 20.44 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 7.0 11.0 7.0 2 17.75 23.40 26.77 24.46 50.13 1.50 0.00 21.03 .580 .219 .101 .028 .002 .003 .067 .000 2 13 27 2.70 22.18 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 7.0 11.0 7.0 2 21.75 28.26 32.33 29.54 69.07 0.00 26.02 .580 .219 .101 .028 .002 .003 .067 .000 2.01 3.63 29.87 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 8.0 1.0 8.0 2 7.37 10.71 12.25 11.20 22.07 0.64 9.79 9.26 .556 .223 .103 .033 .002 .003 .080 .000 1.15 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. 8.0 1.0 8.0 2 9.63 13.55 15.50 14.16 26.08 2 13 27 1.38 11.75 0.00 11.78 .556 .223 .103 .033 .002 .003 .080 .000 0.77 OEmission factors are as of Jan. 1st of the indicated calendar year. 41.0 5.0 42.0 2 14.53 21.19 23.12 21.80 29.92 1.15 2 13 27 2.05 13.51 0.00 16.56 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 41.0 5.0 42.0 2 16.77 24.16 26.36 24.85 33.87 1.30 19.00 .652 .159 .073 .032 .002 .003 .079 .000 2.32 15.27 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 22.0 2.0 22.0 2 17.82 24.57 27.50 25.49 40.53 1.32 2.35 18.14 0.00 20.27 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 41.0 5.0 42.0 2 12.73 18.81 20.52 19.34 26.89 1.04 1.84 12.13 0.00 14.61 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 22.0 1.0 23.0 2 21.28 29.02 32.44 30.10 56.35 1.80 3.20 24.74 0.00 24.63 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 22.0 2.0 22.0 2 6.85 10.48 11.73 10.88 20.72 9.01 8.43 .629 .192 .089 .025 .002 .003 .060 .000 0.65 1.16 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 24.0 2.0 24.0 2 9.25 13.64 15.22 14.14 23.48 1.38 10.51 0.00 11.30 .569 .231 .106 .026 .002 .004 .062 .000 0.78 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 39.0 4.0 40.0 2 11.70 17.39 19.02 17.90 25.49 0.97 1.71 11.48 0.00 13.75 .626 .195 .090 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 81.0 7.0 83.0 2 20.03 30.40 31.93 30.88 27.08 1.49 2.62 12.22 0.00 22.48 .668 .176 .081 .020 .002 .003 .050 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 69.0 7.0 71.0 2 22.95 33.79 35.83 34.44 33.87 1.68 2.96 15.27 0.00 25.78 .637 .186 .086 .025 .002 .003 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 39.0 4.0 40.0 2 10.88 16.30 17.82 16.78 24.24 0.91 1.62 10.88 0.00 12.85 .626 .195 .090 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 44.0 4.0 46.0 2 22.72 32.17 34.94 33.05 46.55 1.81 3.22 20.69 0.00 25.90 .637 .186 .086 .025 .002 .003 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 28.0 2.0 28.0 2 5.82 9.31 10.33 9.63 20.39 1.16 8.54 0.00 7.67 .555 .239 .110 .026 .002 .004 .064 .000 0.65 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 19.0 2.0 19.0 2 8.13 12.02 13.52 12.50 22.29 0.71 1.26 9.91 0.00 10.39 .498 .247 .114 .039 .002 .004 .096 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 39.0 3.0 39.0 2 8.99 13.78 15.09 14.19 21.87 1.43 9.69 0.00 11.08 .567 .232 .107 .026 .002 .004 .062 .000 0.81 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 77.0 8.0 77.0 2 15.55 24.04 25.36 24.46 23.66 1.24 2.18 10.60 0.00 17.98 .622 .199 .092 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 27 73.0 7.0 73.0 2 18.33 27.63 29.24 28.14 27.57 1.39 2.46 12.45 0.00 21.52 .610 .234 .108 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year.

2 13 27	39.0	3.0	39	9.0 2	11	.98	17.7	3 19.4	1 1	18.26	26.0	8(0.98	1.73	11.75	0.00	14.40	.567	.232	.107	.026	.002	.004	.062	.000
0Emission	factors	are	as d	of Jar	ı. 1	st of	f the	indica	ted	calend	lar y	/ear.													
2 13 27 Official	52.0	5.0) 52	2.02 sf Tar	22	.31	32.0	0 34.5	33 tod	32.80	39.8	37 700 m	1.66	2.94	17.86	0.00	25.86	.610	.234	.108	.012	.002	.004	.030	.000
2 13 27	36.0	1.0	35	5.02	1. 1.	.49	13.3	8 14.7	2 1 3	13.80	26.6	52	0.78	1.37	9.66	0.00	12.00	.373	.227	.105	.085	.001	.004	.205	.000
0Emission	factors	are	as c	of Jar	ı. 1	st of	f the	indica	ted	calend	lar y	/ear.	•												
2 13 27	8.0	0.0	3 (3.02	4	.97	7.7	0 8.8	1	8.05	20.4	12	0.56	0.99	8.53	0.00	7.26	.477	.230	.106	.053	.002	.004	.128	.000
2 13 27	13.0	are 1.0	as (3.02	1. 1:	.96	9.0	101Ca 8 10.3	n n	9.46	20.4	/ear. 12	0.60	1.06	8.77	0.00	7.73	549	243	.112	026	.002	.004	064	.000
OEmission	factors	are	as	of Jar	ı. 1	st of	f the	indica	ted	calend	lar y	/ear.													
2 13 27	13.0	1.0) 13	3.0_2	. 5	.83	8.9	2 10.1	2	9.30	20.3	37	0.59	1.05	8.72	0.00	7.59	.549	.243	.112	.026	.002	.004	.064	.000
2 13 27	57.0	are 2.1	as c	51 Jar 7.02	1. 1: 12	ST 01 53	19.1	1nalca	tеа 8 1	calenc	ar y 24.0	/ear.)4	1.03	1.81	10.78	0.00	15.16	549	243	.112	026	002	.004	064	.000
OEmission	factors	are	aso	of Jar	ı. 1	st of	f the	indica	ted	calend	lar y	/ear.		1.01	10.70	0.00	10110				.020				
2 13 27	13.0	1.0) 13	3.0_2	7	.75	11.3	6 12.8	9 1	11.84	22.2	24	0.67	1.19	9.89	0.00	9.68	.549	.243	.112	.026	.002	.004	.064	.000
2 13 27	57 0	are 2	as o	DIJAN 702	1. II 20	ST 01 99	20 5	$\frac{1nd1ca}{3}$	tea 2	calenc	ar y 36 4	/ear. 16	156	2 76	16 39	0 00	24 63	549	243	112	026	002	004	064	000
0Emission	factors	are	aso	of Jar	ı. 1	.st of	f the	indica	ted	calend	lar y	/ear.		2.70	10.55	0.00	21.05	. 5 1 5	.215		.020	.002	.001	.001	.000
2 13 27	16.0	8.0) 16	5.0 2	19	.22	25.8	4 29.1	5 2	26.89	51.4	12	1.62	2.90	22.71	0.00	22.72	.580	.219	.101	.028	.002	.003	.067	.000
0Emission	factors	are	as c	ot Jar 5 ∩ 2	1. 1:	st of	t the	indica 3 30 6	ted	calenc	lar y	/ear.	176	3 16	24 74	0 00	24 03	580	219	101	028	002	003	067	000
0Emission	factors	are	aso	of Jar	n. 1	.zj .st of	f the	indica	ted	calend	lar y	/ear.		5.10	21./1	0.00	21.05	. 500	.219	. 101	.020	.002	.005	.007	.000
2 13 27	7.0	11.0	C C	7.0 2	19	.44	25.4	6 29.1	2 2	26.62	58.6	59	1.73	3.12	25.69	0.00	23.17	.580	.219	.101	.028	.002	.003	.067	.000
0Emission	factors	are	as o	of Jar	1. 1:	st of	f the	indica	ted	calend	lar y	/ear.	. 2 01	2 62	20 07	0 00	26 02	E 0 0	210	101	0.2.0	002	002	067	000
0Emission	factors	are	aso	of Jar	ı. 1	.,s .st o!	f the	indica	ted	calend	lar y	/ear.	2.01	5.05	29.07	0.00	20.02	. 560	. 219	.101	.020	.002	.003	.007	.000
2 13 27	8.0	1.0	3 C	3.0 2	9	.67	13.6	0 15.5	6 1	14.22	26.1	L6	0.77	1.38	11.79	0.00	11.83	.556	.223	.103	.033	.002	.003	.080	.000
0Emission	factors	are	aso	of Jar	1. 1:	st of	f the	indica	ted	calend	lar y	/ear.		1 0 1	1 = 10	0 00	16 00	FFC	222	102	022	000	002	000	000
0Emission	o.u factors	are	aso	o.∪∠ of Jar	ı. 1	.45 .st o!	f the	indica	ted	calend	lar v	zear.	1.01	1.01	15.40	0.00	10.09	. 550	. 445	.103	.035	.002	.005	.080	.000
2 13 27	41.0	5.0) 42	2.0 2	19	.99	28.4	2 31.0	0 2	29.23	39.6	55	1.52	2.70	17.77	0.00	22.50	.652	.159	.073	.032	.002	.003	.079	.000
0Emission	factors	are	as	of Jar	1. 1	st of	f the	indica	ted	calend	lar y	/ear.	1 6 E	2 04	10 25	0 00	22 01	650	1 5 0	072	022	002	002	070	000
0Emission	factors	are	as c	s.u z df Jar	ı. 1	.15 .st of	∠9.0 f the	o 32.0 indica	ted	calend	lar v	/ /ear.	1.05	2.94	19.35	0.00	23.04	.052	.159	.075	.032	.002	.005	.079	.000
2 13 27	22.0	2.) 22	2.0 2	19	.85	27.1	3 30.3	6 2	28.15	50.4	15	1.62	2.88	22.31	0.00	22.86	.652	.159	.073	.032	.002	.003	.079	.000
0Emission	factors	are	as	of Jar	1.1	st of	f the	indica	ted	calend	lar y	/ear.		0 17	14 07	0 00	17 (2)	650	1	072	022	000	002	070	000
0Emission	factors	are	J 4⊿ as (≤.∪ ∠ of Jar	ב⊥ 1.1	.51 st of	22.43 f the	indica	3 ∠ ted	calend	3⊥.¢ lar v	zear.	1.22	2.1/	14.2/	0.00	11.03	.052	.159	.073	.032	.002	.003	.079	.000
2 13 27	22.0	1.0	23	3.0 2	21	.28	29.0	2 32.4	4 3	30.10	56.3	35	1.80	3.20	24.74	0.00	24.63	.652	.159	.073	.032	.002	.003	.079	.000
0Emission	factors	are	as	of Jar	1. 1	st of	f the	indica	ted	calend	lar y	/ear.		1 2 2	10.00	0 00	10 50	C 0 0	100	000	0.0 5	000	000	000	000
0Emission	22.0 factors	are	as d	2.0 ∠ of Jar	а 1.1	./8 st of	12.9 f the	o 14.5 indica	ted	calend	22.9 Jar v	/ /ear.	0.75	1.33	10.26	0.00	10.50	.629	.192	.089	.025	.002	.003	.060	.000
2 13 27	24.0	2.0	24	1.0 2	12	.12	17.3	4 19.3	5 1	17.97	28.5	52	0.95	1.69	12.88	0.00	14.50	.569	.231	.106	.026	.002	.004	.062	.000
OEmission	factors	are	as	of Jar	1. 1	st of	f the	indica	ted	calend	lar y	/ear.		0.00	10 80	0 00	1	606	105		005	000	000	050	
2 13 27 OEmission	39.0 factors	4.0 are) 40 as 0).02 of Jar	1.1 1.1	.71 st of	21.3 f the	/ 23.3 indica	ted	calend	30.5 lar v	ob Zear.	1.16	2.06	13.79	0.00	17.07	.626	.195	.090	.025	.002	.003	.059	.000
2 13 27	81.0	7.0	2 83	3.0 2	26	.29	38.9	3 40.8	8 3	39.55	34.0)3	1.87	3.29	15.34	0.00	29.19	.668	.176	.081	.020	.002	.003	.050	.000
OEmission	factors	are	as	of Jar	1. 1	st of	fthe	indica	ted	calend	lar y	/ear.		2 20	1 1 1 4	0 00	00 00	600	100	005	005	000	000	0.61	
2 13 27 Official	69.0 factors	7.1 are) 71 29 (L.U Z of Tar	26 n 1	.24	38.2 f the	5 40.5 indica	5 : ted	38.98 calend	38.2 Jar v	20 Zear	1.88	3.32	17.14	0.00	29.33	.637	.186	.086	.025	.002	.003	.061	.000
2 13 27	39.0	4.0) 40).02	12	.57	18.5	4 20.2	7 1	19.09	26.8	39 39	1.02	1.81	12.13	0.00	14.71	.626	.195	.090	.025	.002	.003	.059	.000
OEmission	factors	are	as c	of Jar	1. 1	st of	f the	indica	ted	calend	lar y	/ear.													
2 13 27 Official	44.0	4.0	2 46	5.02 Sf Tar	22	.72	32.1 f tho	7 34.9	4 3 tod	33.05	46.5	55	1.81	3.22	20.69	0.00	25.90	.637	.186	.086	.025	.002	.003	.061	.000
2 13 27	28.0	2.0	28	3.02	7	.37	11.3	3 12.5	2 EU 8 1	11.72	20.8	88	0.69	1.23	9.12	0.00	9.32	.555	.239	.110	.026	.002	.004	.064	.000
0Emission	factors	are	as c	of Jar	ı. 1	st of	f the	indica	ted	calend	lar y	/ear.	•												
2 13 27 Official	19.0	2.0) 19	9.02 Sf Tar	10	.90	15.5 f tho	7 17.5	0 1 tod	16.18 galord	26.9	98 7027	0.87	1.54	12.17	0.00	13.50	.498	.247	.114	.039	.002	.004	.096	.000
2 13 27	39.0	are 3.0) 39).0 2	11	.77	17.4	5 19.1	1 1	17.97	25.7	74.	0.96	1.71	11.59	0.00	14.16	.567	.232	.107	.026	.002	.004	.062	.000
0Emission	factors	are	as c	of Jar	ı. 1	st of	f the	indica	ted	calend	lar y	/ear.	•												
2 13 27 Official official	77.0	8.0	J 71	/.0 2	20	.51	30.7	6 32.4	4 3 tod	31.29	28.9	97 100m	⊥.53	2.70	13.08	0.00	23.33	.622	.199	.092	.024	.002	.003	.058	.000
OFULSSION	LACLOFS	are	as (JL Jai	т. т;	at UI	L LIIE	THATCA	Lea	carenc	чат. У	ear.	•												

2 13 27	73.0	7.0	73.0 2	21.73	32.24	4 34.12	32.84	31.77	1.61	2.83	14.34	0.00	25.31	.610	.234	.108	.012	.002	.004	.030	.000
0Emission	factors	are a	s of Jai	n. 1st 13 97	of the	indicate	d calend	lar yea 29 44	r. 1 11	1 96	13 29	0 00	16 63	567	222	107	026	002	004	062	000
0Emission	factors	are a	s of Ja	n. 1st	of the	indicate	d calend	lar yea	r.	1.90	10.20	0.00	10.05	. 507	.252	.107	.020	.002	.001	.002	.000
0Emission	52.0 factors	5.0 are a	52.02 s of Jai	22.31 n. 1st	of the	indicate	32.80 d calend	39.87 lar yea	1.66 r.	2.94	17.86	0.00	25.86	.610	.234	.108	.012	.002	.004	.030	.000
2 13 27 OEmiggion	36.0	1.0	35.0 2	6.69	10.7	7 11.86	11.11 d galord	23.98	0.73	1.29	9.08	0.00	10.09	.373	.227	.105	.085	.001	.004	.205	.000
2 13 27	8.0	0.0	8.0 2	6.06	9.0	10.39	9.49	20.61	0.58	1.04	8.93	0.00	8.32	.477	.230	.106	.053	.002	.004	.128	.000
0Emission 2 13 27	factors	are a	s of Ja: 13 0 2	n. 1st 6 93	of the	indicate	d calend	lar yea 21 19	r. 0 63	1 12	9 31	0 00	8 77	549	243	112	026	002	004	064	000
0Emission	factors	are a	s of Ja	n. 1st	of the	indicate	d calend	lar yea	r.	1.12	J.JI	0.00	0.77	. 5 1 5	.215	.112	.020	.002	.001	.001	.000
2 13 27 OEmission	13.0 factors	1.0 are a	13.02 s of Ja	6.13 n. 1st	9.30 of the) 10.55 indicate	9.70 d calend	20.51 Jar vea	0.60 r.	1.07	8.86	0.00	7.91	.549	.243	.112	.026	.002	.004	.064	.000
2 13 27	57.0	2.0	57.0_2	13.30	20.1	9 21.70	20.66	25.02	1.07	1.89	11.26	0.00	16.02	.549	.243	.112	.026	.002	.004	.064	.000
2 13 27	13.0	are a 1.0	s or Ja: 13.0 2	n. 1st 9.02	or the 12.9	indicate 7 14.72	d calenc 13.52	ar yea 24.31	r. 0.74	1.32	10.91	0.00	11.09	.549	.243	.112	.026	.002	.004	.064	.000
0Emission	factors	are a	s of Jai	n. 1st	of the	indicate	d calend	lar yea	r.	2 76	16 20	0 00	24 62	E 4 0	242	110	0.26	002	004	064	000
0Emission	factors	are a	s of Ja	20.99 n. 1st	of the	indicate	d calend	lar yea	r.	2.70	10.39	0.00	24.03	.549	.243	.112	.020	.002	.004	.004	.000
2 13 27 Official	16.0	8.0	16.0 2	23.09	30.6	5 34.58	31.90 d galend	68.57	2.11 r	3.78	29.67	0.00	27.52	.580	.219	.101	.028	.002	.003	.067	.000
2 13 27	16.0	8.0	16.0 2	24.04	31.8	3 35.90	33.12	72.21	2.21	3.97	31.11	0.00	28.66	.580	.219	.101	.028	.002	.003	.067	.000
0Emission 2 13 27	factors	are a 11 0	s of Ja: 702	n. 1st 21 87	of the	indicate	d calend	lar yea 69 58	r. 203	3 66	30 07	0 00	26 17	580	219	101	028	002	003	067	000
OEmission	factors	are a	s of Ja	n. 1st	of the	indicate	d calend	lar yea	r.	5.00	50.07	0.00	20.17	. 500			.020	.002	.005	,	
2 13 27 OEmission	7.0 factors	11.0 are a	7.02 s of Jai	21.75 n. 1st	28.20 of the	5 32.33 indicate	29.54 d calend	69.07 lar vea	2.01 r.	3.63	29.87	0.00	26.02	.580	.219	.101	.028	.002	.003	.067	.000
2 13 27	8.0	1.0	8.0 2	13.01	17.7	20.34	18.59	33.40	0.99	1.76	15.06	0.00	15.61	.556	.223	.103	.033	.002	.003	.080	.000
0Emission 2 13 27	factors 8.0	are a 1.0	s of Ja: 8.0 2	n. 1st 17.56	of the 23.4	indicate 4 26.81	d calenc 24.51	lar yea 48.29	r. 1.40	2.50	21.41	0.00	21.07	.556	.223	.103	.033	.002	.003	.080	.000
0Emission	factors	are a	s of Jai	n. 1st	of the	indicate	d calend	lar yea	r.	2 55	02 40	0 00	06 71	650	1 5 0	072	020	000	000	070	000
2 13 2/ OEmission	41.0 factors	are a	42.02 s of Ja:	23.46 n. 1st	of the	indicate	33.85 d calend	53.10 lar yea	2.00 r.	3.55	23.40	0.00	26.71	.652	.159	.073	.032	.002	.003	.079	.000
2 13 27	41.0	5.0	42.0 2	23.91	33.4	36.53	34.44	54.87	2.06	3.66	24.13	0.00	27.26	.652	.159	.073	.032	.002	.003	.079	.000
2 13 27	22.0	2.0	22.0 2	22.25	30.1	5 33.75	31.29	61.17	1.94	3.45	26.69	0.00	25.84	.652	.159	.073	.032	.002	.003	.079	.000
0Emission	factors	are a	s of Ja: 42 0 2	n. 1st 19 07	of the	indicate	d calend	lar yea	r. 146	2 59	17 06	0 00	21 50	652	159	073	032	002	003	079	000
0Emission	factors	are a	s of Ja	n. 1st	of the	indicate	d calend	lar yea	r.	2.55	17.00	0.00	21.50	.052	.137	.075	.052	.002	.005	.075	.000
2 13 27 OEmission	22.0 factors	1.0 are a	23.02 s of Jai	21.28 n. 1st	29.02 of the	2 32.44 indicate	30.10 d calend	56.35 lar vea	1.80 r.	3.20	24.74	0.00	24.63	.652	.159	.073	.032	.002	.003	.079	.000
2 13 27	22.0	2.0	22.0 2	11.60	16.5	18.57	17.22	27.88	0.91	1.63	12.59	0.00	13.59	.629	.192	.089	.025	.002	.003	.060	.000
0Emission 2 13 27	factors 24.0	are a 2.0	s of Ja: 24.0 2	n. 1st 16.37	of the 22.8	indicate 3 25.49	d calenc 23.67	lar yea 37.02	r. 1.23	2.19	16.64	0.00	19.30	.569	.231	.106	.026	.002	.004	.062	.000
0Emission	factors	are a	s of Jai	n. 1st	of the	indicate	d calend	lar yea	r.	0 55	17 00	0 00	01 60	c 0 c	105	000	0.05	000	000	050	000
2 13 27 OEmission	39.0 factors	4.0 are a	40.02 s of Ja:	18.84 n. 1st	of the	indicate	27.60 d calend	38.00 lar yea	1.43 r.	2.55	17.06	0.00	21.63	.626	.195	.090	.025	.002	.003	.059	.000
2 13 27	81.0	7.0	83.0 2	32.51	47.3	3 49.70	48.08	42.14	2.30	4.04	18.83	0.00	35.87	.668	.176	.081	.020	.002	.003	.050	.000
2 13 27	69.0	are a 7.0	71.0 2	29.24	42.2	3 44.77	43.03	44.39	2.17	3.84	19.78	0.00	32.66	.637	.186	.086	.025	.002	.003	.061	.000
0Emission	factors	are a	s of Jai	n. 1st	of the	indicate	d calend	lar yea	r. 115	2 04	12 60	0 00	16 01	626	105	000	0.25	002	002	050	000
0Emission	factors	are a	40.0 2 s of Ja	n. 1st	of the	indicate	d calend	lar yea	r.	2.04	13.00	0.00	10.91	.020	.195	.090	.025	.002	.003	.059	.000
2 13 27 Official on	44.0	4.0 are a	46.0 2	22.72 n 1st	32.1 of the	7 34.94	33.05 d calend	46.55 Jar vea	1.81 r	3.22	20.69	0.00	25.90	.637	.186	.086	.025	.002	.003	.061	.000
2 13 27	28.0	2.0	28.0 2	10.09	14.8	5 16.50	15.38	24.37	0.83	1.48	10.95	0.00	12.31	.555	.239	.110	.026	.002	.004	.064	.000
UEmission 2 13 27	19.0	are a 2.0	s of Ja 19.0 2	n. 1st 14.37	of the 20.01	1ndicate 2 22.50	d calend 20.81	lar yea 34.03	r. 1.09	1.94	15.34	0.00	17.48	. 498	.247	.114	.039	.002	.004	.096	.000
OEmission	factors	area	s of Ja	n. 1st	of the	indicate	d calend	lar yea	r.			0.00	10.00			105					
2 13 27 OEmission	39.0 factors	3.0 are a	39.02 s of Jai	15.44 n. 1st	of the	→ 24.41 indicate	22.96 d calend	32.05 lar vea	1.20 r.	2.13	14.46	0.00	T8.58	.567	.232	.10.1	.026	.002	.004	.062	.000
								-													

2 13 27	77.0	8.0) 77.	0 2	27.18	39.81	41.99	40.50	37.0)2	1.95	3.43	16.64	0.00	30.56	.622	.199	.092	.024	.002	.003	.058	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	year.													
2 13 27	73.0	7.0) 73.	0_2	25.68	37.59	39.79	38.29	36.8	33	1.85	3.27	16.55	0.00	29.71	.610	.234	.108	.012	.002	.004	.030	.000
UEmission	Iactors	are	as oi 1 20	Jan.	LST C	or the	indicate	d caler	idar y	year.	1 24	2 10	1/ 05	0 00	10 02	567	222	107	0.26	002	004	062	000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	d caler	dar v	vear.	1.24	2.19	14.05	0.00	10.03	. 507	. 232	.107	.020	.002	.004	.002	.000
2 13 27	52.0	5.0	52.	0 2	22.31	32.00	34.53	32.80	39.8	37	1.66	2.94	17.86	0.00	25.86	.610	.234	.108	.012	.002	.004	.030	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	year.													
2 13 27	36.0	1.0) 35.	0_2	5.74	9.39	10.34	9.69	21.4	17	0.69	1.22	8.59	0.00	8.95	.373	.227	.105	.085	.001	.004	.205	.000
UEmission	Iactors	are	as oi	Jan.	ISt C	10 QC	indicate	d caler	idar y	year.	0 65	1 15	0 01	0 00	0 96	177	220	106	052	002	004	120	000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	d caler	dar v	zear.	0.05	1.13	9.91	0.00	9.00	. 4 / /	.230	.100	.055	.002	.004	.120	.000
2 13 27	13.0	1.0) 13.	0 2	8.27	12.01	13.63	12.52	23.0	3	0.70	1.24	10.29	0.00	10.25	.549	.243	.112	.026	.002	.004	.064	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	year.													
2 13 27 OEmiggion	13.0	1.0) 13.	0 2	6.90	10.28	3 11.66	10.72	21.1	16	0.63	1.12	9.29	0.00	8.74	.549	.243	.112	.026	.002	.004	.064	.000
2 1 3 27	57 0	2 i	as or 1 57	0 2	14 15	21 33	2 22 92	21 83	26 1	year. 16	1 1 3	1 98	11 79	0 00	16 96	549	243	112	026	002	004	064	000
OEmission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	/ear.	1.10	1.70	11.72	0.00	10.90	. 5 1 5		• = = = =	.020	.002	.001	.001	.000
2 13 27	13.0	1.0) 13.	0 2	10.07	14.29	9 16.21	14.90	26.2	25	0.80	1.43	11.83	0.00	12.26	.549	.243	.112	.026	.002	.004	.064	.000
OEmission	factors	are	as_of	Jan.	lst c	of the	indicate	d caler	dar y	year.	1 50	0 56	1 6 2 0	0 0 0	04 60	= 4.0	0.4.2	110	000		0.0.4	0.5.4	
2 13 27 Official	57.0	2.0	J 57.	02 .Tan	20.99	30.53 of the	32.82	31.25 d caler	36.4 dar 1	16 7037	1.56	2.76	16.39	0.00	24.63	.549	.243	.112	.026	.002	.004	.064	.000
2 13 52	46.0	12.0	1301	0 2	16.46	22.05	5 24.04	22.68	33.2	20 20	1.54	2.77	15.70	0.00	18.45	.633	.178	.082	.030	.002	.003	.072	.000
OEmission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	/ear.													
2 13 52	46.0	12.0) 59.	0 2	19.56	25.84	4 28.17	26.58	39.0)2	1.80	3.24	18.33	0.00	21.79	.633	.178	.082	.030	.002	.003	.072	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	idar y	year.		2 61	01 F4	0 00	22.00	622	170	000	020	000	002	070	000
0Emission	45.0 factors	are	as of	Jan	20.22 1st c	⊿0.00 of the	indicate	d caler	40.4 dar 3	27 Zear	2.03	3.04	21.54	0.00	22.88	.033	.1/8	.082	.030	.002	.003	.072	.000
2 13 52	45.0	8.0	56.	0 2	25.19	32.62	2 35.67	33.58	65.7	77 77	2.81	5.04	29.87	0.00	28.82	.633	.178	.082	.030	.002	.003	.072	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	year.													
2 13 52	8.0	7.0) 12.	0_2	6.12	8.49	9.70	8.88	20.7	71	0.66	1.18	9.62	0.00	7.77	.533	.246	.113	.030	.002	.004	.072	.000
0Emission 2 13 52	Iactors	are	as oi 1 12	Jan.	1St C	10 19	indicate	d caler	dar y	year.	0 75	1 25	10 98	0 00	0 33	533	246	112	030	002	004	072	000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	d caler	dar y	zear.		1.55	10.90	0.00	2.55		.210	.115	.050	.002	.001	.072	.000
2 13 52	30.0	19.0	J 43.	0 2	11.67	15.72	2 17.35	16.23	27.1	16	1.14	2.08	12.88	0.00	13.43	.614	.198	.091	.027	.002	.003	.065	.000
OEmission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	idar y	year.	1 01	0 20	14 70	0 00	15 60	C1 4	100	0.01	0.07	000	000	0.65	000
0Fmiggion	30.0 factors	19.1	J 43. ag of	∪ ∠ .Tan	13.08 1et c	18.17 of the	indicate	10./0 d caler	dar v	Jo Zear	1.31	2.38	14.72	0.00	15.03	.014	.198	.091	.027	.002	.003	.065	.000
2 13 52	34.0	14.0) 46.	0 2	16.17	21.34	1 23.51	22.02	35.9	99 99	1.51	2.74	16.97	0.00	18.38	.614	.198	.091	.027	.002	.003	.065	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	year.													
2 13 52	30.0	19.0) 43.	0_2	11.45	15.45	5 17.06	15.96	26.7	75	1.12	2.05	12.68	0.00	13.20	.614	.198	.091	.027	.002	.003	.065	.000
0Emission 2 13 52	Iactors	are	as oi 1 46	Jan.	1St C	26 80	indicate	d caler	dar y	year.	2 20	3 00	24 74	0 00	22 79	614	198	091	027	002	003	065	000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	d caler	dar v	/ear.	2.20	5.75	21.71	0.00	23.15	.011	.190	.071	.027	.002	.005	.005	.000
2 13 52	8.0	7.) 12.	0 2	5.07	7.24	8.27	7.57	19.5	53	0.60	1.09	8.86	0.00	6.39	.603	.212	.098	.024	.002	.003	.058	.000
OEmission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	year.	·												
2 13 52 OEmiggion	15.0	14.0) 23.	0 2	6.85	9.52 sf tho	2 10.73	9.90 d galor	21.1 dar 1	L8	0.74	1.35	9.89	0.00	8.30	.573	.246	.113	.018	.002	.004	.044	.000
2 13 52	19.0	17.0	30.	0 2	8.58	11.71	13.10	12.15	23.6	year. 59	. 0.89	1.62	11.19	0.00	10.12	.609	.212	.098	.022	.002	.003	.054	.000
OEmission	factors	are	as of	Jan.	1st c	of the	indicate	d caler	dar y	/ear.													
2 13 52	39.0	37.0	0 60.	0 2	13.86	18.69	20.25	19.18	25.1	17	1.33	2.47	11.92	0.00	15.55	.633	.212	.098	.015	.002	.003	.037	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	idar y	year.	1 00	0 25	14 70	0 00	14 01	602	105	005	010	000	000	0.2.0	000
Z 13 52 Official	24.0 factors	24.0 are	J 38. ag of	U ∠ .Tan	13.40 1et c	17.60 of the	indicate	18.20 d caler	J⊥.U dar s	J8 Zear	1.28	2.35	14.72	0.00	14.91	.683	.185	.085	.012	.002	.003	.030	.000
2 13 52	19.0	17.0) 30.	0 2	8.47	11.58	12.95	12.01	23.4	48 18	0.88	1.60	11.08	0.00	10.00	.609	.212	.098	.022	.002	.003	.054	.000
0Emission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	year.													
2 13 52	19.0	19.0) 31.	0_2	16.72	21.48	3 23.99	22.27	44.3	33	1.67	3.05	20.69	0.00	18.60	.683	.185	.085	.012	.002	.003	.030	.000
0Emission 2 12 52	12 0	are	as of 1 1 a	Jan. ດໍາ	15t C 4 22	or the	indicate	u caler	uar y	year.	0 61	1 11	8 54	0 00	5 6 8	560	227	100	025	002	004	061	000
0Emission	factors	are	as of	Jan.	1st c	of the	indicate	d caler	dar v	/ear.	0.01	±•±±	0.34	0.00	5.00		. 431	. 109	.020	.002	.004	.001	.000
2 13 52	14.0	23.0	22.	0 2	5.97	8.41	9.47	8.74	20.0	0	0.71	1.30	9.19	0.00	7.82	.462	.287	.132	.033	.002	.005	.079	.000
OEmission	factors	are	as of	Jan.	lst c	of the	indicate	d caler	dar y	year.													

2 13 52	12.0	11.0	18.0 2	6.00	0 8.4	3 9.56	8.79	20.2	6	0.67	1.21	9.36	0.00	7.50	.544	.259	.119	.021	.002	.004	.051	.000
0Emission 2 13 52	factors 25.0	are a 24.0	s of Ja 37.0 2	n. 1st 7.72	of the 2 10.7	indicated 9 11.97	d calend 11.16	lar y 21.0	ear. 2	0.85	1.56	9.79	0.00	9.23	.583	.234	.108	.020	.002	.004	.049	.000
0Emission 2 13 52	factors 28.0	are a 26.0	s of Ja 43.0 2	n. 1st 11.09	of the 9 14.9	indicated 8 16.51	d calend 15.47	lar y 25.3	ear. 4	1.10	2.02	12.00	0.00	12.65	.633	.212	.098	.015	.002	.003	.037	.000
0Emission 2 13 52	factors 12.0	are a 11.0	s of Ja 18.0 2	n. 1st 7.70	of the 0 10.4	indicated 6 11.86	d calend 10.90	lar y 23.0	ear. 8	0.78	1.41	10.88	0.00	9.36	.544	.259	.119	.021	.002	.004	.051	.000
0Emission 2 13 52	factors 19.0	are a 18.0	s of Ja 29.0 2	n. 1st 15.02	of the 2 19.4	indicated 5 21.77	d calend 20.19	lar y 37.9	ear. 6	1.42	2.59	17.86	0.00	17.01	.633	.212	.098	.015	.002	.003	.037	.000
0Emission 2 13 52	factors 16.0	are a 9.0	s of Ja 23.0 2	n. 1st 6.90	of the) 9.9	indicated 2 11.19	d calend 10.32	lar y 26.5	ear. 6	0.73	1.32	9.95	0.00	9.94	.404	.246	.113	.068	.001	.004	.164	.000
0Emission 2 13 52	factors 3.0	are a 2.0	s of Ja 5.0 2	n. 1st 3.88	of the 3 5.7	indicated 5 6.63	d calend 6.03	lar y 19.6	ear. 8	0.54	0.97	8.51	0.00	5.67	.483	.266	.123	.036	.002	.004	.086	.000
0Emission 2 13 52	factors 16.0	are a 13.0	s of Ja 24.0 2	n. 1st 4.80	of the) 7.0	indicated 7 7.96	d calend 7.35	lar y 19.3	ear. 7	0.65	1.17	8.58	0.00	6.05	.602	.226	.104	.018	.002	.004	.044	.000
0Emission 2 13 52	factors 16.0	are a 13.0	s of Ja 24.0_2	n. 1st 5.1(of the) 7.4	indicated	d calend 7.73	lar y 19.3	ear. 8	0.66	1.19	8.69	0.00	6.36	.602	.226	.104	.018	.002	.004	.044	.000
0Emission 2 13 52	factors 23.0	are a 13.0	s of Ja 34.0_2	n. 1st 7.73	of the 3 10.7	indicated	1 calend 11.16	lar y 21.9	ear. 3	0.83	1.50	10.29	0.00	9.19	.602	.226	.104	.018	.002	.004	.044	.000
0Emission 2 13 52	factors 16.0	are a 13.0	s of Ja 24.0_2	n. 1st 6.34	of the 4 8.9	indicated 3 10.05	d calend 9.28	lar y 20.4	ear. 1	0.71	1.29	9.45	0.00	7.67	.602	.226	.104	.018	.002	.004	.044	.000
2 13 52	23.0	are a 13.0	34.02	n. 1st 14.05	or the 5 18.4	6 20.58	19.13	ar y 35.0	ear. 7	1.33	2.42	16.55	0.00	16.14	.602	.226	.104	.018	.002	.004	.044	.000
2 13 52	46.0	12.0	59.02	n. 1st 21.90	01 the 28.6	8 31.26	29.49	48.9	ear. 6	2.23	4.01	22.71	0.00	24.65	.633	.178	.082	.030	.002	.003	.072	.000
2 13 52 OFmission	46.0	12.0	59.02	23.60	5 30.8	0 33.58	31.68	55.8	ear. 8	2.52	4.54	25.69	0.00	26.76	.633	.178	.082	.030	.002	.003	.072	.000
2 13 52 0Emission	45.0	8.0	56.02	22.92 n 1st	2 29.8	7 32.66	30.75	57.4	4 ear	2.48	4.45	26.35	0.00	26.14	.633	.178	.082	.030	.002	.003	.072	.000
2 13 52 0Emission	45.0	8.0	56.02	25.19	9 32.6	2 35.67	33.58	65.7 Jar v	7 Par	2.81	5.04	29.87	0.00	28.82	.633	.178	.082	.030	.002	.003	.072	.000
2 13 52 OEmission	8.0	7.0 are a	12.0 2	8.71 n. 1st	1 11.5 of the	9 13.24	12.11 d calend	25.8 lar v	8 ear	0.83	1.50	12.26	0.00	10.66	.533	.246	.113	.030	.002	.004	.072	.000
2 13 52 OEmission	8.0 factors	7.0 are a	12.0 2	10.21	1 13.3 of the	8 15.28	13.98 d calend	29.4 lar v	7 ear	0.95	1.71	13.97	0.00	12.36	.533	.246	.113	.030	.002	.004	.072	.000
2 13 52 OEmission	30.0	19.0 are a	43.0 2	17.38 n. 1st	3 22.6	5 25.00	23.39 d calend	38.3 lar v	8 ear	1.60	2.92	18.05	0.00	19.65	.614	.198	.091	.027	.002	.003	.065	.000
2 13 52 OEmission	30.0 factors	19.0 are a	43.0 2 s of Ja	18.23 n. 1st	3 23.6 of the	6 26.12 indicated	24.44 d calend	42.5 lar v	2 ear.	1.76	3.22	19.89	0.00	20.71	.614	.198	.091	.027	.002	.003	.065	.000
2 13 52 OEmission	34.0 factors	14.0 are a	46.0 2 s of Ja	18.34 n. 1st	4 23.9 of the	4 26.38 indicated	24.71 d calend	42.7 lar v	7 ear.	1.78	3.23	20.00	0.00	20.87	.614	.198	.091	.027	.002	.003	.065	.000
2 13 52 OEmission	30.0 factors	19.0 are a	43.0 2 s of Ja	14.2 n. 1st	7 18.8 of the	9 20.85 indicated	19.50 d calend	32.2 lar y	6 ear.	1.35	2.47	15.27	0.00	16.27	.614	.198	.091	.027	.002	.003	.065	.000
2 13 52 OEmission	34.0 factors	14.0 are a	46.0 2 s of Ja	20.72 n. 1st	2 26.8 of the	0 29.53 indicated	27.66 d calend	53.6 lar y	6 ear.	2.20	3.99	24.74	0.00	23.79	.614	.198	.091	.027	.002	.003	.065	.000
2 13 52 OEmission	8.0 factors	7.0 are a	12.0 2 s of Ja	7.50 n. 1st) 10.1 of the	4 11.58 indicated	10.60 d calend	23.2 lar y	1 ear.	0.75	1.34	10.95	0.00	9.00	.603	.212	.098	.024	.002	.003	.058	.000
2 13 52 OEmission	15.0 factors	14.0 are a	23.0 2 s of Ja	10.38 n. 1st	3 13.7 of the	6 15.51 indicated	14.31 d calend	28.2 lar y	6 ear.	1.01	1.83	13.40	0.00	12.19	.573	.246	.113	.018	.002	.004	.044	.000
2 13 52 OEmission	19.0 factors	17.0 are a	30.0 2 s of Ja	11.79 n. 1st	5 15.5 of the	4 17.38 indicated	16.12 d calend	30.3 lar y	8 ear.	1.14	2.08	14.40	0.00	13.61	.609	.212	.098	.022	.002	.003	.054	.000
2 13 52 OEmission	39.0 factors	37.0 are a	60.0 2 s of Ja	19.09 n. 1st	9 25.0 of the	0 27.08 indicated	25.66 d calend	32.8 lar y	8 ear.	1.73	3.23	15.55	0.00	21.12	.633	.212	.098	.015	.002	.003	.037	.000
2 13 52 OEmission	24.0 factors	24.0 are a	38.0 2 s of Ja	15.44 n. 1st	4 20.1 of the	2 22.29 indicated	20.81 d calend	35.2 lar y	5 ear.	1.45	2.66	16.64	0.00	17.10	.683	.185	.085	.012	.002	.003	.030	.000
2 13 52 OEmission	19.0 factors	17.0 are a	30.0 2 s of Ja	10.04 n. 1st	4 13.4 of the	8 15.07 indicated	13.98 d calend	26.6 lar y	5 ear.	1.00	1.83	12.63	0.00	11.73	.609	.212	.098	.022	.002	.003	.054	.000
2 13 52 0Emission	19.0 factors	19.0 are a	31.0 2 s of Ja	16.72 n. 1st	2 21.4 of the	8 23.99 indicated	22.27 d calend	44.3 lar y	3 ear.	1.67	3.05	20.69	0.00	18.60	.683	.185	.085	.012	.002	.003	.030	.000
2 13 52 OEmission	13.0 factors	10.0 are a	19.0 2 s of Ja	5.2' n. 1st	/ 7.5 of the	8 8.58 indicated	7.89 d calend	19.5 lar y	3 ear.	U.64	1.15	8.86	0.00	6.73	.562	.237	.109	.025	.002	.004	.061	.000

2 13 52	14.0	23	.0 22.	.02	8.34	11.2	3 12.65	11.0	68 2	3.83	0.87	1.59	11.26	0.00	10.43	.462	.287	.132	.033	.002	.005	.079	.000
0Emission	factors	are		Jan.	lst o	t_{10}^{10}	indicat	ed ca.	lenda	r year		1 45	11 15	0 00	0 65	EAA	250	110	0.01	002	004	0 5 1	000
0Emission	factors	are	.∪ ⊥o. ≥ as of	.∪∠ ⁼.Jan.	1.90	of the	indicat	ed ca	24 Z. lenda:	3.0∠ r vear	0.00	1.45	11.12	0.00	9.05	.544	. 259	.119	.021	.002	.004	.051	.000
2 13 52	25.0	24	0 37.	0 2	9.92	13.43	3 14.90	13.9	90 24	4.51	1.01	1.85	11.59	0.00	11.60	.583	.234	.108	.020	.002	.004	.049	.000
0Emission	factors	are	e as of	Jan.	lst d	of the	indicat	ed ca	lenda	r year													
2 13 52	28.0	26	.0 43.	0_2	12.65	16.80	5 18.59	17.4	41 28	8.14	1.22	2.25	13.35	0.00	14.33	.633	.212	.098	.015	.002	.003	.037	.000
UEmission	factors	are		Jan.	lst o	12 21	indicat	ed ca.	lenda	r year		1 62	12 54	0 00	11 1 2	644	250	110	0.21	002	004	051	000
0Emission	factors	are	as of	Jan.	1st (of the	indicat	ed cal	lenda:	r vear	0.90	1.03	12.04	0.00	11.12	. 544	. 239	.119	.021	.002	.004	.051	.000
2 13 52	19.0	18	.0 29.	.02	15.02	19.4	5 21.77	20.3	19 3'	7.96	1.42	2.59	17.86	0.00	17.01	.633	.212	.098	.015	.002	.003	.037	.000
0Emission	factors	are	e as of	Jan.	1st d	of the	indicat	ed cal	lenda	r year	•												
2 13 52 OEmiggion	16.0	9	.0 23.	.02 = Tam	5.70	8.3.	3 9.39	8.6	66 2. Jondon	3.98	0.69	1.24	9.34	0.00	8.58	.404	.246	.113	.068	.001	.004	.164	.000
2 13 52	3.0	2	10^{-2}	.02	4.39	6.3	5 7.32	eu ca. 6.6	65 19	9.36	.0.55	0.98	8.62	0.00	6.15	.483	.266	.123	.036	.002	.004	.086	.000
0Emission	factors	are	e as of	Jan.	1st d	of the	indicat	ed cal	lenda	r year	•												
2 13 52	16.0	13	.0 24.	0_2	5.62	8.00	5 9.08	, 8.3	38 19	9.66	0.68	1.23	8.96	0.00	6.91	.602	.226	.104	.018	.002	.004	.044	.000
0Emission 2 13 52	16 0	are	e as oi n 24	Jan.	1st (5 25	DI THE	1nd1cat	ed ca. 7 (lenda: 91 10	r year 9 43		1 20	8 76	0 00	6 51	602	226	104	018	002	004	044	000
0Emission	factors	are	e as of	Jan.	1st (of the	indicat	ed cal	lenda	r vear		1.20	0.70	0.00	0.51	.002	.220		.010	.002	.001	.011	.000
2 13 52	23.0	13	.0 34.	.02	8.09	11.2	1 12.49	11.0	61 23	2.53	0.85	1.55	10.60	0.00	9.58	.602	.226	.104	.018	.002	.004	.044	.000
OEmission	factors	are	e as of	Jan.	1st o	of the	indicat	ed cal	lenda	r year	•	1 26	0 01	0 00	0 00	600	000	104	010		004	0.4.4	
2 13 52 Official	16.0 factors	13 are	.0 24. ag of	.02 5.Tan	6.91 1et (9.6. of the	indicat	9.9 ed ca	99 Z. lenda:	1.22 r vear	0.75	1.36	9.91	0.00	8.28	.602	.226	.104	.018	.002	.004	.044	.000
2 13 52	23.0	13	.0 34.	0 2	14.05	18.40	5 20.58	19.1	13 3!	5.07	1.33	2.42	16.55	0.00	16.14	.602	.226	.104	.018	.002	.004	.044	.000
0Emission	factors	are	e as of	Jan.	lst d	of the	indicat	ed ca	lenda	r year													
2 13 52	46.0	12	.0 59.	02	25.89	33.5	1 36.53	34.4	46 63	3.88	2.85	5.14	29.07	0.00	29.38	.633	.178	.082	.030	.002	.003	.072	.000
2 13 52	46 0	12	as 01 0 59	0 2	29 00	37 2'	1 40 63	ed Ca. 38 '	23 7 [°]	r year 3 60	3 25	5 85	33 12	0 00	32 94	633	178	082	030	002	003	072	000
0Emission	factors	are	e as of	Jan.	1st 0	of the	indicat	ed cal	lenda	r year		5.05	55.12	0.00	52.91	.055	. 1 / 0	.002	.050	.002	.005	.072	.000
2 13 52	45.0	8	.0 56.	.02	26.39	34.08	37.27	35.0	08 69	9.80	2.97	5.33	31.55	0.00	30.21	.633	.178	.082	.030	.002	.003	.072	.000
0Emission	factors	are	e as of	Jan.	1st c	of the	indicat	ed cal	lenda	r year	· 2 01	E 04	20 07	0 00	20 02	622	170	000	020	002	002	070	000
0Emission	factors	are	as of	Jan.	1st (of the	indicat	ed cal	lenda	r vear	2.01	5.04	29.01	0.00	20.02	.033	.1/0	.002	.030	.002	.003	.072	.000
2 13 52	8.0	7	.0 12.	.02	11.57	15.00	17.14	15.0	68 3	2.88	1.06	1.91	15.55	0.00	13.91	.533	.246	.113	.030	.002	.004	.072	.000
OEmission	factors	are	e as of	Jan.	1st d	of the	indicat	ed cal	lenda	r year	•												
2 13 52 Offician	8.0	-7	.0 12.	.02 = Tan	13.83	17.68 f +bo	3 20.19	18.4	47 38 Londor	8.59 r voar	1.23	2.23	18.14	0.00	16.48	.533	.246	.113	.030	.002	.004	.072	.000
2 13 52	30.0	19	10^{-43}	. 0 2	19.89	25.6	4 28.30	26.4	47 5	0.24	. 2.06	3.76	23.26	0.00	22.75	.614	.198	.091	.027	.002	.003	.065	.000
0Emission	factors	are	e as of	Jan.	lst d	of the	indicat	ed cal	lenda	r year	•												
2 13 52	30.0	19	.0 43.	0_2	21.09	27.0	7 29.88	27.9	96 5	5.50	2.26	4.13	25.53	0.00	24.21	.614	.198	.091	.027	.002	.003	.065	.000
0Emission	iactors	are	e as oi	Jan.	1st (of the	indicat	ed ca.	Lenda:	r year 3 66	· 2 20	3 99	24 74	0 00	23 70	614	198	091	027	002	003	065	000
0Emission	factors	are	e as of	Jan.	1st o	of the	indicat	ed cal	lenda	r vear	2.20	5.75	21./1	0.00	23.19	.014	.190	.071	.027	.002	.005	.005	.000
2 13 52	30.0	19	.0 43.	.02	17.43	22.70	25.06	23.4	44 38	8.59	1.61	2.94	18.14	0.00	19.71	.614	.198	.091	.027	.002	.003	.065	.000
0Emission	factors	are	e as of	Jan.	1st o	of the	indicat	ed cal	lenda	r year	•	2 00	04 74	0 00	00 70	C 1 4	100	0.01	0.07	000	000	0.65	000
2 13 52 OEmission	34.0 factors	14 are	.0 46. Pasof	.02 Tan	20.72 1st (26.80 of the	J 29.53 indicat	27.0 ed ca	66 5. lenda:	3.66 r vear	2.20	3.99	24.74	0.00	23.79	.614	.198	.091	.027	.002	.003	.065	.000
2 13 52	8.0	7	0 12.	0 2	10.11	13.20	5 15.14	13.8	85 2	9.22	0.94	1.70	13.85	0.00	11.90	.603	.212	.098	.024	.002	.003	.058	.000
0Emission	factors	are	e as of	Jan.	lst d	of the	indicat	ed ca	lenda	r year													
2 13 52	15.0	14	.0 23.	02	13.75	17.8	2 20.08	18.5	53 30	6.18	1.28	2.33	17.06	0.00	15.95	.573	.246	.113	.018	.002	.004	.044	.000
2 13 52	19 N	are 17	e as oi n 30	Jan.	15 40	19 9'	1nd1cat 2 22 29	eα ca. 20 i	Lenda:	r year 8 81	1 45	2 64	18 24	0 00	17 64	609	212	098	022	002	003	054	000
0Emission	factors	are	e as of	Jan.	1st 0	of the	indicat	ed cal	lenda	r year		2.01	10.21	0.00	17.01	.005	. 212	.050	.022	.002	.005	.051	.000
2 13 52	39.0	37	0 60.	.02	24.09	30.9	5 33.53	31.	76 43	3.28	2.25	4.20	20.22	0.00	26.51	.633	.212	.098	.015	.002	.003	.037	.000
0Emission	factors	are	e as of	Jan.	1st (of the	indicat	ed cal	lenda	r year		2 06	10 14	0 00	10 2E	602	105	005	012	002	002	020	000
∠ ⊥3 52 0Emission	∠4.0 factors	⊿4 ar∉	. 0 30. e as of	Jan.	1st. (⊿⊿.5 of the	∍ ∠5.03 indicat	ed ca	lenda	u.o∠ r vear	1.00	3.00	⊥7 . ⊥4	0.00	19.35	.003	.100	.000	.UIZ	.002	.003	.030	.000
2 13 52	19.0	17	.0 30.	.0 2	11.40	15.1	2 16.90	15.0	68 2	9.60	1.11	2.03	14.03	0.00	13.22	.609	.212	.098	.022	.002	.003	.054	.000
OEmission	factors	are	as of	Jan.	1st o	of the	indicat	ed cal	lenda	r year	•								0.1.6				
$2 \pm 3 = 52$	19.0 factors	19	.U 31.	.U 2 E .Tan	10.72	21.48	3 23.99 indicat	22.2	274	4.33 r voor	1.67	3.05	20.69	0.00	18.60	.683	.185	.085	.012	.002	.003	.030	.000
ORULASION	Lactors	art	as 01	. uail.	TPC (JI LIIE	inuicat	eu ud.	renud.	r year	•												

Uminesion factors are as of Tan. 1st of The indicated calendar year. 21 15 2 14 52 14 52 14 52 120 1102 1108 1146 1348 1437 28 57 0.98 1.78 13.74 0.00 12.33 544 .29 119 .021 .002 .004 .091 .000 21 3 32 120 11.0 18.0 2 10.1e 11.6 13.48 14.23 28 57 0.98 1.78 13.74 0.00 14.99 .583 .294 .19 .021 .002 .004 .091 .000 21 3 52 25.0 44.0 57.0 2 120 17.16 13.04 17.75 30 52 1.25 1.20 14.46 0.00 14.99 .583 .294 .19 .021 .002 .004 .091 .000 21 3 52 120 11.0 18.0 20 1.35 14.0 13.04 17.75 30 52 1.25 1.20 14.46 0.00 14.99 .583 .244 .108 .000 .002 .004 .049 .000 21 3 52 25.0 44.0 57.0 2 10.30 14.00 13.04 17.75 30 52 1.25 1.20 17.4 0.00 15.42 2.09 19.02 .003 .007 .000 Uminesion factors are as of Tan. 1st of The indicated calendar year. 21 3 52 1.50 14.0 19.0 18.0 29.0 13.5 14.0 13.0 21.16 13.04 17.75 30 52 1.25 21 3 52 1.50 14.0 19.0 18.0 29.0 13.5 14.0 13.0 21.16 13.04 17.75 30 52 1.25 21 3 52 1.50 14.0 29.0 13.0 14.0 18.00 29.0 13.0 14.0 14.33 28 57 0.98 13 52 15.0 11.0 18.0 29.0 2 13.5 14.0 13.0 21.16 13.78 1.42 2.59 17.86 21 3 52 1.50 14.0 29.0 2 13.5 12 19.4 52 11.77 20.19 37.96 1.42 21 3 52 1.50 13.0 24.0 2.50 2.53 6.77 10.6 17.7 14.0 12.0 12.17 20.19 37.96 21 3 52 1.50 13.0 24.0 2 5.56 7.50 3.65 7.57 0.72 1.3 9.54 0.00 7.10 453 .212 .099 .015 .002 .001 .004 .064 .000 21 3 52 1.50 13.0 24.0 2 5.56 7.50 3.65 7.57 0.72 1.3 9.54 0.00 7.10 453 .222 .004 .06 .000 21 3 52 1.50 13.0 24.0 2 5.56 7.50 3.65 7.5 2.51 0.59 1.05 5.21 0.00 7.11 602 .226 104 .018 .002 .004 .044 .000 21 3 52 1.50 13.0 24.0 2 5.56 7.50 3.56 7.5 2.51 0.59 1.05 7.0 0.00 0.0.0 6.60 .226 104 .018 .002 .004 .044 .000 21 3 52 1.50 13.0 34.0 2 5.56 7.50 1.36 5.70 1.33 5.47 7.0 0.00 10.00 5.60 .226 104 .018 .002 .004 .044 .000 21 3 52 1.50 13.0 34.0 2 7.57 1.00 13.13 5.0 7.70 1.10 2.02 12.88 0.00 13.25 575 .218 1.00 .030 .002 .001	2 13 52	13.0	10.0	19.0) 2	6.91	9.5	5 10.81	9.95	21	.58	0.73	1.31	10.10	0.00	8.49	.562	.237	.109	.025	.002	.004	.061	.000
21 5 21 4 0.2 1 1.0 1.96 1.365 0.00 13.25 1.00 1.90 1.90 0.00 1.92 1.41 1.90 1.90 1.94 1.365 1.365 1.00 1.90 0.00 0.00 1.92 1.90 1.90 0.00 1.91 1.90 1.90 0.00 0.00 1.93 5.9 2.0 0.00 0.00 1.93 5.9 2.0 0.00 0.00 1.40 1.90 0.00 1.40 1.90 0.00 0.00 1.40 1.90 0.00 0.00 1.40 1.90 0.00 0.00 1.40 1.90 0.00 0.00 1.40 1.90 0.00 0.00 1.40 0.00 1.40 0.00 1.40 0.00 1.40 0.00 0.00 0.00 1.00 0.00	0Emission	factors	are a	s of	Jan.	lst d	of the	indicate	d_caler	ıdar	year	•												
A 3 21 12 11.0 11.0 11.0 11.0 11.6 13.44 1.78 13.74 0.00 12.33 5.44 2.29 .19 .021 .002 .004 .081 .000 211 52 28.0 24.0 37.0 21.13 52 .10 14.0 17.75 .13 54 .00 14.46 .000 14.94 .203 .007 .000 .007 .000 .007 .000 .007 .000 .007 .000 .007 .000 .001 .010 10.01 .001	2 13 52 Officient	14.0	23.0	22.0)2. .Tan	10.82	14.19 of the	9 15.98 indicate	14.76 d galer	29 Mar	.22	1.07	1.96	13.85	0.00	13.25	.462	.287	.132	.033	.002	.005	.079	.000
Demission factors are as of Jam. 1et of the inflacted calendar year. 213 52 2.5. 24.0 27.0 21 JAU 17.16 19.04 17.75 30.32 1.25 2.30 14.46 0.00 14.99 583 .234 .108 .020 0.02 .004 .049 .000 213 52 36.0 26.0 43.0 2 JA.56 19.20 21.16 19.62 JAI 60 1.38 2.54 15.06 0.00 16.42 .633 .212 .098 .015 .002 .003 .037 .000 Commission factors are as of Jam. 1et of the inflacted calendar year. 213 52 12.0 11.0 18.0 2 10.36 13.66 15.48 14.23 29.97 0.98 178 13.74 0.00 12.33 .544 .259 .119 .021 .002 .004 .051 .000 213 52 13.0 19.0 19.0 23.0 2 4.31 64 .17 .30 19 37.6 1.42 2.59 17.86 0.00 17.0 1.633 .212 .098 .015 .002 .003 .037 .000 Commission factors are as of Jam. 1et of the inflacted calendar year. 213 53 16.0 5.0 2.0 2 4.31 64 7.7 .30 19 37.5 1.42 1.06 1.16 8.75 0.00 7.05 .404 .446 .113 .066 .001 .004 .164 .000 Damission factors are as of Jam. 1et of the inflacted calendar year. 213 52 16.0 13.0 24.0 2 6.46 9.07 10.22 9.44 20.57 0.72 1.31 9.54 0.00 7.11 .602 .226 .104 .018 .002 .004 .044 .000 Damission factors are as of Jam. 1et of the inflacted calendar year. 213 52 16.0 13.0 24.0 2 6.47 11.67 13.01 .210 2.31 0.81 .60 10.00 7.01 .602 .226 .104 .018 .002 .004 .044 .000 Damission factors are as of Jam. 1et of the inflacted calendar year. 213 52 16.0 13.0 24.0 2 8.44 11.67 13.01 .210 0.23 10 .81 .60 10.05 0.00 10.00 602 .226 .104 .018 .002 .004 .044 .000 Damission factors are as of Jam. 1et of the inflacted calendar year. 213 52 1.01 17.0 43.0 2 8.44 0.11 .61 20.26 .104 .018 .002 .004 .044 .000 Damission factors are as of Jam. 1et of the inflacted calendar year. 213 52 1.01 17.0 43.0 2 8.44 0.10 11.0 20.00 .02 .02 .02 .02 .004 .044 .000 Damission factors are as of Jam. 1et of the inflacted calendar year. 213 46 1.01 17.0 43.0 2 8.44 0.10 1.10 2.10 2.21 10 .21 10 .22 .10 .00 10.02 .022 .004 .044 .000 Damission factors are as of Jam. 1et of the inflacted calendar year. 213 36 1.01 17.0 43.0 2 8.44 0.20 .114 .02 8.40 0.21 .02 .000 .02 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .00	2 13 52	12.0	11.0	18.0) 2	10.36	13.6	6 15.48	14.23	28	.97	0.98	1.78	13.74	0.00	12.33	.544	.259	.119	.021	.002	.004	.051	.000
21 5 22.1 32.1 22.3 22.4 10.0 14.39 583 22.4 10.00 14.39 583 22.4 10.00 14.39 583 22.4 10.00 14.39 583 22.4 10.00 14.39 583 22.4 10.00 10.02 10.00 10.02 10.00 10.02 10.00 10.02 10.00 10.02 10.00 10.02 10.00 10.02 10.00 <td< td=""><td>OEmission</td><td>factors</td><td>are a</td><td>s of</td><td>Jan.</td><td>lst d</td><td>of the</td><td>indicate</td><td>d_caler</td><td>Idar</td><td>year</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	OEmission	factors	are a	s of	Jan.	lst d	of the	indicate	d_caler	Idar	year	•												
13 22 32.0 32.0 32.0 14.58 14.58 12.4 11.60 16.42 6.33 12.2 0.00 1.6.42 6.33 12.2 0.00 1.00 10.00	2 13 52 Official	25.0 factors	24.0 are a	37.0 g of)2. .Tan	13.01 1et (17.10 of the	b 19.04 indicate	17.75 d caler	30 Jar	.52 vear	1.25	2.30	14.46	0.00	14.99	.583	.234	.108	.020	.002	.004	.049	.000
Obmission factors are as of Jan. 1st of the indicated calendar year. 1.78 1.78 1.78 1.74 0.00 12.3 52 1.60 1.60 1.64 1.6	2 13 52	28.0	26.0	43.0) 2	14.58	19.20	0 21.16	19.82	31	.80	1.38	2.54	15.06	0.00	16.42	.633	.212	.098	.015	.002	.003	.037	.000
2.13 52 1.10 <	0Emission	factors	are a	sof	Jan.	1st o	of the	indicate	d caler	ldar	year	•	1 50	10 84	0 00	10 00		050	110	0.01		004	0 - 1	000
213 22 19.0 18.0 29.0 15.0 15.0 15.0 15.7 20.19 16.0 9.0 23.0 2.0	2 13 52 OEmission	12.0 factors	ll.U are a	18.U s of	J2. Jan	10.36 1st (13.60 of the	b 15.48 indicate	14.23 d caler	28 Idar	.97 vear	0.98	1.78	13.74	0.00	12.33	.544	.259	.119	.021	.002	.004	.051	.000
Demission factors are as of Jan. let of the indicated calendar year. 213 52 16.0 13.0 2.0 2.4.11 6.47 7.30 6.73 21.3 arc 1.4 1.16 8.75 0.00 7.05 4.04 .246 113 0.68 0.01 0.04 1.64 0.00 213 52 16.0 13.0 2.40 5 0.2 5.56 7.50 8.65 7.86 20.02 0.59 1.05 9.21 0.00 7.17 4.83 .266 1.23 .036 0.02 0.04 0.04 0.00 Demission factors are as of Jan. let of the indicated calendar year. 213 52 16.0 13.0 24.0 2 6.46 9.07 10.22 9.44 20.57 0.72 1.31 9.44 0.00 7.80 6.02 .226 1.04 0.18 0.02 0.04 0.04 0.04 0.00 Demission factors are as of Jan. let of the indicated calendar year. 213 52 16.0 13.0 24.0 2 7.06 116 0.10 12.10 22.1 0.28 1.44 0.057 0.72 1.31 9.45 0.00 7.11 6.02 .226 1.04 0.18 0.02 0.04 0.04 0.00 Demission factors are as of Jan. let of the indicated calendar year. 213 52 16.0 13.0 24.0 2 7.06 115 0.150 1.183 10.92 2.27 7.06 1.45 10.57 0.00 9.08 6.02 .226 1.04 0.18 0.02 0.04 0.04 0.000 Demission factors are as of Jan. let of the indicated calendar year. 213 52 11.0 13.0 24.0 2 7.06 115 0.05 0.118 0.07 1.22 7.0 2.27 0.00 1.614 6.02 .226 1.04 0.18 0.02 0.04 0.04 0.000 Demission factors are as of Jan. let of the indicated calendar year. 213 52 11.0 13.0 24.0 2 7.06 1.05 0.138 0.02 2.27 0.02 0.00 16.14 6.02 .226 1.04 0.18 0.02 0.04 0.04 0.000 Demission factors are as of Jan. let of the indicated calendar year. 213 36 21.0 17.0 43.0 2 14.24 20.10 21.80 20.66 29.19 1.18 2.18 13.01 0.02 1.55 5.57 2.18 1.00 0.30 0.02 0.03 0.72 0.000 Demission factors are as of Jan. let of the indicated calendar year. 213 36 10.0 12.0 3.0 2 0.2 0.3 0.72 0.000 Demission factors are as of Jan. let of the indicated calendar year. 213 36 10.0 12.0 3.0 2 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 13 52	19.0	18.0	29.0	2	15.02	19.4	5 21.77	20.19	37	.96	1.42	2.59	17.86	0.00	17.01	.633	.212	.098	.015	.002	.003	.037	.000
of a set of the indicated or alendar set. 110 10 100<	0Emission	factors	are a	s of	Jan.	1st (of the	indicate	d caler	idar	year		1 16	0 75	0 00	7 05	404	246	112	060	0.01	0.04	164	000
2 13 52 3 .0 2 .0 5 .0 7 .86 20.0 0 .59 1.0 9.21 0.00 7 .17 4.82 266 .123 0.64 0.00 0.00 0.00 7.17 4.82 266 .123 0.64 0.00 0.00 7.17 4.82 266 .123 0.64 0.00 0.00 7.11 .622 .226 .104 .018 0.00 0.00 7.11 .602 .226 .104 .018 .002 .004 .004 .000 213 23 0.30 34.0 28.47 1.83 1.03 2.22 .103 .000 .001 .000 .002 .024 .004 .004 .000 213 52 1.0 1.0 1.40 1.60 1.23 .108 .002 .004 .044 .000 213 52 1.0 1.0 1.0 1.0 1.0 .002 .004 .044 .000 213 52 1.0 1.0 1.0 .001 .002 .002 .004 .001 <t< td=""><td>0Emission</td><td>factors</td><td>are a</td><td>s of</td><td>Jan.</td><td>1st (</td><td>of the</td><td>indicate</td><td>d caler</td><td>ndar</td><td>year</td><td>. 0.04</td><td>1.10</td><td>0.75</td><td>0.00</td><td>7.05</td><td>.404</td><td>.240</td><td>.115</td><td>.000</td><td>.001</td><td>.004</td><td>.104</td><td>.000</td></t<>	0Emission	factors	are a	s of	Jan.	1st (of the	indicate	d caler	ndar	year	. 0.04	1.10	0.75	0.00	7.05	.404	.240	.115	.000	.001	.004	.104	.000
UBmission Lactors are as of Jan. let of the indicated calendar year. 1.3 51 50 6.0 7.80 6.02 2.26 1.04 0.08 0.04 0.44 0.00 213 52 1.60 13.0 24.02 5.81 8.29 9.34 8.62 19.82 0.66 1.24 9.08 0.00 7.11 6.02 2.26 1.04 0.18 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.00 7.11 6.02 2.26 1.04 0.18 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.00 7.11 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.00 1.02 2.26 1.04 0.02 0.04 0.04 0.00 0.02 0.04 0.04 0.00 0.02 0.02 0.00 0.02 0.00 0.02 0.02 0.04	2 13 52	3.0	2.0	5.0) 2	5.36	7.5	0 8.65	7.86	20	.02	0.59	1.05	9.21	0.00	7.17	.483	.266	.123	.036	.002	.004	.086	.000
Obmission factors are as of Jan. Let of the indicated calendar year. International of the indicated calendar year. International of the indicated calendar year. 213 52 16,0 13.0 24,0 2 5.81 6.29 3,34 6.82 19.82 0.68 1.24 9.08 0.00 7.11 6.02 .226 .104 .018 .002 .004 .044 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 52 16.0 13.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 22.47 0.80 1.05 10.0 10.0 0.602 .226 .104 .018 .002 .004 .044 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 52 16.0 13.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	0Emission	factors	are a	s of 24 r	Jan.	1st (of the 9 0'	indicate 7 10 22	d caler 9 44	idar 20	year 57	0 72	1 31	9 54	0 00	7 80	602	226	104	018	002	004	044	000
2 13 52 16.0 13.0 24.0 2 5.81 8.29 9.34 8.62 19.82 0.68 1.24 9.08 0.00 7.11 602 2.26 104 0.18 0.02 0.04 0.04 0.00 0.00 6.02 2.26 104 0.01 0.02 0.04 0.04 0.04 0.00 213 35 23.0 13.0 24.0 2 7.65 10.50 11.83 10.92 2.47 0.80 1.65 10.00 6.02 2.26 104 0.08 0.02 0.04 0.00 0.02 0.02 1.04 0.04 0.04 0.04 0.04 0.00 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02	0Emission	factors	are a	s of	Jan.	1st 0	of the	indicate	d caler	ndar	year		1.51	9.54	0.00	/.00	.002	.220	.101	.010	.002	.001	.011	.000
Usenisation factors are as of Jan. 1st of the indicated calendar year. 213 52 23.0 13.0 34.0 2 16.8 47 11.6 7 13.01 12.10 23.21 49.0.88 1.60 10.95 0.00 10.00 .602 .226 104 .018 .002 .004 .044 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 52 23.0 13.0 34.0 2 14.05 18.46 20.58 19.13 35.07 1.33 2.42 16.55 0.00 16.14 .602 .226 .104 .018 .002 .004 .044 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 21.0 17.0 43.0 2 12.98 18.48 20.13 19.00 27.02 1.10 2.02 12.88 0.00 15.25 .575 .218 .100 .030 .002 .003 .072 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 16.0 12.0 35.0 2 16.86 23.21 25.54 23.94 37.36 1.39 2.64 17.68 0.00 19.71 .575 .218 .100 .030 .002 .003 .072 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 16.0 12.0 35.0 2 23.63 31.69 34.87 32.69 65.43 2.34 4.37 .36 1.39 0.00 6.47 .503 .246 .113 .039 .002 .004 .094 .093 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 2.0 10.0 16.02 4.43 6.67 7.75 7.14 21.72 0.62 1.13 8.85 0.00 6.47 .503 .246 .113 .039 .002 .004 .093 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 2.0 2.0 39.0 2 9.09 13.31 14.54 13.70 21.29 0.87 1.61 10.00 0.00 16.6 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 2.0 02.0 39.0 2 9.09 13.31 14.54 13.70 21.29 0.87 1.61 10.00 0.00 1.069 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 1.50 19.0 29.0 2 1.2 14.51 .11 8.94 17.76 2.93 1.10 2.02 13.97 0.00 14.28 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 1.50 19.0 2.90 2 1.2 14.17.1 11.8.94 17.70 2.29 1.10 2.02 13.97 0.00 14.28 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 1.00 14.0 24.02 5.55 5.55 5.55 5.55 5.55 5.55 5.	2 13 52	16.0	13.0	24.0	2	5.81	8.2	9 9.34	8.62	19	.82	0.68	1.24	9.08	0.00	7.11	.602	.226	.104	.018	.002	.004	.044	.000
00mission factors are as of Jan. 1st of the indicated calendar year. 100	0Emission 2 13 52	factors	are a	s oi 34 r	Jan.	1st (8 47	11 6'	1nd1cate 7 13 01	d caler 12 10	idar 23	year 21		1 60	10 95	0 00	10 00	602	226	104	018	002	004	044	000
2 13 52 16.0 13.0 24.0 7.65 10.50 11.83 10.92 22.47 0.80 1.45 10.57 0.00 9.08 602 .226 104 .018 .002 .044 .044 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2.13 2.42 16.55 0.00 16.14 .602 .226 .104 .018 .002 .004 .044 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2.02 12.88 0.00 15.25 .575 .218 .100 .030 .002 .003 .072 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2.54 17.68 .000 19.71 .575 .218 .100 .030 .002 .003 .072 .000 Demission factors are as of Jan. 1st of the indicated calendar year. .213 .236 .214 .137 .212 .062 .118 .057 .010 .030 .002 .000 .001 .016.02 .000 <td>0Emission</td> <td>factors</td> <td>are a</td> <td>s of</td> <td>Jan.</td> <td>1st 0</td> <td>of the</td> <td>indicate</td> <td>d caler</td> <td>ndar</td> <td>year</td> <td></td> <td>1.00</td> <td>10.95</td> <td>0.00</td> <td>10.00</td> <td>.002</td> <td>.220</td> <td>. 101</td> <td>.010</td> <td>.002</td> <td>.001</td> <td>.011</td> <td>.000</td>	0Emission	factors	are a	s of	Jan.	1st 0	of the	indicate	d caler	ndar	year		1.00	10.95	0.00	10.00	.002	.220	. 101	.010	.002	.001	.011	.000
Using and factors are as of Jan. 1st of the indicated calendar year. 213 52 23.0 13.0 34.0 2 14.05 16.46 20.58 19.13 35.07 1.33 2.42 16.55 0.00 16.14 .602 .226 .104 .018 .002 .004 .044 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 21.0 17.0 43.0 2 12.98 16.44 20.13 19.00 27.02 1.10 2.02 12.88 0.00 15.25 .575 .218 .100 .030 .002 .003 .072 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 16.0 12.0 35.0 2 .363 31.69 34.87 32.69 65.43 2.34 4.30 29.87 0.10 16.05 .575 .218 .100 .030 .002 .003 .072 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 16.0 12.0 35.0 2 .363 31.69 34.87 32.69 65.43 2.34 4.30 29.87 0.10 15.05 .276 .218 .100 .030 .002 .003 .072 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 16.0 12.0 35.0 2 .363 31.69 34.87 32.69 65.43 2.34 4.30 29.87 0.10 0 16.0 2 .443 6.87 7.75 7.14 21.72 0.62 1.13 8.85 0.00 6.47 .503 .246 .113 .039 .002 .004 .093 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 2.00 25.0 39.0 2 .9.09 13.31 14.54 13.70 21.29 0.87 1.61 10.00 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 15.0 19.0 2 5.93 8.74 9.86 9.09 19.74 0.64 1.16 9.09 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 15.0 19.0 29.0 2 12.34 17.11 18.94 17.69 29.31 1.10 2.02 13.97 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 15.0 19.0 29.0 2 12.34 17.11 18.94 17.69 29.31 1.10 2.02 13.97 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 14.0 14.0 24.02 5.93 8.74 9.28 27.35 53.38 1.94 3.57 24.74 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 14.0 14.0 24.02 5.23 8.03 8.96 8.32 19.26 0.64 1.17 8.59 0.00 9.44 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 213 36 14.0 14.0 24.02 5.28 8.03 8.96 8.32 19.26 0.64 1.17 8.95 0.00 9.44 .613 .192 .	2 13 52	16.0	13.0	24.0	2	7.65	10.50	0 11.83	10.92	22	.47	0.80	1.45	10.57	0.00	9.08	.602	.226	.104	.018	.002	.004	.044	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 0.0 15.25 575 218 100 10.0	0Emission 2 13 52	1actors 23.0	are a 13.0	s or 34.0	Jan.) 2	14.05	21 the 18.40	indicate 6 20.58	d caler 19.13	idar 35	year	1.33	2.42	16.55	0.00	16.14	.602	.226	.104	.018	.002	.004	.044	.000
2 13 36 21.0 17.0 43.0 2 12.18 12.10 2.02 12.88 0.00 15.25 575 2.18 100 0.02 0.03 0.02	OEmission	factors	are a	s of	Jan.	1st d	of the	indicate	d caler	ıdar	year													
0.0mmission factors are as of Jan. 1st of the indicated calendar year. 213 36 21.0 17.0 43.0 17.0 43.0 17.0 43.0 17.0 20.66 29.19 1.18 2.18 1.13.91 0.00 16.65 5.75 218 1.00 0.30 0.02 0.03 0.02 0.03 0.07 0.00 0zmission factors are as of Jan. 1st of the indicated calendar year. 21.3 36 16.0 12.0 35.0 21.6 31.6 34.87 37.65 34.8 2.34 4.30 29.87 0.00 28.11 5.75 218 1.00 0.30 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 <td< td=""><td>2 13 36</td><td>21.0</td><td>17.0</td><td>43.0</td><td>2</td><td>12.98</td><td>18.4</td><td>8 20.13</td><td>19.00</td><td>27</td><td>.02</td><td>1.10</td><td>2.02</td><td>12.88</td><td>0.00</td><td>15.25</td><td>.575</td><td>.218</td><td>.100</td><td>.030</td><td>.002</td><td>.003</td><td>.072</td><td>.000</td></td<>	2 13 36	21.0	17.0	43.0	2	12.98	18.4	8 20.13	19.00	27	.02	1.10	2.02	12.88	0.00	15.25	.575	.218	.100	.030	.002	.003	.072	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 213 36 16.0 12.0 35.0 21.2 13.6 12.0 35.0 23.21 25.5 43.94 37.36 1.39 2.54 17.68 0.00 19.71 575 218 10.0 0.30 .002 .003 .072 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 213 36 9.0 10.0 16.0 24.43 6.87 7.75 7.14 21.72 0.62 1.13 8.85 0.00 6.47 .503 .246 .113 .039 .002 .004 .093 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 1.16 9.0 0.00 7.87 .503 .246 .113 .039 .002 .004 .093 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 1.61 10.00 0.00 10.69 .633 .192 .088 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 1.01 1.86 11.56 0.00 12.97 <td>2 13 36</td> <td>21.0</td> <td>17.0</td> <td>43.0</td> <td>) 2</td> <td>14.24</td> <td>20.10</td> <td>0 21.90</td> <td>20.66</td> <td>10ar 29</td> <td>.19</td> <td>1.18</td> <td>2.18</td> <td>13.91</td> <td>0.00</td> <td>16.65</td> <td>.575</td> <td>.218</td> <td>.100</td> <td>.030</td> <td>.002</td> <td>.003</td> <td>.072</td> <td>.000</td>	2 13 36	21.0	17.0	43.0) 2	14.24	20.10	0 21.90	20.66	10ar 29	.19	1.18	2.18	13.91	0.00	16.65	.575	.218	.100	.030	.002	.003	.072	.000
2 13 36 16.0 12.0 35.0 2 16.86 23.21 25.54 23.94 37.36 1.39 2.54 17.68 0.00 19.71 .575 .218 .100 .030 .002 .003 .072 .000 213 36 16.0 12.0 35.0 2 2.363 31.69 34.87 32.69 65.43 2.34 4.30 29.87 0.00 28.11 .575 .218 .100 .030 .002 .001 .002 .003 .072 .000 DEmission factors are as of Jan. 1st of the indicated calendar year. 1.13 8.85 0.00 6.47 .503 .246 .113 .039 .002 .004 .093 .000 DEmission factors are as of Jan. 1st of the indicated calendar year. 1.61 10.00 0.00 10.69 633 .192 .088 .024 .002 .003 .058 .000 DEmission factors are as of Jan. 1st of the indicated calendar year. 1.61 10.00 0.00 12.97 .633 .192 .088 .024 .002 .003 .058 .000 <t< td=""><td>0Emission</td><td>factors</td><td>are a</td><td>s of</td><td>Jan.</td><td>lst d</td><td>of the</td><td>indicate</td><td>d caler</td><td>ıdar</td><td>year</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0Emission	factors	are a	s of	Jan.	lst d	of the	indicate	d caler	ıdar	year	•												
13 16.0 12.0 35.0 22 23.6 31.69 34.87 32.69 65.43 2.34 4.30 29.87 0.00 28.11 .575 .218 .100 .030 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .004 .093 .000 1213 36 9.0 10.0 16.0 2 4.43 6.87 .75 .14 21.72 0.62 1.13 8.85 0.00 6.47 .503 .246 .113 .039 .002 .004 .093 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 1.3 3 2.20 25.0 39.0 2 1.12 16.0 1.18 11.65 0.00 12.97 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2.13 36 15.0 19.0 2 2.13 1.10 1.02 2.02 1.397 0.00 14.2	2 13 36 Official	16.0	12.0	35.0) 2 : .Tan	16.86	23.23	1 25.54 indicate	23.94 d galer	37 Mar	.36	1.39	2.54	17.68	0.00	19.71	.575	.218	.100	.030	.002	.003	.072	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 9.0 10.0 16.0 2.43 6.87 7.75 7.14 21.72 0.62 1.13 8.85 0.00 6.47 5.03 2.46 .113 .039 .002 .004 .093 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2.13 36 2.0 25.0 39.0 2 .091 1.31 14.54 13.70 21.29 .087 1.61 10.00 10.69 6.33 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2.13 36 2.0 25.0 39.0 2 12.34 17.11 18.49 17.69 29.31 1.10 1.00 14.28 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2.13 36 15.0 19.0 29.0 2 12.37 12.38 1.40 14.0	2 13 36	16.0	12.0	35.0) 2	23.63	31.69	9 34.87	32.69	65	.43	2.34	4.30	29.87	0.00	28.11	.575	.218	.100	.030	.002	.003	.072	.000
2 13 36 9.0 10.0	0Emission	factors	are a	s of	Jan.	lst d	of the	indicate	d caler	ndar	year	•				<i>.</i> .								
213 36 9.0 10.0 16.0 2 5.93 8.74 9.86 9.09 19.74 0.64 1.16 9.09 0.00 7.87 503 2.46 .113 .039 .002 .004 .093 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. .000 7.87 .503 .246 .113 .039 .002 .004 .093 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. .000 10.69 .633 .192 .088 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. .011 1.86 1.50 10.00 14.28 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. .022 .033	2 13 36 Official official	9.0 factors	10.0 are a	16.0) 2 .Tan	4.43	6.8' of the	7 7.75 indicate	7.14 d caler	21 Idar	.72 vear	0.62	1.13	8.85	0.00	6.47	.503	.246	.113	.039	.002	.004	.093	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 22.0 25.0 39.0 2 9.09 13.1 14.54 13.70 21.29 0.87 1.61 10.00 0.00 10.69 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 15.0 19.0 29.0 2 12.34 17.11 18.47 24.30 1.01 1.86 11.56 0.00 12.97 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 15.0 19.0 29.0 2 7.82 11.69 12.77 12.03 19.94 0.80 1.48 9.23 0.00 9.34 .633 .192 .088 .024 .002 .003 .058 .000 Demission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 24.02 .033 .152 .088 .024 .002 .003 .055 .000	2 13 36	9.0	10.0	16.0) 2	5.93	8.7	4 9.86	9.09	19	.74	0.64	1.16	9.09	0.00	7.87	.503	.246	.113	.039	.002	.004	.093	.000
2 13 36 22.0 25.0 39.0 2 9.09 13.31 14.94 13.70 21.29 0.87 1.61 10.00 0.00 10.69 6.33 1.92 0.88 0.04 0.02 0.03 0.58 0.00 DEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 12.0 25.0 39.0 2 1.34 17.11 18.94 17.69 29.31 1.10 2.02 13.97 0.00 14.28 6.33 .192 .088 .024 .002 .003 .058 .000 DEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 15.0 19.0 29.0 2 12.77 12.03 19.94 0.80 1.48 9.23 0.00 9.4 .633 .192 .088 .024 .002 .003 .058 .000 DEmission factors are as of Jan. 1st of the indicated calendar year. 2 2.03 .03 .14 3.92 .04 .002 .003 .058 .000 DEmission factors are as of Jan. 1st of the indicated calendar year.	0Emission	factors	are a	sof	Jan.	1st d	of the	indicate	d_caler	ldar	year	•	1 (1	10.00	0 00	10 60	622	100	000	0.0.4		000	050	000
2 13 36 22.0 25.0 39.0 2 11.22 16.01 17.49 16.47 24.30 1.01 1.86 11.56 0.00 12.97 .633 .192 .088 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 .02 13.36 15.0 19.0 21.234 11.89 12.03 19.94 0.80 1.48 9.23 0.00 14.28 .633 .192 .088 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 .02 13.97 0.00 14.28 .633 .192 .088 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 .03 .04 .02 .003 .058 .000 2 13 6 14.0 14.0 23.0 2 .92 2.6 .64 1.17 8.59 .000 6.94 .533 .253 .116	2 13 36 OEmission	22.0 factors	25.0 are a	39.U s of	J2 Jan	9.09 1st (13.3. of the	1 14.54 indicate	13.70 d caler	21 Idar	.29 vear	0.87	1.61	10.00	0.00	10.69	.633	.192	.088	.024	.002	.003	.058	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 15.0 19.0 29.02 12.34 17.11 18.94 17.69 29.31 1.10 2.02 13.97 0.00 14.28 .633 .192 .088 .024 .002 .003 .058 .000 DEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 15.0 19.0 29.02 19.82 26.46 29.28 27.35 53.38 1.94 3.57 24.74 0.00 22.93 .633 .192 .088 .024 .002 .003 .058 .000 DEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 23.02 5.98 9.12 10.18 9.46 23.50 0.69 1.26 9.26 0.00 7.68 .603 .205 .095 .027 .002 .003 .065 .000 DEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 24.02 5.23 8.03 8.96 8.32 1	2 13 36	22.0	25.0	39.0	2	11.22	16.0	1 17.49	16.47	24	.30	1.01	1.86	11.56	0.00	12.97	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36 15.0	0Emission	factors	are a	s of	Jan.	1st (of the	indicate	d caler	ldar	year		2 0 2	12 07	0 00	14 20	622	100	000	0.2.4	000	002	0 5 0	000
2 13 36 22.0 25.0 39.0 2 7.82 11.69 12.77 12.03 19.94 0.80 1.48 9.23 0.00 9.34 .633 .192 .088 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 15.0 19.0 29.0 2 19.82 26.46 29.28 27.35 53.38 1.94 3.57 24.74 0.00 22.93 .633 .192 .088 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 23.0 2 5.98 9.12 10.18 9.46 23.50 0.69 1.26 9.26 0.00 7.68 .603 .205 .095 .027 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 24.0 2 5.23 8.03 8.96 8.32 19.26 0.64 1.17 8.59 0.00 6.94 .533 .253 .116 .027 .002 .004 .065 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.83 11.55 12.71 11.92 20.50 0.79 1.45 9.56 0.00 9.40 .615 .215 .099 .019 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 33.0 33.0 54.0 2 11.25 16.58 17.80 16.96 21.29 1.03 1.91 10.00 0.00 12.91 .643 .185 .085 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 26.0 28.0 43.0 2 15.07 21.04 22.87 21.62 29.31 1.28 2.37 13.97 0.00 17.17 .643 .212 .098 .012 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year.	0Emission	factors	are a	s of	Jan.	1st (of the	indicate	d caler	ndar	vear		2.02	13.97	0.00	14.20	.033	.192	.000	.024	.002	.003	.050	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 15.0 19.0 29.0 2 19.82 26.46 29.28 27.35 53.38 1.94 3.57 24.74 0.00 22.93 .633 .192 .088 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 23.0 2 5.98 9.12 10.18 9.46 23.50 0.69 1.26 9.26 0.00 7.68 .603 .205 .095 .027 .002 .003 .065 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 24.0 2 5.23 8.03 8.96 8.32 19.26 0.64 1.17 8.59 0.00 6.94 .533 .253 .116 .027 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 33.0 34.0 2 1.25 1.643 .185 .085 .024 <td>2 13 36</td> <td>22.0</td> <td>25.0</td> <td>39.0</td> <td>) 2</td> <td>7.82</td> <td>11.69</td> <td>9 12.77</td> <td>12.03</td> <td>19</td> <td>.94</td> <td>0.80</td> <td>1.48</td> <td>9.23</td> <td>0.00</td> <td>9.34</td> <td>.633</td> <td>.192</td> <td>.088</td> <td>.024</td> <td>.002</td> <td>.003</td> <td>.058</td> <td>.000</td>	2 13 36	22.0	25.0	39.0) 2	7.82	11.69	9 12.77	12.03	19	.94	0.80	1.48	9.23	0.00	9.34	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36 15.0	0Emission	factors	are a	s of 20 r	Jan.	1st (of the	indicate	d caler	idar 53	year		3 57	24 74	0 00	22 93	633	192	088	024	002	003	058	000
2 13 36 14.0 14.0 23.0 2 5.98 9.12 10.18 9.46 23.50 0.69 1.26 9.26 0.00 7.68 .603 .205 .095 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 24.0 2 5.23 8.03 8.96 8.32 19.26 0.64 1.17 8.59 0.00 6.94 .533 .253 .116 .027 .002 .004 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.83 11.55 12.71 11.92 20.50 0.79 1.45 9.56 0.00 9.40 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 33.0 33.0 54.0 2 11.25 16.58 17.80 16.96 21.29 1.03 1.91 10.00 0.00 12.91 .643 .185 .085 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 26.0 28.0 43.0 2 15.07 21.04 22.87 21.62 29.31 1.28 2.37 13.97 0.00 17.17 .643 .212 .098 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year.	0Emission	factors	are a	s of	Jan.	19.02 1st (of the	indicate	d caler	ıdar	year	· ·	5.57	24./4	0.00	22.95	.033	.192	.000	.024	.002	.003	.050	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 14.0 14.0 24.0 2 5.23 8.03 8.96 8.32 19.26 0.64 1.17 8.59 0.00 6.94 .533 .253 .116 .027 .002 .004 .065 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.83 11.55 12.71 11.92 20.50 0.79 1.45 9.56 0.00 9.40 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 33.0 54.0 2 11.25 16.58 17.80 16.96 21.29 1.03 1.91 10.00 0.00 12.91 .643 .185 .085 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 26.0 28.0 43.0 2 15.07 21.62 29.31 1.28 2.37 13.97 0.00 17	2 13 36	14.0	14.0	23.0) 2	5.98	9.1	2 10.18	9.46	23	.50	0.69	1.26	9.26	0.00	7.68	.603	.205	.095	.027	.002	.003	.065	.000
2 is solid factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.83 11.55 12.71 11.92 20.50 0.79 1.45 9.56 0.00 9.40 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 33.0 33.0 54.0 2 11.25 16.58 17.80 16.96 21.29 1.03 1.91 10.00 0.00 12.91 .643 .185 .085 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 26.0 28.0 43.0 2 15.07 21.04 22.87 21.62 29.31 1.28 2.37 13.97 0.00 17.17 .643 .212 .098 .012 .002 .003 .030 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year.	0Emission 2 13 36	14 0	are a	s oi 24 r	Jan.	1st (of the	indicate	d caler 8 32	idar ۱۹	year 26		1 17	8 59	0 00	6 94	522	253	116	027	002	004	065	000
2 13 36 20.0 21.0 34.0 2 7.83 11.55 12.71 11.92 20.50 0.79 1.45 9.56 0.00 9.40 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 33.0 33.0 54.0 2 11.25 16.58 17.80 16.96 21.29 1.03 1.91 10.00 0.00 12.91 .643 .185 .085 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 26.0 28.0 43.0 2 15.07 21.04 22.87 21.62 29.31 1.28 2.37 13.97 0.00 17.17 .643 .212 .098 .012 .002 .003 .030 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year.	0Emission	factors	are a	s of	Jan.	1st 0	of the	indicate	d caler	ndar	year		1.1/	0.55	0.00	0.91	. 555	. 255		.027	.002	.001	.005	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 33.0 33.0 54.0 2 11.25 16.58 17.80 16.96 21.29 1.03 1.91 10.00 0.00 12.91 .643 .185 .085 .024 .002 .003 .058 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 26.0 28.0 43.0 2 15.07 21.04 22.87 21.62 29.31 1.28 2.37 13.97 0.00 17.17 .643 .212 .098 .012 .002 .003 .030 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year.	2 13 36	20.0	21.0	34.0	2	7.83	11.5	5 12.71	11.92	20	.50	0.79	1.45	9.56	0.00	9.40	.615	.215	.099	.019	.002	.003	.047	.000
0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 26.0 28.0 43.0 2 15.07 21.04 22.87 21.62 29.31 1.28 2.37 13.97 0.00 17.17 .643 .212 .098 .012 .002 .003 .030 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year.	2 13 36	33.0	are a 33.0	S OI 54.0	Jan.) 2	11.25	16.58	1ndicate 8 17.80	d caler 16.96	10ar 21	year	1.03	1.91	10.00	0.00	12.91	.643	.185	.085	.024	.002	.003	.058	.000
2 13 36 26.0 28.0 43.0 2 15.07 21.04 22.87 21.62 29.31 1.28 2.37 13.97 0.00 17.17 .643 .212 .098 .012 .003 .030 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year. 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000	OEmission	factors	are a	s of	Jan.	1st o	of the	indicate	d caler	ıdar	year	•								. = -				
2 13 36 20.0 21.0 34.0 2 7.25 10.83 11.90 11.17 19.92 0.76 1.40 9.21 0.00 8.78 .615 .215 .099 .019 .002 .003 .047 .000 0Emission factors are as of Jan. 1st of the indicated calendar year.	2 13 36	26.0	28.0	43.0) 2 (15.07	21.04	4 22.87	21.62	29	.31	1.28	2.37	13.97	0.00	17.17	.643	.212	.098	.012	.002	.003	.030	.000
OEmission factors are as of Jan. 1st of the indicated calendar year.	2 13 36	20.0	21.0	34.0) 2	7.25	10.8	3 11.90	11.17	10ar 19	.92	0.76	1.40	9.21	0.00	8.78	.615	.215	.099	.019	.002	.003	.047	.000
	OEmission	factors	are a	s of	Jan.	lst d	of the	indicate	d caler	ıdar	year													

2 13 36	18.0	20.	0 20	0.0 2	16.68	22.10	0 24.75	22.94	44.	10	1.59	2.88	20.69	0.00	19.00	.643	.212	.098	.012	.002	.003	.030	.000
0Emission	factors	are	as	of Jan.	1st o	of the	indicate	ed cale	ndar	year.		1 00	0.00	0 00	7 00	F 2 4	0.2.0	110	022	000	0.0.4	070	000
2 13 36 OEmission	13.0 factors	are	as c	of Jan.	5.8/ 1st (8.95 of the	indicate	9.29 ed cale:	23. ndar	50 year.	0.67	1.22	9.26	0.00	/.88	.534	.238	.110	.033	.002	.004	.079	.000
2 13 36	15.0	15.	0 25	5.0_2	5.27	8.1	1 9.03	8.40	19.	26	0.65	1.19	8.59	0.00	7.32	.463	.280	.129	.036	.002	.004	.086	.000
2 13 36	22.0	are 21.	as 0 0 36	5.0 2	1st (5.96	9.2!	1ndicate 5 10.15	ed cale: 9.53	ndar 19.	year. 26	0.72	1.33	8.59	0.00	7.57	.593	.212	.098	.027	.002	.003	.065	.000
0Emission	factors	are	as	f Jan.	1st o	of the	indicate	ed cale	ndar	year.		1 60	0 00	0 00	10.00	504	018	100	005		000	050	
2 13 36 OEmission	32.0 factors	30. are	as c	s.u z of Jan.	9.02 1st (of the	6 14.70 indicate	ed cale:	ndar	74 vear.	0.91	1.68	9.09	0.00	10.83	.594	.21/	.100	.025	.002	.003	.059	.000
2 13 36	23.0	22.	0 37	.0_2	10.84	15.48	8 16.95	15.94	24.	30	0.99	1.81	11.56	0.00	13.00	.553	.273	.126	.012	.002	.004	.030	.000
2 13 36	1actors 22.0	are 21.	as 0 0 36	or Jan. 5.0 2	1st (7.41	or the 11.09	indicate 9 12.17	ed cale: 11.43	ndar 19.	year. 92	0.78	1.42	9.21	0.00	9.08	.593	.212	.098	.027	.002	.003	.065	.000
0Emission	factors	are	as	f Jan.	1st o	of the	indicate	ed cale	ndar	year.		0.66	18 05	0 00			0.00	100	010		0.0.4	0.0.0	
2 13 36 OEmission	19.0 factors	19. are	0 32 as c	2.0 2 of Jan.	17.14 1st (23.29 of the	9 25.68 indicate	24.05 ed cale:	37. ndar	97 vear.	1.45	2.66	17.95	0.00	20.08	.553	.273	.126	.012	.002	.004	.030	.000
2 13 36	15.0	9.	0 25	5.0_2	8.24	12.3	4 13.75	12.78	28.	01	0.76	1.39	10.34	0.00	11.47	.423	.226	.104	.071	.001	.004	.171	.000
0Emission 2 13 36	factors 4.0	are 2.	as c 0 6	of Jan. 5.0 2	1st 0 4.08	of the 6.2	indicate 5 7.17	ed cale: 6.54	ndar 19.	year. 68	0.55	0.98	8.51	0.00	6.19	.473	.246	.113	.047	.002	.004	.115	.000
0Emission	factors	are	as	f Jan.	1st (of the	indicate	ed cale	ndar	year.			0 51										
2 13 36 OEmission	18.0 factors	12. are	0 29 as c	0.0 2 of Jan.	4.89 1st (7.7. of the	3 8.57 indicate	8.00 ed cale	19. ndar	51 vear.	0.66	1.19	8.51	0.00	7.03	.443	.293	.135	.036	.002	.005	.086	.000
2 13 36	18.0	12.	0 29	.0 2	5.62	8.6	6 9.60	8.96	19.	26	0.67	1.21	8.65	0.00	7.77	.443	.293	.135	.036	.002	.005	.086	.000
0Emission 2 13 36	factors	are	as 0	of Jan. 8.0 2	1st (9.51	of the 14.20	indicate 0 15.40	ed cale: 14.58	ndar 21	year. 29	0.86	1.59	10.00	0.00	12.09	443	293	.135	.036	.002	.005	.086	.000
OEmission	factors	are	asio	of Jan.	1st o	of the	indicate	ed cale	ndar	year.		2.05	10.00		11.05	• • • • •							
2 13 36 OEmission	18.0 factors	12. are	0 29 as c	0.02 of Jan.	6.72 1st (10.00 of the	6 11.15 indicate	10.40 ed cale	19. ndar	89 vear	0.71	1.29	9.19	0.00	8.94	.443	.293	.135	.036	.002	.005	.086	.000
2 13 36	23.0	13.	0 48	3.0 2	18.81	26.20	6 28.49	26.96	36.	18	1.48	2.72	17.14	0.00	22.67	.443	.293	.135	.036	.002	.005	.086	.000
0Emission 2 13 36	factors	are 17	as 0	of Jan. 8 0 2	1st (of the 19 1	indicate	ed cale: 19 67	ndar 27	year. 88	1 13	2 09	13 29	0 00	15 81	575	218	100	030	002	003	072	000
0Emission	factors	are	asi	of Jan.	1st 0	of the	indicate	ed cale:	ndar	year.		2.05	13.27	0.00	10.01	. 575		.100	.050	.002	.005	.072	.000
2 13 36 OEmission	21.0 factors	17. are	0 43	s.0 2	14.83	20.80 of the	6 22.72 indicate	21.44 ed cale	30. ndar	23 vear	1.23	2.26	14.40	0.00	17.30	.575	.218	.100	.030	.002	.003	.072	.000
2 13 36	16.0	12.	0 35	5.0 2	17.47	23.9	5 26.36	24.71	38.	82	1.44	2.64	18.33	0.00	20.40	.575	.218	.100	.030	.002	.003	.072	.000
0Emission 2 13 36	factors	are 12	as c	of Jan.	1st (of the	indicate 9 34 87	ed cale:	ndar 65	year. 43	234	4 30	29 87	0 00	28 11	575	218	100	030	002	003	072	000
0Emission	factors	are	as	of Jan.	1st (of the	indicate	ed cale	ndar	year.		1.50	20.07	0.00	20.11	. 575	.210	.100	.050	.002	.005	.072	.000
2 13 36 Official	9.0	10.	0 16	5.0 2 f Jan	4.43	6.8' of the	7 7.75	7.14	20. ndar	25 Vear	0.60	1.09	8.57	0.00	6.39	.503	.246	.113	.039	.002	.004	.093	.000
2 13 36	9.0	10.	0 16	5.02	6.25	9.1	3 10.31	9.50	20.	901. 07	0.65	1.18	9.31	0.00	8.21	.503	.246	.113	.039	.002	.004	.093	.000
0Emission	factors	are 25	as c	of Jan.	1st 0 9 47	of the	indicate	ed cale:	ndar 21	year. 76	0 89	1 65	10 26	0 00	11 09	633	192	088	024	002	003	058	000
0Emission	factors	are	aso	of Jan.	1st (of the	indicate	ed cale	ndar	year.		1.05	10.20	0.00	11.09	.055	.192	.000	.024	.002	.005	.050	.000
2 13 36 Official	22.0	25.	0 39	0.02	11.78	16.73	3 18.27	17.21	25. ndar	21 Vear	1.05	1.93	12.00	0.00	13.59	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36	15.0	19.	0 29	0.02	12.72	17.5	9 19.47	18.18	30.	year. 09	1.13	2.07	14.34	0.00	14.70	.633	.192	.088	.024	.002	.003	.058	.000
0Emission	factors	are 25	as c	of Jan.	1st 0 8 67	of the	indicate	ed cale	ndar :	year. 79		1 57	9 73	0 00	10 24	633	192	088	024	002	003	058	000
0Emission	factors	are	aso	of Jan.	1st (of the	indicate	ed cale	ndar	year.		1.57	2.15	0.00	10.24	.055	.192	.000	.024	.002	.005	.050	.000
2 13 36	15.0	19.	0 29	0.0 2	19.82	26.40	6 29.28	27.35	53.	38	1.94	3.57	24.74	0.00	22.93	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36	14.0	14.	0 23	3.02	4.68	7.3	3 8.18	7.60	21.	year. 57	0.66	1.20	8.82	0.00	6.27	.603	.205	.095	.027	.002	.003	.065	.000
0Emission	factors	are	aso	of Jan.	lst (of the	indicate	ed cale	ndar	year.	0 6 F	1 10	0 71	0 00	7 20	EDD	252	116	0.07	002	004	065	000
0Emission	factors	are	asc	f.∪ ∠ of Jan.	1st (o.4 of the	indicate	ed cale	ndar	29 year.	0.05	1.19	0./1	0.00	1.20	. 555	. 255	.110	.027	.002	.004	.005	.000
2 13 36	20.0	21.	0 34	1.0 2	8.04	11.8	3 13.01	12.20	20.	75	0.80	1.48	9.71	0.00	9.63	.615	.215	.099	.019	.002	.003	.047	.000
2 13 36	33.0	33.	as 0 0 54	1.0 2	11.57	16.99	9 18.24	17.38	21.	year. 61	1.04	1.94	10.18	0.00	13.25	.643	.185	.085	.024	.002	.003	.058	.000
0Emission	factors	are	as	of Jan.	1st (of the	indicate	ed cale	ndar	year.		0 00	14 00	0 00	17 34	642	010	000	010	000	002	0.2.0	000
∠ ⊥3 36 OEmission	20.0 factors	⊿ø. are	as c	o.∪ ∠ of Jan.	1st (⊿⊥.24 of the	4 23.08 indicate	≥⊥.82 ed cale:	یوے ndar	э, year.	1.29	2.39	14.09	0.00	11.34	.043	.212	.098	.012	.002	.003	.030	.000

2 1 2 36	20 0	21 0	34 0	2	7 9 2	11 6	7 12 8	2 1	2 04 3	0 60	0 80	1 46	9 62	0 00	9 50	615	215	ngg	019	002	003	047	000
0Fmiggion	factors	are a	g of J	Tan	1et 0	of the	indicat	ted.	calenda	r vear	. 0.00	1.10	9.02	0.00	9.50	.015	. 213	.055	.019	.002	.005	.01/	.000
2 13 36	18.0	20.0	20.0	2 1	16.68	22.1	0 24.75	5 2	2.94 4	4.10	1.59	2.88	20.69	0.00	19.00	.643	.212	.098	.012	.002	.003	.030	.000
OEmission	factors	are a	s of i	Jan.	1st d	of the	indicat	ted	calenda	ir year													
2 13 36	13.0	11.0	21.0	2	5.45	8.3	6 9.36	б	8.68 2	2.84	0.66	1.20	9.10	0.00	7.41	.534	.238	.110	.033	.002	.004	.079	.000
OEmission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ir year													
2 13 36	15.0	15.0	25.0	2	5.39	8.2	5 9.19	9	8.55 1	9.26	0.65	1.19	8.63	0.00	7.43	.463	.280	.129	.036	.002	.004	.086	.000
OEmission	factors	are a	sofi	Jan.	lst d	of the	indicat	ted	calenda	ır year	• • • • •												
2 13 36	22.0	21.0	36.0	_2	6.15	9.4	9 10.42	2	9.79 1	.9.26	0.73	1.34	8.65	0.00	7.77	.593	.212	.098	.027	.002	.003	.065	.000
UEmission	Iactors	are a	SOL	Jan.	Ist o	or the	indicat	ted	calenda	ir year	. 0.01	1 60	0 1 6	0 00	11 01	F 0 4	017	100	0.05	000	002	050	000
Z 13 30	32.U	30.0	52.U	⊿ Tan	9.19 1 at	13.8 1 +ho	o 14.94	t t	4.21 J	.9.85 Y VO2Y	0.91	1.69	9.10	0.00	11.01	.594	. 21 /	.100	.025	.002	.003	.059	.000
2 13 36	23.0	22.0	37.0	2 1	10.89	15.5	4 17.02	2 1	6.01 2	24.38	0.99	1.82	11.59	0.00	13.06	. 553	273	126	.012	.002	.004	.030	.000
0Emission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ir vear		1.01	11.00	0.00	10.00		• • • •						
2 13 36	22.0	21.0	36.0	2	8.13	12.0	0 13.16	61	2.37 2	20.64	0.81	1.49	9.64	0.00	9.84	.593	.212	.098	.027	.002	.003	.065	.000
OEmission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ir year													
2 13 36	19.0	19.0	32.0	2 1	L7.03	23.1	6 25.54	4 2	3.91 3	37.77	1.45	2.65	17.86	0.00	19.96	.553	.273	.126	.012	.002	.004	.030	.000
OEmission	factors	are a	s of i	Jan.	lst o	of the	indicat	ted	calenda	ir year		1 20	10 01	0 00		400	000	104	0.71	0.01	004	1 1 1	
2 13 36 OEmianian	15.0	9.0	25.0	2	8.19	12.2	8 13.68	5 I.	2.72 2		0.76	1.38	10.31	0.00	11.41	.423	.226	.104	.071	.001	.004	.171	.000
UEMISSION	Iactors	are a	SOL	Jan.	IST C	or the		cea 7	calenda	o co		0 00	0 E1	0 00	6 10	172	246	112	047	002	004	115	000
0Fmiggion	factors	are a	e of j	z Tan	1et 0	0.2 of the	indicat	, ted	calenda	r vear	0.55	0.90	0.51	0.00	0.19	. 475	.240	.113	.04/	.002	.004	.115	.000
2 13 36	18.0	12.0	29.0	2	4.96	7.8	2 8.6	7	8.09 1	9.45	0.66	1.19	8.51	0.00	7.10	443	293	.135	.036	.002	.005	.086	.000
OEmission	factors	are a	sof	Jan.	lst d	of the	indicat	ted	calenda	ir year			0.01	0.00		• • • • •							
2 13 36	18.0	12.0	29.0	2	5.62	8.6	6 9.60	0	8.96 1	9.26	0.67	1.21	8.65	0.00	7.77	.443	.293	.135	.036	.002	.005	.086	.000
OEmission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ır year	•												
2 13 36	23.0	13.0	48.0	_2	9.58	14.3	0 15.5	1 1	4.68 2	21.38	0.87	1.59	10.05	0.00	12.17	.443	.293	.135	.036	.002	.005	.086	.000
0Emission	factors	are a	s of i	Jan.	lst o	of the	indicat	ted	calenda	ir year		1 00	0 00	0 00	0 00	440	202	105	020	000	005	000	000
2 13 36 OFmiggion	18.0	12.0	29.0	2	6.//	IU.I	2 11.22	Z I	0.47 J	.9.94	0.71	1.29	9.23	0.00	9.00	.443	.293	.135	.036	.002	.005	.086	.000
2 1 3 36	23 0	13 0	48 N	2 1	18 81	26 2	6 28 40	a 2	6 96 3	11 year 16 18	1 48	2 7 2	17 14	0 00	22 67	443	293	135	036	002	005	086	000
0Emission	factors	are a	s of i	Jan.	1st (of the	indicat	ted	calenda	r vear	1.10	2.72	17.11	0.00	22.07	• • • • •	. 200	.100	.050	.002	.005	.000	
2 13 36	21.0	17.0	43.0	2 1	L4.03	19.8	3 21.60	0 2	0.38 2	28.82	1.17	2.16	13.74	0.00	16.41	.575	.218	.100	.030	.002	.003	.072	.000
0Emission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ır year	•												
2 13 36	21.0	17.0	43.0	2 1	L5.62	21.8	8 23.84	4 2	2.49 3	31.64	1.28	2.36	15.06	0.00	18.18	.575	.218	.100	.030	.002	.003	.072	.000
OEmission	factors	are a	sofi	Jan.	lst d	of the	indicat	ted	calenda	ir year	• • • • •												
2 13 36	16.0	12.0	35.0	2 1	L7.74	24.3	0 26.73	3 2	5.06 4	0.15	1.49	2.72	18.93	0.00	20.75	.575	.218	.100	.030	.002	.003	.072	.000
UEmission	Lactors	are a	SOLU	Jan.	lst (or the	indicat	ted		ir year		1 20	20 07	0 00	20 11	E75	21.0	100	020	002	002	070	000
0 Fmiggion	factors	12.U are a		⊿ ∠ Tan	1et 0	0⊥.0 of the	indicat	red.	2.09 Calenda	r vear	2.34	4.30	29.07	0.00	20.11	.575	.210	.100	.030	.002	.003	.072	.000
2 13 36	9.0	10.0	16.0	2	4.66	7.1	6 8.08	R	7.45 1	9.34	0.60	1.08	8.53	0.00	6.57	.503	246	.113	.039	.002	.004	.093	.000
OEmission	factors	are a	sof	Jan.	lst d	of the	indicat	ted	calenda	ir year		1.00	0.00	0.00	0.07								
2 13 36	9.0	10.0	16.0	2	6.88	9.9	2 11.20	0 1	0.32 2	20.91	0.69	1.25	9.79	0.00	8.90	.503	.246	.113	.039	.002	.004	.093	.000
OEmission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ır year													
2 13 36	22.0	25.0	39.0	_2 1	L0.33	14.8	8 16.20	6 1	5.32 2	2.96	0.95	1.75	10.88	0.00	12.02	.633	.192	.088	.024	.002	.003	.058	.000
OEmission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ir year		0 0 0	10 50	0 00	14 00	622	100		004			050	
2 13 36 OEmiggion	22.0	25.0	39.0 7 of	2 J Tan	12.51	17.6 .f +ho	5 19.28	5 T	8.16 2 golonda	26.41	1.10	2.03	12.59	0.00	14.37	.633	.192	.088	.024	.002	.003	.058	.000
2 1 2 3 6	15 0	10 n	20 1	Jan. 21	1SL (13 54	18 6		2 1		ir year 1 70	1 10	2 1 8	15 13	0 00	15 61	633	192	088	024	002	003	058	000
0Emission	factors	are a	s of i	Tan 1	1st (of the	indicat	ted	calenda	r vear	<i>.</i>	2.10	13.13	0.00	13.01	.055	.192	.000	.024	.002	.005	.050	.000
2 13 36	22.0	25.0	39.0	2	9.86	14.2	9 15.6	1 1	4.71 2	2.30	0.92	1.70	10.54	0.00	11.52	.633	.192	.088	.024	.002	.003	.058	.000
OEmission	factors	are a	s of d	Jan.	1st d	of the	indicat	ted	calenda	ir year													
2 13 36	15.0	19.0	29.0	2 1	L9.82	26.4	6 29.28	82	7.35 5	3.38	1.94	3.57	24.74	0.00	22.93	.633	.192	.088	.024	.002	.003	.058	.000
OEmission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ır year	•												
2 13 36	14.0	14.0	23.0	2	4.68	7.3	3 8.18	8	7.60 1	.9.97	0.64	1.16	8.54	0.00	6.20	.603	.205	.095	.027	.002	.003	.065	.000
OEmission	factors	are a	s of i	Jan.	lst o	of the	indicat	ted	calenda	ir year		1 01	0 00	0 00		F 2 2	050	110	0.07	000	004	0.65	000
∠ ⊥3 36 OFmission	14.U factors	14.U	24.0	⊿ Tar	5.9/	8.9 5 + ho	indiant	y Fod	y.2y 1	.9.48 m	0.6/	1.21	8.90	0.00	1.12	.533	.253	. 110	.02/	.002	.004	.065	.000
2 13 36	20 0	21 N	34 0	2 2 2	8 43	12 2	2 13 5	5 1	2 71 2	1 24	0 83	1 52	9 98	0 00	10 06	615	215	099	019	002	003	047	000
0Emission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ir year		1.52		0.00	10.00					.002		/	
2 13 36	33.0	33.0	54.0	2 1	12.21	17.8	0 19.1	1 1	8.21 2	2.30	1.08	2.01	10.54	0.00	13.92	.643	.185	.085	.024	.002	.003	.058	.000
0Emission	factors	are a	s of i	Jan.	lst d	of the	indicat	ted	calenda	ır year													

2 13 36	26.0	28.0	43.0 2	15.38	21.43	3 23.29	22.02	29.83	1.30	2.41	14.21	0.00	17.51	.643	.212	.098	.012	.002	.003	.030	.000
0Emission 2 13 36	factors 20.0	are a 21.0	s of Jan. 34.0 2	. 1st c 8.43	of the 12.32	indicate 2 13.55	d calend 12.71	ar yea 21.24	r. 0.83	1.52	9.98	0.00	10.06	.615	.215	.099	.019	.002	.003	.047	.000
0Emission 2 13 36	factors 18.0	are a 20.0	s of Jan. 20.0 2	. 1st c 16.68	of the 22.10	indicate) 24.75	d calend 22.94	lar yea: 44.10	r. 1.59	2.88	20.69	0.00	19.00	.643	.212	.098	.012	.002	.003	.030	.000
0Emission 2 13 36	factors 13.0	are a 11.0	s of Jan. 21.0 2	. 1st c 4.60	of the 7.18	indicate 8 8.05	d calend 7.45	lar yea: 21.67	r. 0.64	1.17	8.84	0.00	6.47	.534	.238	.110	.033	.002	.004	.079	.000
0Emission 2 13 36	factors 15.0	are a 15.0	s of Jan. 25.0 2	. 1st c 5.62	of the 8.5	indicate 5 9.52	d calend 8.85	lar yea 19.29	r. 0.66	1.21	8.71	0.00	7.67	.463	.280	.129	.036	.002	.004	.086	.000
0Emission 2 13 36	factors 22.0	are a 21.0	s of Jan. 36.0 2	. 1st c 6.54	of the 9.98	indicate 3 10.95	d calend 10.29	lar yea 19.35	r. 0.74	1.36	8.78	0.00	8.17	.593	.212	.098	.027	.002	.003	.065	.000
0Emission 2 13 36	factors 32.0	are a 30.0	s of Jan. 52.0 2	. 1st c 9.43	of the 14.19	indicate 9 15.27	d calend 14.53	lar yea 20.02	r. 0.92	1.71	9.27	0.00	11.26	.594	.217	.100	.025	.002	.003	.059	.000
0Emission 2 13 36	factors 23.0	are a 22.0	s of Jan. 37.0 2	. 1st c 10.98	of the 15.60	indicate 5 17.16	d calend 16.13	lar yea 24.54	r. 1.00	1.83	11.67	0.00	13.16	.553	.273	.126	.012	.002	.004	.030	.000
0Emission 2 13 36	factors 22.0	are a 21.0	s of Jan. 36.0 2	. 1st c 8.55	of the 12.54	indicate 4 13.76	d calend 12.93	lar yea: 21.15	r. 0.84	1.54	9.93	0.00	10.30	.593	.212	.098	.027	.002	.003	.065	.000
0Emission 2 13 36	factors 19.0	are a 19.0	s of Jan. 32.0 2	. 1st c 17.03	of the 23.10	indicate 5 25.54	d calend 23.91	lar yea 37.77	r. 1.45	2.65	17.86	0.00	19.96	.553	.273	.126	.012	.002	.004	.030	.000
0Emission 2 13 36	factors 15.0	are a 9.0	s of Jan. 25.0 2	. 1st c 8.06	of the 12.09	indicate	d calend 12.53	ar yea 27.56	r. 0.76	1.37	10.23	0.00	11.26	.423	.226	.104	.071	.001	.004	.171	.000
0Emission 2 13 36	factors	are a 2.0	s of Jan. 6.0_2	. 1st c 4.08	of the 6.25	indicate	d calend	lar yea 19.68	r. 0.55	0.98	8.51	0.00	6.19	.473	.246	.113	.047	.002	.004	.115	.000
0Emission 2 13 36	18.0	are a 12.0	s of Jan. 29.0_2	. 1st c 5.03	of the 7.91	indicate	d calend 8.18	lar yea 19.41	r. 0.66	1.19	8.52	0.00	7.16	.443	.293	.135	.036	.002	.005	.086	.000
0Emission 2 13 36	18.0	are a 12.0	s of Jan. 29.0_2	. 1st c 5.64	of the 8.69	indicate	d calend	lar yea: 19.26	r. 0.67	1.21	8.66	0.00	7.79	.443	.293	.135	.036	.002	.005	.086	.000
2 13 36	23.0	are a 13.0	s of Jan. 48.0_2	. 1st c 9.62	14.3	indicate	d calend	ar yea: 21.42	r. 0.87	1.60	10.08	0.00	12.21	.443	.293	.135	.036	.002	.005	.086	.000
2 13 36	18.0	are a 12.0	s of Jan. 29.0_2	. 1st c 6.82	10.19	1ndicate	d calend	lar yea: 19.99	r. 0.71	1.30	9.26	0.00	9.05	.443	.293	.135	.036	.002	.005	.086	.000
2 13 36	23.0	are a 13.0	s of Jan. 48.0 2	. 1st c 18.70	26.12	1ndicate 2 28.33	d calend 26.82	ar yea 35.99	r. 1.47	2.70	17.06	0.00	22.54	.443	.293	.135	.036	.002	.005	.086	.000
2 13 36	21.0	17.0	43.0 2	. ist c 14.75	20.76	5 22.62	21.34	ar yea 30.09	1.22	2.25	14.34	0.00	17.22	.575	.218	.100	.030	.002	.003	.072	.000
2 13 36	21.0	are a 17.0	43.0 2	. 1st c 16.86	23.40	1ndicate 5 25.56	d calend 24.12	ar yea 33.85	r. 1.37	2.52	16.08	0.00	19.55	.575	.218	.100	.030	.002	.003	.072	.000
2 13 36	16.0	are a 12.0	s of Jan. 35.0 2	. 1st c 18.03	24.60	1ndicate 5 27.14	d calend 25.44	ar yea 41.56	r. 1.54	2.81	19.56	0.00	21.13	.575	.218	.100	.030	.002	.003	.072	.000
2 13 36	16.0	are a 12.0	35.0 2	. 1st c 23.63	31.69	34.87	d calend 32.69	ar yea 65.43	r. 2.34	4.30	29.87	0.00	28.11	.575	.218	.100	.030	.002	.003	.072	.000
2 13 36	9.0	are a 10.0	16.0_2	. 1st c 5.43	8.1	1ndicate 1 9.16	a caleno 8.44	lar yea: 19.37	r. 0.62	1.12	8.80	0.00	7.34	.503	.246	.113	.039	.002	.004	.093	.000
2 13 36	9.0	are a 10.0	s or Jan. 16.0 2	. 1st c 7.81	11.0	1ndicate 7 12.49	d calend 11.52	ar yea 22.41	r. 0.74	1.35	10.60	0.00	9.93	.503	.246	.113	.039	.002	.004	.093	.000
2 13 36	22.0	are a 25.0	39.0 2	. 1st c 11.42	16.20	1ndicate 5 17.76	d calend 16.74	ar yea 24.62	r. 1.02	1.88	11.71	0.00	13.19	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36	22.0	are a 25.0	39.0 2	. 1st c 13.77	19.25	5 21.03	d calend 19.81	ar yea 28.58	r. 1.19	2.19	13.62	0.00	15.75	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36	15.0	are a 19.0	s of Jan. 29.0 2	. 1st c 14.14	19.39	21.45	d calend 20.04	ar yea 33.03	r. 1.23	2.27	15.70	0.00	16.27	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36	22.0	25.0	39.0 2	. 1st c 11.27	16.0	1101Cate 7 17.55	16.54	24.38	1.01	1.87	11.59	0.00	13.03	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36	15.0	are a 19.0	29.0 2	. 1st c 19.82	26.40	5 29.28	27.35	53.38	1.94	3.57	24.74	0.00	22.93	.633	.192	.088	.024	.002	.003	.058	.000
2 13 36	14.0	are a 14.0	s of Jan. 23.0 2	. 1st c 5.06	51 the 7.79	9 8.70	d calend 8.08	lar yea 19.29	r. 0.64	1.17	8.56	0.00	6.55	.603	.205	.095	.027	.002	.003	.065	.000
2 13 36	14.0	are a 14.0	24.0 2	. 1St C 6.67	9.85	10.98	u calend 10.21	ar yea 20.10	0.70	1.27	9.32	0.00	8.48	.533	.253	.116	.027	.002	.004	.065	.000
2 13 36	20.0	are a 21.0	34.0 2	. 1st c 9.07	13.13	14.44	u calend 13.55	ar yea 22.13	0.87	1.59	10.45	0.00	10.75	.615	.215	.099	.019	.002	.003	.047	.000
ULULISSION	Lactors	are a	s or Jan.	. ISt C	or che	Indicate	u calend	ar yea	£.												

2 13 36	33.0	33.0 54.0	2 13.17	19.03	20.43	19.47	23.42	1.14	2.12	11.12	0.00	14.94	.643	.185	.085	.024	.002	.003	.058	.000
OEmission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ıdar yea	r.	0 10	14 04	0 00	1	640	010	000	010		000	000	
2 13 36	26.0	28.0 43.0	2 15.53	21.63	23.51	22.23	30.09	1.31	2.43	14.34	0.00	17.68	.643	.212	.098	.012	.002	.003	.030	.000
2 1 2 36	20 0	21 0 34 0	2 8 96	12 99	14 20	13 40	21 97	0.86	1 5 8	10 37	0 00	10 63	615	215	000	019	002	003	047	000
0Emission	factors	are as of	Jan 1st	of the t	indicate	d calen	idar vea	0.00	1.50	10.57	0.00	10.05	.015	.215	.099	.019	.002	.005	.01/	.000
2 13 36	18.0	20.0 20.0	2 16.68	22.10	24.75	22.94	44.10	1.59	2.88	20.69	0.00	19.00	.643	.212	.098	.012	.002	.003	.030	.000
0Emission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ldar yea	ır.												
2 13 36	13.0	11.0 21.0	2 4.60	7.18	8.05	7.45	20.68	0.63	1.14	8.65	0.00	6.42	.534	.238	.110	.033	.002	.004	.079	.000
0Emission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ldar yea	ır.												
2 13 36	15.0	15.0 25.0	2 6.00	9.02	10.05	9.35	19.47	0.67	1.23	8.89	0.00	8.07	.463	.280	.129	.036	.002	.004	.086	.000
OEmission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ıdar yea	ır.												
2 13 36	22.0	21.0 36.0	2 7.01	10.58	11.61	10.91	19.61	0.76	1.39	9.00	0.00	8.66	.593	.212	.098	.027	.002	.003	.065	.000
0Emission	factors	are as of	Jan. Ist	of the 1	indicate	d calen	idar yea	ir.	1 76	0 5 0	0 00	11 01	F 0 4	017	100	0.05	000	002	050	000
Z IS 30	32.U	30.0 52.0	2 9.95	-14.85	15.99 indicato	d golon	20.43 dar voa	0.95	1./0	9.52	0.00	11.81	.594	. 21 /	.100	.025	.002	.003	.059	.000
2 13 36	23 0	22 0 37 0	2 11 12	15 85	17 36	16 33	24 78	1 01	1 85	11 79	0 00	12 22	553	273	126	012	002	004	030	000
0Emission	factors	are as of	Jan. 1st	of the t	indicate	d calen	idar vea	1.01	1.05	11.79	0.00	13.35		.275	.120	.012	.002	.004	.050	.000
2 13 36	22.0	21.0 36.0	2 9.16	13.31	14.61	13.72	21.97	0.87	1.60	10.37	0.00	10.96	.593	.212	.098	.027	.002	.003	.065	.000
0Emission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ldar yea	ır.												
2 13 36	19.0	19.0 32.0	2 17.03	23.16	25.54	23.91	37.77	1.45	2.65	17.86	0.00	19.96	.553	.273	.126	.012	.002	.004	.030	.000
OEmission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ıdar yea	ır.												
2 13 36	15.0	9.0 25.0	2 7.80	11.73	13.07	12.15	26.92	0.75	1.35	10.08	0.00	10.95	.423	.226	.104	.071	.001	.004	.171	.000
OEmission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ıdar yea	ır.		0 51			4 - 0							
2 13 36	4.0	2.0 6.0	2 4.08	6.25	, 7.17	, 6.54	19.66	0.55	0.98	8.51	0.00	6.19	. 473	.246	.113	.047	.002	.004	.115	.000
UEmission	Lactors	are as or	Jan. Ist	or the r	indicate	d calen	Idar yea		1 10	0 5 2	0 00	7 27	112	202	125	026	002	005	006	000
Z IS 30	18.U	12.0 29.0	Z 5.13	0.04	8.91 indicato	a.s⊥ d colon	19.35 dar voa	0.00	1.19	8.53	0.00	1.21	.443	. 293	.135	.030	.002	.005	.080	.000
2 1 3 36	18 0	12 0 29 0	2 5 66	8 71	9 66	9 01	19 27	0 67	1 21	8 67	0 00	7 81	443	293	135	036	002	005	086	000
0Emission	factors	are as of	Jan. 1st	of the t	indicate	d calen	Idar vea	r.	1.21	0.07	0.00	7.01	. 115	. 275	.155	.050	.002	.005	.000	.000
2 13 36	23.0	13.0 48.0	2 9.70	14.45	15.67	14.83	21.52	0.87	1.61	10.13	0.00	12.30	.443	.293	.135	.036	.002	.005	.086	.000
0Emission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ldar yea	ır.												
2 13 36	18.0	12.0 29.0	2 6.87	10.25	11.36	10.60	20.05	0.72	1.30	9.29	0.00	9.11	.443	.293	.135	.036	.002	.005	.086	.000
OEmission	factors	are as of	Jan. 1st	of the i	indicate	d calen	ıdar yea	ır.												
2 13 36	23.0	13.0 48.0	2 18.81	26.26	28.49	26.96	36.18	1.48	2.72	17.14	0.00	22.67	.443	.293	.135	.036	.002	.005	.086	.000

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

5 2013 1 2 3 1 6 1 2 2 2 2 2 2 2 1 3 1	RAQC 6	PROME 5/16 s TAMFI SPDFI VMFL2 MYMRE NEWFI IMFL2 ALHFI ALHFI LOCFI TEMFI OUTFN PRTFI IDLFI NMHFI HCFL2	PT strats LG LG LG LG LG LG LG LG LG LG LG LG LG	; I/	M 240	w/4	yr	#e####################################	No mpt Use Use Use Use Use Use No Ant Unc On B0 Cal No VO(No	prompt 80%RS 8	ing D, 2 Fee ario E 5 Fee ario Lario Lap uses CO mission	, vertical 1.7% oxy tampering d for all o has its gistration BER's programs l correcting, no pre refueling record s max and scriptive only sions factors emission	format rates vehicle type own VMT mix distributio on factors ss/purge che emission ra min temp. format factor outpu	es on eck ites
.049 .058	.065 .052	.067 .045	.074 .034	.080	.083 .024	.082	2.0	68 19	.065	5 .043 7 .009	# (#]	Colorado L registrati	DGV on distribut	ion
.007 .058 .056 .017	.005 .055 .060 .013	.003 .044 .051 .009	.001 .047 .035 .004	.001 .047 .032	.078 .031	.071	.0	65 33	.062	2 .045 3 .021	# (#]	Colorado L registrati	DGT1 on distribut	ion
.058 .056 .017	.055 .060 .013	.044 .051 .009	.047 .035 .004	.047 .032 .000	.078 .031	.071 .033	.0 3.0	65 33	.062	2 .045 3 .021	# (#]	Colorado L registrati	DGT2 on distribut	ion
.066 .052 .014	.062 .054 .011	.049 .044 .007	.050 .030 .004	.052 .026 .000	.084 .025	.096 .027	5.0 7.0	69 27	.064	4 .042 7 .018	# (# 1	Colorado H registrati	DGV on distribut	ion
.049	.065	.067	.074	.080	.083 .024	.082 .021	2 .0	68 19	.065	5 .043 7 .009	# (# 1	Colorado L registrati	DDV on distribut	ion
.007 .058 .056	.005	.003	.001 .047 .035	.001 .047 .032	.078 .031	.071	.0 3.0	65 33	.062	2 .045 3 .021	# (# 1	Colorado L registrati	DDT on distribut	ion
.110	.095	.116 .044 .000	.113	.080	.102 .001	.079) .0 .0	62 01	.03	7 .050 L .001	# (# 1	Colorado H registrati	DDV on distribut	ion
.001 .001 .000	.001 .989 .000	.001 .000 .000	.001 .000 .000	.001 .000 .000	.001 .000	.001 .000	.0 .0	01 00	.001	L .001) .000	# (# 1	Colorado M registrati	C on distribut	ion
82 20 82 20 TECH1 IMDAT 82 75	82 09 82 09 2RSD80 RSD80. 09 22	9 00 0 9 00 0).D .D 222 12	00 098 00 098 2 098.	1 2 1 2 221	2221 1112	4222	2 22	.6 0.	10.0) 1.5 2999.				
.001 4 13 01 1	.999 . 19.8 2	.027 . 27.0 1	.017 2 16.0	8.0	52. 12 16.0	2.4 1	.2.4	92	2					
.580. 4 13	219.10 18.7 2)1.028 27.0 1	3.002. L6.0	003. 8.0	067.00 16.0	00	13	AM	1 (CBD	PI	RINCIPAL A	RTERIAL	
.580. 4 13	219.10 15.9 2	01.028 27.0	3.002. 7.0 1	003.	067.00 7.0	00	13	AM	1 (CBD	M	INOR ARTER	IAL	
.580. 4 13	219.10 11.2 2	01.028 27.0	3.002. 7.0 1	003.	067.00 7.0	00	13	AM	1 (CBD	C	OLLECTOR		
.580. 4 13	219.10 35.9 2	01.028 27.0	8.002. 8.0	003. 1.0	067.00 8.0	00	13	AM	1 (CBD	L	OCAL		
.556. 4 13	223.10 29.5 2)3.033 27.0	8.002. 8.0	003. 1.0	080.00 8.0	00	13	AM	1 H	FRINGE	FI	REEWAY		
.556. 4 13	1 223.10 25.8 2)3.033 27.0 4	8.002. 41.0	003. 5.0	080.00 42.0	00	13	AM	1 H	FRINGE	Mž	AJOR REGIO	NAL	
.652. 4 13	159.07 23.0 2	73.032 27.0 4	2.002. 41.0	003. 5.0	079.00 42.0	00	13	AM	1 H	FRINGE	PI	RINCIPAL A	RTERIAL	
01 1 .652. 4 13	159.07 19.5 2	73.032 27.0 2	2.002. 22.0	003. 2.0	079.00 22.0	00	13	AM	1 1	FRINGE	M	INOR ARTER	IAL	
UI 1 .652. 4 13	159.07 28.6 2	73.032 27.0 4	2.002. 11.0	003. 5.0	079.00 42.0	00	13	AM	1 1	FRINGE	C	OLLECTOR		
UI 1 .652. 4 13	159.07 14.1 2	73.032 27.0 2	2.002. 22.0	003. 1.0	079.00 23.0	00	13	AM	1 H	FRINGE	R	AMP		

01 1	1											
01 1 .652 4 13	159.0 40.4)73. 27.	.032 .02	2.0)02. 0	003.	079.000 22.0	13	AM	1	FRINGE	LOCAL
01 1 .629 4 13	1 .192.(33.1)89. 27.	.025 .02	5.C 24.)02. 0	003. 2.0	060.000 24.0	13	AM	1	URBAN	FREEWAY
01 1 .569 4 13	1 .231.1 30.2	L06. 27.	.026 .03	5.C 39.)02. 0	004. 4.0	062.000 40.0	13	AM	1	URBAN	MAJOR REGIONAL
.626 4 13	195.0 28.4)90. 27.	.025 .08	5.C 31.)02. 0	003. 7.0	059.000 83.0	13	AM	1	URBAN	PRINCIPAL ARTERIAL
.668 4 13	176.0 23.0)81. 27.	.020 .0 6).(59.	02.	003. 7.0	050.000 71.0	13	AM	1	URBAN	MINOR ARTERIAL
.637 4 13	.186.0 31.9)86. 27.	.025 .03	5.C 39.)02. 0	003. 4.0	061.000 40.0	13	AM	1	URBAN	COLLECTOR
.626 4 13	.195.(17.1)90. 27.	.025 .0 4	5.C 14.)02. 0	003. 4.0	059.000 46.0	13	AM	1	URBAN	RAMP
.637 4 13	.186.0 46.2)86. 27.	.025 .02	5.C 28.)02. 0	003. 2.0	061.000 28.0	13	AM	1	URBAN	LOCAL
.555	.239.2 35.4	L10. 27.	.026 .0 1	5.0 19.)02. 0	004. 2.0	064.000 19.0	13	AM	1	SUBURBAN	FREEWAY
.498 4 13	.247.2 36.4	L14 27.	.039	9.0 39.)02. 0	004. 3.0	096.000 39.0	13	AM	1	SUBURBAN	MAJOR REGIONAL
.567	1 232.1 32.8	L07. 27.	.026 .0 7	5.C 77.)02. 0	004. 8.0	062.000 77.0	13	AM	1	SUBURBAN	PRINCIPAL ARTERIAL
.622 4 13	199.0 27.9)92. 27.	.024 .07	1.0 73.)02. 0	003. 7.0	058.000 73.0	13	AM	1	SUBURBAN	MINOR ARTERIAL
.610 4 13	.234.2 29.5	L08. 27.	.012 .03	2.C 39.	02.	004. 3.0	030.000 39.0	13	AM	1	SUBURBAN	COLLECTOR
.567 4 13	1 232.1 19.8	L07. 27.	.026 .05	5.C 52.)02. 0	004. 5.0	062.000 52.0	13	AM	1	SUBURBAN	RAMP
.610 4 13	1 234.1 60.2	L08. 27.	.012 .03	2.0 36.)02. 0	004. 1.0	030.000 35.0	13	AM	1	SUBURBAN	LOCAL
.373 4 13	$^{\perp}$.227.2	L05. 27.	. 085 . 0	5.C 8.)01. 0	004.	205.000 8.0	13	AM	1	RURAL	FREEWAY
01 1 .477 4 13	1 .230.2 42.5	L06. 27.	.053 .01	8.0 13.)02. 0	004. 1.0	128.000 13.0	13	AM	1	RURAL	MAJOR REGIONAL
01 1 .549 4 13	1 .243.1 43.1	L12. 27.	.026 .0 1	5.0 L3.)02. .0	004. 1.0	064.000 13.0	13	AM	1	RURAL	PRINCIPAL ARTERIAL
01 1 .549 4 13	1 .243.1 32.2	L12. 27.	.026 .0 5	5.C 57.)02. 0	004. 2.0	064.000 57.0	13	AM	1	RURAL	MINOR ARTERIAL
01 1 .549 4 13	1 .243.1 35.5	L12. 27.	.026 .0 1	5.0 L3.)02. .0	004. 1.0	064.000 13.0	13	AM	1	RURAL	COLLECTOR
01 1 .549 4 13	1 .243.2 .21.5	L12. 27.	.026 .05	5.C 57.)02. 0	004. 2.0	064.000 57.0	13	AM	1	RURAL	RAMP
01 1 .549 4 13	1 .243.1 15.5	L12. 27.	.026 .0 1	5.C)02. .0	004. 8.0	064.000 16.0	13	AM	1	RURAL	LOCAL
01 1 .580 4 13	1 .219.1 14.1	L01. 27.	.028 .01	8.0 16.)02. .0	003. 8.0	067.000 16.0	13	AM	2	CBD	PRINCIPAL ARTERIAL
UL 1 .580 4 13	1 219.1 13.5	L01. 27.	.028 .0	3.C 7.)02. 01	003.	067.000 7.0	13	AM	2	CBD	MINOR ARTERIAL
01 1 .580 4 13	1 .219.1 11.2	L01. 27.	.028 .0	3.C 7.)02. 01	003.	067.000	13	AM	2	CBD	COLLECTOR
01 1 .580 4 13	1 .219.1 29.4	L01. 27.	.028 .0	3.C 8.)02. .0	003. 1.0	067.000	13	AM	2	CBD	LOCAL
01 1 .556 4 13	1 .223.2 22.7	L03. 27.	.033	3.C 8.)02. 0	003.	080.000	13	AM	2	FRINGE	FREEWAY

01 1	1										
.556	.223.10 19.9 2)3. 27.	033. 0 41	002.	003. 5.0	080.000 42.0	13	AM	2	FRINGE	MAJOR REGIONAL
01 1 .652 4 13	1 .159.07 18.3 2	73. 27.	032. 0 41	002.	003. 5.0	079.000 42.0	13	AM	2	FRINGE	PRINCIPAL ARTERIAL
01 1 .652 4 13	1 .159.07 15.8 2	73. 27.	032. 0 22	002.	003. 2.0	079.000 22.0	13	AM	2	FRINGE	MINOR ARTERIAL
01 1 .652 4 13	1 .159.07 24.5 2	73. 27.	032. 0 41	002.	003. 5.0	079.000 42.0	13	AM	2	FRINGE	COLLECTOR
01 1 .652 4 13	1 .159.07 14.1 2	73. 27.	032. 0 22	002.	003. 1.0	079.000 23.0	13	AM	2	FRINGE	RAMP
01 1 .652 4 13	1 .159.07 34.0 2	73. 27.	032. 0 22	002.	003. 2.0	079.000 22.0	13	AM	2	FRINGE	LOCAL
01 1 .629 4 13	1 .192.08 27.0 2	39. 27.	025. 0 24	002. .0	003. 2.0	060.000 24.0	13	AM	2	URBAN	FREEWAY
01 1 .569 4 13	1 .231.1(25.3 2)6. 27.	026. 0 39	002.	004. 4.0	062.000 40.0	13	AM	2	URBAN	MAJOR REGIONAL
.626 4 13	195.09 22.9	90. 27.	025. 0 81	002.	003. 7.0	059.000 83.0	13	AM	2	URBAN	PRINCIPAL ARTERIAL
.668 4 13	176.08 20.6	31. 27.	020. 0 69	002.	003. 7.0	050.000 71.0	13	AM	2	URBAN	MINOR ARTERIAL
.637 4 13	186.08 28.6 2	36. 27.	025. 0 39	002.	003. 4.0	061.000 40.0	13	AM	2	URBAN	COLLECTOR
.626 4 13	195.09 17.1	90. 27.	025. 0 44	002. .0	003. 4.0	059.000 46.0	13	AM	2	URBAN	RAMP
.637 4 13	186.08 39.6 2	36. 27.	025. 0 28	002. 8.0	003. 2.0	061.000 28.0	13	AM	2	URBAN	LOCAL
.555	.239.11 28.5 2	LO. 27.	026. 0 19	002.	004. 2.0	064.000 19.0	13	AM	2	SUBURBAN	FREEWAY
.498 4 13	1 .247.11 29.9 2	L4. 27.	039. 039	002.	004. 3.0	096.000 39.0	13	AM	2	SUBURBAN	MAJOR REGIONAL
.567 4 13	.232.10 26.6 2)7. 27.	026. 0 77	002.	004. 8.0	062.000 77.0	13	AM	2	SUBURBAN	PRINCIPAL ARTERIAL
.622 4 13	199.09	92. 27.	024. 0 73	002. 3.0	003. 7.0	058.000 73.0	13	AM	2	SUBURBAN	MINOR ARTERIAL
.610 4 13	1 234.10 26.2)8. 27.	012. 0 39	002.	004. 3.0	030.000 39.0	13	AM	2	SUBURBAN	COLLECTOR
.567 4 13	1 .232.10 19.8 2)7. 27.	026. 0 52	002.	004. 5.0	062.000 52.0	13	AM	2	SUBURBAN	RAMP
.610 4 13	1 .234.10 56.8 2)8. 27.	012. 0 36	002. 5.0	004. 1.0	030.000 35.0	13	AM	2	SUBURBAN	LOCAL
.373 4 13	$\begin{array}{c} 1\\.227.10\\41.0\end{array}$)5. 27.	085. 0 8	001. 8.0	004.0.0	205.000 8.0	13	AM	2	RURAL	FREEWAY
.477 4 13	.230.10 38.4 2)6. 27.	053. 0 13	002. 3.0	004. 1.0	128.000 13.0	13	AM	2	RURAL	MAJOR REGIONAL
.549 4 13	$ \begin{array}{c} 1 \\ 243.11 \\ 41.7 \\ 1 \end{array} $	L2. 27.	026. 0 13	002. 8.0	004. 1.0	064.000 13.0	13	AM	2	RURAL	PRINCIPAL ARTERIAL
.549 4 13	1 243.11 30.8 2	L2. 27.	026. 0 57	002.	004. 2.0	064.000 57.0	13	AM	2	RURAL	MINOR ARTERIAL
UI 1 .549 4 13	1 243.11 31.8 2	L2. 27.	026. 0 13	002. 3.0	004. 1.0	064.000 13.0	13	AM	2	RURAL	COLLECTOR
U1 1 .549 4 13	1 243.11 21.5 2	L2. 27.	026. 0 57	002.	004. 2.0	064.000 57.0	13	AM	2	RURAL	RAMP
01 1 .549 4 13	1 .243.11 11.3 2	L2. 27.	026. 0 16	002.	004.	064.000 16.0	13	AM	2	RURAL	LOCAL

01 1	1 219 10	1 0	28	002	003	067 000	13	ΔМ	۲	CBD	PRINCIPAL ARTERIAL
4 13 01 1	10.6 2	27.0	16	.0	8.0	16.0	10	1111	5	CDD	
.580 4 13 01 1	219.10 11.1 2	01.0 27.0	28. 7	002. .0 1	003.	067.000 7.0	13	AM	3	CBD	MINOR ARTERIAL
.580	.219.10 11.2 2	01.0 27.0	28. 7	002. .0 1	003.	067.000 7.0	13	AM	3	CBD	COLLECTOR
.580	.219.10 23.3 2	01.0 27.0	28. 8	002. .0	003. 1.0	067.000 8.0	13	AM	3	CBD	LOCAL
.556	1 223.10 16.5 2	03.0 27.0	33. 8	002. .0	003. 1.0	080.000 8.0	13	AM	3	FRINGE	FREEWAY
.556	1 223.10 15.0 2	03.0 27.0	33. 41	002. .0	003. 5.0	080.000 42.0	13	AM	3	FRINGE	MAJOR REGIONAL
.652 4 13	1 159.07 14.5 2	3.0 7.0	32. 41	002.	003. 5.0	079.000 42.0	13	AM	3	FRINGE	PRINCIPAL ARTERIAL
01 1 .652 4 13	1 .159.07 12.9 2	3.0 7.0	32. 22	002. .0	003. 2.0	079.000 22.0	13	AM	3	FRINGE	MINOR ARTERIAL
01 1 .652 4 13	1 159.07 20.7 2	3.0 7.0	32. 41	002.	003. 5.0	079.000 42.0	13	AM	3	FRINGE	COLLECTOR
01 1 .652 4 13	1 .159.07 14.1 2	3.0 7.0	32. 22	002. .0	003. 1.0	079.000 23.0	13	AM	3	FRINGE	RAMP
01 1 .652 4 13	1 159.07 27.6 2	3.0 7.0	32. 22	002. .0	003. 2.0	079.000 22.0	13	AM	3	FRINGE	LOCAL
01 1 .629 4 13	1 .192.08 21.2 2	9.0 7.0	25. 24	002.	003. 2.0	060.000 24.0	13	AM	3	URBAN	FREEWAY
01 1 .569 4 13	1 231.10 20.7 2	06.0 27.0	26. 39	002. .0	004. 4.0	062.000 40.0	13	AM	3	URBAN	MAJOR REGIONAL
01 1 .626 4 13	1 195.09 18.8 2	0.0	25. 81	002.	003. 7.0	059.000 83.0	13	AM	3	URBAN	PRINCIPAL ARTERIAL
01 1 .668 4 13	1 .176.08 17.9 2	81.0 27.0	20. 69	002. .0	003. 7.0	050.000 71.0	13	AM	3	URBAN	MINOR ARTERIAL
01 1 .637 4 13	1 186.08 25.5 2	86.0 27.0	25. 39	002. .0	003. 4.0	061.000 40.0	13	AM	3	URBAN	COLLECTOR
01 1 .626 4 13	1 .195.09 17.1 2	0.0	25. 44	002.	003. 4.0	059.000 46.0	13	AM	3	URBAN	RAMP
01 1 .637 4 13	1 .186.08 31.7 2	6.0 7.0	25. 28	002. .0	003. 2.0	061.000 28.0	13	AM	3	URBAN	LOCAL
01 1 .555 4 13	1 .239.11 22.9 2	0.0	26. 19	002. .0	004. 2.0	064.000 19.0	13	AM	3	SUBURBAN	FREEWAY
01 1 .498 4 13	1 .247.11 24.2 2	4.0 7.0	39. 39	002. .0	004. 3.0	096.000 39.0	13	AM	3	SUBURBAN	MAJOR REGIONAL
01 1 .567 4 13	1 .232.10 21.2 2	07.0 27.0	26. 77	002. .0	004. 8.0	062.000 77.0	13	AM	3	SUBURBAN	PRINCIPAL ARTERIAL
01 1 .622 4 13	1 .199.09 21.3 2	2.0 7.0	24. 73	002. .0	003. 7.0	058.000 73.0	13	AM	3	SUBURBAN	MINOR ARTERIAL
01 1 .610 4 13	1 .234.10 23.6 2	08.0 27.0	12. 39	002. .0	004. 3.0	030.000 39.0	13	AM	3	SUBURBAN	COLLECTOR
01 1 .567 4 13	1 232.10 19.8 2)7.0 27.0	26. 52	002. .0	004. 5.0	062.000 52.0	13	AM	3	SUBURBAN	RAMP
01 1 .610 4 13	1 234.10 51.6 2	08.0 27.0	12. 36	002. .0	004. 1.0	030.000 35.0	13	AM	3	SUBURBAN	LOCAL
01 1 .373 4 13	1 227.10 35.4 2)5.0 27.0	85. 8	001.	004. 0.0	205.000 8.0	13	AM	3	RURAL	FREEWAY
01 1 .477 4 13	1 230.10 33.9 2	06.0 27.0	53. 13	002.	004. 1.0	128.000 13.0	13	AM	3	RURAL	MAJOR REGIONAL

01 1	1								
.549	.243.112 38.5 27	.026.0 .0 13.	02.004. 0 1.0	064.000 13.0	13	AM	3	RURAL	PRINCIPAL ARTERIAL
.549 4 13	$^{1}_{243.112}_{29.427}$.026.0 .0 57.	002.004. 0 2.0	064.000 57.0	13	AM	3	RURAL	MINOR ARTERIAL
.549 4 13	.243.112 29.3 27	.026.0 .0 13.	002.004. 0 1.0	064.000 13.0	13	AM	3	RURAL	COLLECTOR
.549 4 13	.243.112 21.5 27	.026.0 .0 57.	002.004. 0 2.0	064.000 57.0	13	AM	3	RURAL	RAMP
.549 4 13 01 1	.243.112 22.4 52	.026.0 .0 46.)02.004. .0 12.0	064.000 59.0	13	AM	3	RURAL	LOCAL
.633 4 13 01 1	.178.082 19.3 52 1	.030.0 .0 46.	02.003. 0 12.0	072.000 59.0	13	PM	4	CBD	PRINCIPAL ARTERIAL
.633 4 13 01 1	.178.082 16.4 52 1	.030.0 .0 45.	02.003. 0 8.0	072.000 56.0	13	PM	4	CBD	MINOR ARTERIAL
.633 4 13 01 1	.178.082 11.2 52 1	.030.0 .0 45.	02.003. 0 8.0	072.000 56.0	13	PM	4	CBD	COLLECTOR
.633 4 13 01 1	.178.082 36.7 52 1	.030.0 .0 8.	02.003. 0 7.0	072.000 12.0	13	ΡM	4	CBD	LOCAL
.533 4 13 01 1	.246.113 31.6 52 1	.030.0	02.004. 0 7.0	072.000 12.0	13	ΡM	4	FRINGE	FREEWAY
.533 4 13 01 1	.246.113 27.0 52 1	.030.0	02.004. 0 19.0	072.000 43.0	13	PM	4	FRINGE	MAJOR REGIONAL
.614 4 13 01 1	.198.091 23.8 52 1	.027.0	02.003. 0 19.0	065.000 43.0	13	PM	4	FRINGE	PRINCIPAL ARTERIAL
.614 4 13 01 1	.198.091 20.8 52 1	.027.0	02.003. 0 14.0	065.000 46.0	13	PM	4	FRINGE	MINOR ARTERIAL
.614 4 13 01 1	.198.091 27.4 52 1	.027.0	02.003. 0 19.0	065.000 43.0	13	PM	4	FRINGE	COLLECTOR
.614 4 13 01 1	.198.091 14.1 52 1	.027.0	02.003. 0 14.0	065.000 46.0	13	PM	4	FRINGE	RAMP
.614 4 13 01 1	.198.091 41.7 52 1	.027.0	02.003. 0 7.0	065.000 12.0	13	PM	4	FRINGE	LOCAL
.603 4 13 01 1	.212.098 35.5 52 1	.024.0 .0 15.	02.003. 0 14.0	058.000 23.0	13	PM	4	URBAN	FREEWAY
.573 4 13 01 1	.246.113 31.0 52 1	.018.0 .0 19.	02.004. 0 17.0	044.000 30.0	13	PM	4	URBAN	MAJOR REGIONAL
.609 4 13 01 1	.212.098 29.1 52 1	.022.0 .0 39.	02.003. 0 37.0	054.000 60.0	13	PM	4	URBAN	PRINCIPAL ARTERIAL
.633 4 13 01 1	.212.098 23.8 52 1	.015.0 .0 24.	02.003. 0 24.0	037.000 38.0	13	PM	4	URBAN	MINOR ARTERIAL
.683 4 13 01 1	.185.085 31.3 52 1	.012.0 .0 19.	02.003. 0 17.0	030.000 30.0	13	PM	4	URBAN	COLLECTOR
.609 4 13 01 1	.212.098 17.1 52 1	.022.0 .0 19.	02.003. 0 19.0	054.000 31.0	13	PM	4	URBAN	RAMP
.683 4 13 01 1	.185.085 50.5 52 1	.012.0 .0 13.	02.003. 0 10.0	030.000 19.0	13	PM	4	URBAN	LOCAL
.562 4 13 01 1	.237.109 39.1 52 1	.025.0 .0 14.	02.004. 0 23.0	061.000 22.0	13	ΡM	4	SUBURBAN	FREEWAY
.462 4 13 01 1	.287.132 38.1 52 1	.033.0	02.005. 0 11.0	079.000 18.0	13	ΡM	4	SUBURBAN	MAJOR REGIONAL
.544 4 13 01 1	.259.119 35.9 52 1	.021.0 .0 25.	02.004. 0 24.0	051.000 37.0	13	PM	4	SUBURBAN	PRINCIPAL ARTERIAL
.583 4 13	.234.108 28.9 52	.020.0 .0 28.)02.004. .0 26.0	049.000 43.0	13	ΡM	4	SUBURBAN	MINOR ARTERIAL

01 1 .633 4 13	1 .212.09 31.9 5	98.01 52.0	15.0 12.	02.0)03. L.O	037.000	13	PM	4	SUBURBAN	COLLECTOR
01 1 .544 4 13	1 .259.11 19.8 5	L9.02	21.0 19.	02.0)04. 3.0	051.000 29.0	13	PM	4	SUBURBAN	RAMP
01 1 .633 4 13	1 .212.09 61.5 5	98.01 52.0	15.0 16.	02.0)03. 9.0	037.000	13	PM	4	SUBURBAN	LOCAL
01 1 .404 4 13	1 .246.11 48.4 5	L3.00	58.0 3.	01.0)04. 2.0	164.000 5.0	13	PM	4	RURAL	FREEWAY
01 1 .483 4 13	1 .266.12 45.2 5	23.03 52.0	36.0 16.	02.0)04. 3.0	086.000 24.0	13	PM	4	RURAL	MAJOR REGIONAL
01 1 .602 4 13	1 .226.10 43.5 5	04.02 52.0	18.0 16.	02.0)04. 3.0	044.000 24.0	13	PM	4	RURAL	PRINCIPAL ARTERIAL
.602 4 13	.226.10 33.9 5	04.02 52.0	18.0 23.	02.0)04. 3.0	044.000 34.0	13	PM	4	RURAL	MINOR ARTERIAL
.602 4 13	.226.10 37.6 5	04.01 52.0	18.0 16.	02.0)04. 3.0	044.000 24.0	13	PM	4	RURAL	COLLECTOR
.602 4 13	.226.10 21.3 5	04.01 52.0	18.0 23.	02.0)04. 3.0	044.000 34.0	13	PM	4	RURAL	RAMP
.602 4 13	.226.10 15.5 5	04.02 52.0	18.0 46.	02.0)04. 2.0	044.000 59.0	13	PM	4	RURAL	LOCAL
.633 4 13	.178.08 13.5 5	32.03 52.0	30.0 46.	02.0	003. 2.0	072.000 59.0	13	PM	5	CBD	PRINCIPAL ARTERIAL
.633 4 13	.178.08 13.1 5	32.03 52.0	30.0 45.	02.0	003. 3.0	072.000 56.0	13	PM	5	CBD	MINOR ARTERIAL
.633 4 13	.178.08 11.2 5	32.03 52.0	30.0 45.	02.0	003. 3.0	072.000 56.0	13	PM	5	CBD	COLLECTOR
.633 4 13	.178.08 28.3 5	32.03 52.0	30.0 8.	02.0	003. 7.0	072.000 12.0	13	PM	5	CBD	LOCAL
.533 4 13	.246.11 25.0 5	L3.03 52.0	30.0 8.	02.0	004. 7.0	072.000 12.0	13	PM	5	FRINGE	FREEWAY
.533 4 13	.246.11 19.6 5	L3.03 52.0	30.0 30.	02.0)04. 9.0	072.000 43.0	13	PM	5	FRINGE	MAJOR REGIONAL
.614 4 13	.198.09 17.8 5	91.02 52.0	27.0 30.	02.0)03. 9.0	065.000 43.0	13	PM	5	FRINGE	PRINCIPAL ARTERIAL
.614 4 13	.198.09 17.7 5	91.02 52.0	27.0 34.	02.0 0 14	003. 1.0	065.000 46.0	13	PM	5	FRINGE	MINOR ARTERIAL
.614 4 13	.198.09 23.0 5	91.02 52.0	27.0 30.	02.0)03. 9.0	065.000 43.0	13	PM	5	FRINGE	COLLECTOR
.614 4 13	.198.09 14.1 5	91.02 52.0	27.0 34.	02.0	003. 1.0	065.000 46.0	13	PM	5	FRINGE	RAMP
.614 4 13	.198.09 31.7 5	91.02 52.0	27.0 8.	02.0)03. 7.0	065.000 12.0	13	PM	5	FRINGE	LOCAL
.603 4 13	.212.09 26.0 5	98.02 52.0	24.0 15.	02.0	003. 1.0	058.000 23.0	13	PM	5	URBAN	FREEWAY
.573 4 13	.246.11 24.3 5	L3.03 52.0	18.0 19.	02.0)04. 7.0	044.000 30.0	13	PM	5	URBAN	MAJOR REGIONAL
.609 4 13	.212.09 22.6 5	98.02 52.0	22.0 39.	02.0	003. 7.0	054.000 60.0	13	PM	5	URBAN	PRINCIPAL ARTERIAL
.633 4 13	.212.09 21.2 5	98.01 52.0	15.0 24.	02.0	003. 1.0	037.000 38.0	13	PM	5	URBAN	MINOR ARTERIAL
.683 4 13	.185.08 27.5 5	35.01 52.0	12.0 19.	02.0)03. 7.0	030.000 30.0	13	ΡM	5	URBAN	COLLECTOR
.609 4 13	17.1 5	98.02 52.0	22.0 19.	02.0)03. 9.0	054.000 31.0	13	PM	5	URBAN	RAMP

01 1 .683	1 .185.08 41 7 5	5.012	2.002	.003.	030.000	13	PM	5	URBAN	LOCAL
01 1 .562 4 13	1 .237.10 30.8 5	9.025 2.0 1	5.002 4.0	.004. 23.0	061.000	13	PM	5	SUBURBAN	FREEWAY
01 1 .462 4 13	1 .287.13 31.1 5	2.033 2.0 1	8.002 2.0	.005. 11.0	079.000 18.0	13	PM	5	SUBURBAN	MAJOR REGIONAL
01 1 .544 4 13	1 .259.11 29.9 5	9.021 2.0 2	.002 25.0	.004. 24.0	051.000 37.0	13	PM	5	SUBURBAN	PRINCIPAL ARTERIAL
.583 4 13 01 1	.234.10 26.1 5 1	8.020 2.0 2	0.002 28.0	.004. 26.0	049.000 43.0	13	PM	5	SUBURBAN	MINOR ARTERIAL
.633 4 13 01 1	.212.09 27.7 5 1	8.015 2.0 1	5.002 2.0	.003. 11.0	037.000 18.0	13	PM	5	SUBURBAN	COLLECTOR
.544 4 13 01 1	.259.11 19.8 5 1	9.021 2.0 1	.002 .9.0	.004. 18.0	051.000 29.0	13	РM	5	SUBURBAN	RAMP
.633 4 13 01 1	.212.09 58.5 5 1	8.015 2.0 1	5.002 .6.0	.003. 9.0	037.000 23.0	13	PM	5	SUBURBAN	LOCAL
.404 4 13 01 1	.246.11 44.5 5 1	3.068 2.0	3.001 3.0	.004. 2.0	164.000 5.0	13	PM	5	RURAL	FREEWAY
.483 4 13 01 1	.266.12 40.8 5 1	3.036 2.0 1	5.002 .6.0	.004. 13.0	086.000 24.0	13	ΡM	5	RURAL	MAJOR REGIONAL
.602 4 13 01 1	.226.10 42.7 5 1	4.018 2.0 1	3.002 .6.0	.004. 13.0	044.000 24.0	13	PM	5	RURAL	PRINCIPAL ARTERIAL
.602 4 13 01 1	.226.10 32.8 5 1	4.018 2.0 2	8.002 23.0	.004. 13.0	044.000 34.0	13	PM	5	RURAL	MINOR ARTERIAL
.602 4 13	.226.10 35.4 5	4.018 2.0 1	8.002 .6.0	.004. 13.0	044.000 24.0	13	PM	5	RURAL	COLLECTOR
.602 4 13	.226.10 21.3 5	4.018 2.0 2	8.002 23.0	.004. 13.0	044.000 34.0	13	PM	5	RURAL	RAMP
.602 4 13	.226.10 11.6 5	4.018 2.0 4	8.002 46.0	.004. 12.0	044.000 59.0	13	PM	5	RURAL	LOCAL
.633 4 13	178.08 9.7 5	2.030 2.0 4).002 46.0 :	.003. 12.0	072.000 59.0	13	PM	6	CBD	PRINCIPAL ARTERIAL
.633	.178.08 10.4 5	2.030 2.0 4).002 15.0	.003. 8.0	072.000 56.0	13	РM	6	CBD	MINOR ARTERIAL
.633	.178.08 11.2 5	2.030 2.0 4).002 15.0	.003. 8.0	072.000 56.0	13	PM	б	CBD	COLLECTOR
.633 4 13	178.08 22.6 5	2.030 2.0).002 8.0	.003. 7.0	072.000 12.0	13	PM	6	CBD	LOCAL
.533 4 13	1 .246.11 19.5 5	3.030 2.0).002 8.0	.004. 7.0	072.000 12.0	13	PM	6	FRINGE	FREEWAY
.533 4 13	$^{1}_{.246.11}_{.15.15}$	3.030 2.0 3).002 30.0	.004. 19.0	072.000 43.0	13	PM	6	FRINGE	MAJOR REGIONAL
.614 4 13	1 .198.09 13.6 5	1.027 2.0 3	7.002 30.0	.003. 19.0	065.000 43.0	13	PM	6	FRINGE	PRINCIPAL ARTERIAL
.614 4 13	$1 \\ 198.09 \\ 14.1 5$	1.027 2.0 3	7.002 34.0	.003. 14.0	065.000 46.0	13	PM	6	FRINGE	MINOR ARTERIAL
01 1 .614 4 13	1 198.09 19.5 5	1.027 2.0 3	7.002 30.0 3	.003. 19.0	065.000 43.0	13	PM	б	FRINGE	COLLECTOR
01 1 .614 4 13	198.09 14.1 5	1.027 2.0 3	7.002 34.0	.003. 14.0	065.000 46.0	13	PM	6	FRINGE	RAMP
01 1 .614 4 13	1 .198.09 25.2 5	1.027 2.0	7.002 8.0	.003. 7.0	065.000 12.0	13	PM	6	FRINGE	LOCAL
01 1 .603 4 13	1 .212.09 20.7 5	8.024 2.0 1	1.002 5.0	.003. 14.0	058.000 23.0	13	PM	6	URBAN	FREEWAY

01 1	1											
01 1 .573 4 13	1 .246.11 19.4 5	3.01	.8.0 19.	02.0 0 17	04. .0	044.000 30.0	13	PM	6	URBAN	MAJOR	REGIONAL
01 1 .609 4 13	1 .212.09 17.5 5	98.02 52.0	22.0 39.	02.0 0 37	03. .0	054.000 60.0	13	PM	6	URBAN	PRINCI	PAL ARTERIAL
01 1 .633 4 13	1 .212.09 18.5 5	98.01 52.0	5.0 24.	02.0 0 24	03. .0	037.000 38.0	13	PM	6	URBAN	MINOR	ARTERIAL
01 1 .683 4 13	1 .185.08 24.9 5	85.01 52.0	2.0 19.	02.0 0 17	03. .0	030.000 30.0	13	PM	6	URBAN	COLLEC	CTOR
01 1 .609 4 13	1 .212.09 17.1 5	98.02 52.0	22.0 19.	02.0 0 19	03. .0	054.000 31.0	13	PM	6	URBAN	RAMP	
01 1 .683 4 13	1 .185.08 34.6 5	85.01 52.0	2.0 13.	02.0 0 10	03. .0	030.000 19.0	13	PM	6	URBAN	LOCAL	
01 1 .562 4 13	1 .237.10 25.2 5)9.02 52.0	25.0 14.	02.0 0 23	04. .0	061.000 22.0	13	PM	6	SUBURBAN	FREEWA	ΔY
01 1 .462 4 13	1 .287.13 25.4 5	82.03 52.0	3.0 12.	02.0 0 11	05. .0	079.000 18.0	13	PM	6	SUBURBAN	MAJOR	REGIONAL
01 1 .544 4 13	1 .259.11 24.2 5	.9.02 52.0	21.0 25.	02.0 0 24	04. .0	051.000 37.0	13	PM	6	SUBURBAN	PRINCI	PAL ARTERIAL
.583 4 13	1 .234.10 .23.3 5)8.02 52.0	20.0 28.	02.0 0 26	04. .0	049.000 43.0	13	PM	6	SUBURBAN	MINOR	ARTERIAL
.633 4 13	1 212.09 25.4 5	98.01 52.0	5.0 12.	02.0 0 11	03. .0	037.000 18.0	13	PM	6	SUBURBAN	COLLEC	TOR
.544 4 13	1 259.11 19.8 5	9.02	21.0 19.	02.0 0 18	04. .0	051.000 29.0	13	PM	6	SUBURBAN	RAMP	
.633 4 13	1 212.09 53.9 5	98.01 52.0	5.0 16.	02.0 0 9	03. .0	037.000 23.0	13	PM	6	SUBURBAN	LOCAL	
.404 4 13	1 .246.11 .39.0 5	3.06	58.0 3.	01.0 0 2	04. .0	164.000 5.0	13	PM	6	RURAL	FREEWA	XΥ
.483 4 13	1 .266.12 .37.1 5	23.03	36.0 16.	02.0 0 13	04. .0	086.000 24.0	13	PM	6	RURAL	MAJOR	REGIONAL
.602 4 13	1 .226.10 .39.9 5)4.01 52.0	8.0 16.	02.0 0 13	04. .0	044.000 24.0	13	PM	6	RURAL	PRINCI	PAL ARTERIAL
.602 4 13	1 .226.10 31.7 5)4.01 52.0	.8.0 23.	02.0 0 13	04. .0	044.000 34.0	13	PM	6	RURAL	MINOR	ARTERIAL
01 1 .602 4 13	1 .226.10 32.9 5	04.01 52.0	8.0 16.	02.0 0 13	04. .0	044.000 24.0	13	PM	6	RURAL	COLLEC	TOR
01 1 .602 4 13	1 .226.10 21.3 5	04.01 52.0	8.0 23.	02.0 0 13	04. .0	044.000 34.0	13	PM	6	RURAL	RAMP	
.602 4 13	1 .226.10 27.0 3)4.01 36.0	.8.0 21.	02.0 0 17	04. .0	044.000 43.0	13	PM	6	RURAL	LOCAL	
.575 4 13	1 .218.10 .25.1 3)0.03 86.0	30.0 21.	02.0 0 17	03. .0	072.000 43.0	13	OFF	7	CBD	PRINCI	PAL ARTERIAL
01 1 .575 4 13	1 .218.10 20.0 3)0.03 86.0	30.0 16.	02.0 0 12	03. .0	072.000 35.0	13	OFF	7	CBD	MINOR	ARTERIAL
01 1 .575 4 13	1 .218.10 11.2 3)0.03 86.0	30.0 16.	02.0 0 12	03. .0	072.000 35.0	13	OFF	7	CBD	COLLEC	TOR
01 1 .575 4 13	1 .218.10 55.0 3)0.03 36.0	30.0 9.	02.0 0 10	03. .0	072.000 16.0	13	OFF	7	CBD	LOCAL	
01 1 .503 4 13	1 .246.11 39.8 3	3.03	89.0 9.	02.0 0 10	04. .0	093.000 16.0	13	OFF	7	FRINGE	FREEWA	ΛY
01 1 .503 4 13	1 .246.11 35.0 3	3.03	39.0 22.	02.0 0 25	04. .0	093.000 39.0	13	OFF	7	FRINGE	MAJOR	REGIONAL
01 1 .633 4 13	1 .192.08 30.0 3	88.02 86.0	24.0	02.0 0 25	03. .0	058.000 39.0	13	OFF	7	FRINGE	PRINCI	PAL ARTERIAL

01 1 .633 4 13	1 .192.0 25.0	88 36	.024	1.(15	002 .0	.00 19.	3. 0	058.000 29.0)	13	OFF	7	FRINGE	MINOR A	RTERIAL	
01 1 .633 4 13	1 .192.0 38.9	88 36	.024 .02	1.(22	002 .0	.00 25.	3. 0	058.000 39.0)	13	OFF	7	FRINGE	COLLECT	OR	
01 1 .633 4 13	1 .192.0 14.1	88 36	.024 .0 1	1.(15	002 .0	.00 19.	3. 0	058.000 29.0)	13	OFF	7	FRINGE	RAMP		
.633 4 13 01 1	.192.0 58.0 1	88 36	.024 .0 1	1.(L4	002 .0	.00 14.	3. 0	058.000 23.0)	13	OFF	7	FRINGE	LOCAL		
.603 4 13 01 1	.205.0 45.0 1	95 36	.027 .01	7.(L4	002 .0	.00 14.	3. 0	065.000 24.0)	13	OFF	7	URBAN	FREEWAY		
.533 4 13 01 1	.253.1 37.0 1	16 36	.027 .027	7.(20	002 .0	.00 21.	4. 0	065.000 34.0)	13	OFF	7	URBAN	MAJOR R	EGIONAL	
.615 4 13 01 1	.215.0 35.0 1	99 36	.019	9.0 33	002 .0	.00 33.	3. 0	047.000 54.0)	13	OFF	7	URBAN	PRINCIP	AL ARTERIA	L
.643 4 13 01 1	.185.0 25.0 1	85 36	.024	1.(26	.0	28.	3. 0	058.000 43.0)	13	OFF	7	URBAN	MINOR A	RTERIAL	
.043 4 13 01 1 615	.212.0 39.0 1 215.0	36	.012	20 20	.0 .0	21.	3. 0 3	030.000 34.0 047 000)	13	OFF	7	URBAN	RAMD	OR	
4 13 01 1 .643	17.1 1 212.0	36 98	.012	18 2.0	.0	20.	0 3.	20.0 030.000)	13	OFF	, 7	URBAN	LOCAL		
4 13 01 1 .534	58.0 1 .238.1	36 10	.01	L3 3.(.0 002	11.	0 4.	21.0 079.000)	13	OFF	7	SUBURBAN	FREEWAY	-	
4 13 01 1 .463	45.0 1 .280.1	36 29	.01 .030	L5 5.0	.0 002	15. .00	0 4.	25.0 086.000)	13	OFF	7	SUBURBAN	MAJOR R	EGIONAL	
4 13 01 1 .593	45.0 1 .212.0	36 98	.02	22	.0 002	21.	03.	36.0 065.000)	13	OFF	7	SUBURBAN	PRINCIP	PAL ARTERIA	L
4 13 01 1 .594 4 13	39.8 1 .217.1	36	.025	52 5.(.0	30.	3.	52.0 059.00(37.0)	13	OFF	7	SUBURBAN	MINOR A	RTERIAL	
01 1 .553 4 13	1 .273.1 39.0	26	.012	2.0	.0 202 .0	.00	4.	030.000 36.0)	13	OFF	7	SUBURBAN	COLLECT	OR	
01 1 .593 4 13	1 .212.0 19.7	98 36	.027	7.(L9	002	.00 19.	3. 0	065.000 32.0)	13	OFF	7	SUBURBAN	RAMP		
01 1 .553 4 13	1 .273.1 63.0	26 36	.012 .0 1	2.0 L5	002 .0	.00 9.	4. 0	030.000 25.0)	13	OFF	7	SUBURBAN	LOCAL		
01 1 .423 4 13	1 .226.1 49.0	04 36	.071 .0	L.(4	001 .0	.00 2.	4. 0	171.000 6.0)	13	OFF	7	RURAL	FREEWAY		
01 1 .473 4 13	1 .246.1 48.0	13 36	.047 .01	7.(L8	002 .0	.00 12.	4. 0	115.000 29.0)	13	OFF	7	RURAL	MAJOR R	EGIONAL	
.443 4 13	$^{1}_{293.1}_{44.0}$	35 36	.030 .0 1	5.0 L8	002 .0	.00 12.	5. 0	086.000 29.0)	13	OFF	7	RURAL	PRINCIP	PAL ARTERIA	L
.443 4 13 01 1	.293.1 35.0 1	35 36	.036 .02	5.0 23	002 .0	.00 13.	5. 0	086.000 48.0)	13	OFF	7	RURAL	MINOR A	RTERIAL	
.443 4 13 01 1	.293.1 39.1 1	35 36	.036 .0 1	5.0 L8	002 .0	.00 12.	5. 0	086.000 29.0)	13	OFF	7	RURAL	COLLECT	OR	
.443 4 13 01 1	.293.1 20.6 1	35 36	.030 .02	5.0 23	002	.00 13.	5. 0	086.000 48.0)	13	OFF	7	RURAL	RAMP		
.443 4 13 01 1	.293.1 26.2 1	35 36	.036	5.(21	002 .0	.00 17.	5. 0	086.000 43.0)	13	OFF	7	RURAL	LOCAL		
.575 4 13 01 1	.218.1 24.3 1	00 36	.030).(21	002	.00 17.	3. 0	072.000)	13	OFF	8	CBD	PRINCIP	AL ARTERIA	L
.575 4 13	.218.1 19.3	00 36	.030 .0 1).(L6	002 .0	.00 12.	3. 0	072.000 35.0)	13	OFF	8	CBD	MINOR A	RTERIAL	

01 1 .575 4 13	1 .218.1 11.2	00. 36.	030 01	.0	02	.003 12.0	.072.000 35.0	13	OFF	8	CBD	COLLECTOR
01 1 .575 4 13	1 .218.1 51.3	00. 36.	030	.0 9.	02	.003	.072.000 16.0	13	OFF	8	CBD	LOCAL
01 1 .503 4 13	1 .246.1 .38.4	13. 36.	039 0	.0 9.	02	.004 10.0	.093.000 16.0	13	OFF	8	FRINGE	FREEWAY
.503 4 13	$^{1}_{.246.1}_{.34.0}$	13. 36.	039	.0 2.	02	.004 25.0	.093.000 39.0	13	OFF	8	FRINGE	MAJOR REGIONAL
.633 4 13	192.0 28.9	88. 36.	024 02	.0 2.	02	.003 25.0	.058.000 39.0	13	OFF	8	FRINGE	PRINCIPAL ARTERIAL
.633 4 13	.192.0 24.4	88. 36.	024 0 1	.0 5.	02	.003 19.0	.058.000 29.0	13	OFF	8	FRINGE	MINOR ARTERIAL
.633 4 13 01 1	.192.0 36.2 1	88. 36.	024	.0 2.	02	.003 25.0	.058.000 39.0	13	OFF	8	FRINGE	COLLECTOR
.633 4 13 01 1	.192.0 14.1 1	88. 36.	024 01	.0 5.	02	.003 19.0	.058.000 29.0	13	OFF	8	FRINGE	RAMP
.633 4 13 01 1	.192.0 54.7 1	88. 36.	024 01	.0 4.	02	.003 14.0	.058.000 23.0	13	OFF	8	FRINGE	LOCAL
.603 4 13 01 1	.205.0 43.3 1	95. 36.	027 01	.0 4.	02	.003 14.0	.065.000 24.0	13	OFF	8	URBAN	FREEWAY
.533 4 13 01 1	.253.1 36.3 1	16. 36.	027	.0 0.	02	.004	.065.000 34.0	13	OFF	8	URBAN	MAJOR REGIONAL
.615 4 13 01 1	.215.0 34.3 1	99. 36.	019 03	.0 3.	02	.003 33.0	.047.000 54.0	13	OFF	8	URBAN	PRINCIPAL ARTERIAL
.643 4 13 01 1	.185.0 24.8 1	85. 36.	024 02	.0 6.	02	.003 28.0	.058.000 43.0	13	OFF	8	URBAN	MINOR ARTERIAL
.643 4 13 01 1	.212.0 36.7 1	98. 36.	012 02	.0 0.	02	.003 21.0	.030.000 34.0	13	OFF	8	URBAN	COLLECTOR
.615 4 13 01 1	.215.0 17.1 1	99. 36.	019 01	.0 8.	02	.003 20.0	.047.000 20.0	13	OFF	8	URBAN	RAMP
.643 4 13 01 1	.212.0 57.0 1	98. 36.	012 01	.0 3.	02	.003 11.0	.030.000 21.0	13	OFF	8	URBAN	LOCAL
.534 4 13 01 1	.238.1 44.4 1	10. 36.	033 01	.0 5.	02	.004 15.0	.079.000 25.0	13	OFF	8	SUBURBAN	FREEWAY
.463 4 13 01 1	.280.1 44.1 1	29. 36.	036	.0 2.	02	.004 21.0	.086.000 36.0	13	OFF	8	SUBURBAN	MAJOR REGIONAL
.593 4 13 01 1	.212.0 39.3 1	98. 36.	027 03	.0 2.	02	.003 30.0	.065.000 52.0	13	OFF	8	SUBURBAN	PRINCIPAL ARTERIAL
.594 4 13 01 1	.217.1 29.9 1	00. 36.	025	.0 3.	02	.003 22.0	.059.000 37.0	13	OFF	8	SUBURBAN	MINOR ARTERIAL
.553 4 13 01 1	.273.1 36.6 1	26. 36.	012	.0 2.	02	.004 21.0	.030.000 36.0	13	OFF	8	SUBURBAN	COLLECTOR
.593 4 13 01 1	.212.0 19.8 1	98. 36.	027 01	.0 9.	02	.003 19.0	.065.000 32.0	13	OFF	8	SUBURBAN	RAMP
.553 4 13 01 1	.273.1 62.9 1	26. 36.	012 0 1	.0 5.	02	.004 9.0	.030.000 25.0	13	OFF	8	SUBURBAN	LOCAL
.423 4 13 01 1	.226.1 49.0 1	04. 36.	071 0	.0 4.	001 0	2.0	.171.000 6.0	13	OFF	8	RURAL	FREEWAY
.473 4 13 01 1	.246.1 47.6 1	13. 36.	047 01	.0 8.	02	.004 12.0	.115.000 29.0	13	OFF	8	RURAL	MAJOR REGIONAL
.443 4 13 01 1	.293.1 44.0 1	35. 36.	036 01	.0 8.	02	.005 12.0	.086.000 29.0	13	OFF	8	RURAL	PRINCIPAL ARTERIAL
.443 4 13	.293.1 34.8	35. 36.	036	.0 3.	02	.005 13.0	.086.000 48.0	13	OFF	8	RURAL	MINOR ARTERIAL
01 1 .443 4 13	1 .293.1 38.9	L35. 36.	.036	5.C 18.	002	.005. 12.0	086.000 29.0	13	OFF	8	RURAL	COLLECTOR
----------------------	---------------------------	-------------	--------------	------------	-----	---------------	-----------------	----	-----	---	----------	--------------------
01 1 .443 4 13	1 .293.1 20.6	L35. 36.	.036	5.C 23.	02	.005. 13.0	086.000 48.0	13	OFF	8	RURAL	RAMP
01 1 .443 4 13	1 .293.1 25.4	L35. 36.	.030 .02	5.C 21.	02	.005. 17.0	086.000 43.0	13	OFF	8	RURAL	LOCAL
01 1 .575 4 13	1 .218.1 23.3	LOO. 36.	.030	0.0 21.	02	.003. 17.0	072.000 43.0	13	OFF	9	CBD	PRINCIPAL ARTERIAL
01 1 .575 4 13	1 .218.1 18.7	LOO. 36.	.030 .01	0.0 16.	02	.003. 12.0	072.000 35.0	13	OFF	9	CBD	MINOR ARTERIAL
.575 4 13	$1 \\ 218.1 \\ 11.2 \\ 1$	L00. 36.	.030 .01	0.0 16.	02	.003. 12.0	072.000 35.0	13	OFF	9	CBD	COLLECTOR
.575 4 13	.218.1 46.5	LOO. 36.	.030 .0	0.0 9.	02	.003. 10.0	072.000 16.0	13	OFF	9	CBD	LOCAL
.503 4 13	.246.1 35.9	L13. 36.	.039 .0	9.0 9.	02	.004. 10.0	093.000 16.0	13	OFF	9	FRINGE	FREEWAY
.503 4 13 01 1	.246.1 31.9	L13. 36.	.039	9.0 22.	02	.004. 25.0	093.000 39.0	13	OFF	9	FRINGE	MAJOR REGIONAL
.633 4 13 01 1	.192.0 27.6)88. 36.	.024 .02	4.0 22.	02	.003. 25.0	058.000 39.0	13	OFF	9	FRINGE	PRINCIPAL ARTERIAL
.633 4 13 01 1	.192.0 23.2)88. 36.	.024	4.0 15.	02	.003. 19.0	058.000 29.0	13	OFF	9	FRINGE	MINOR ARTERIAL
.633 4 13 01 1	.192.0 33.0 1)88. 36.	.024 .02	4.0 22.	02	.003. 25.0	058.000 39.0	13	OFF	9	FRINGE	COLLECTOR
.633 4 13 01 1	.192.0 14.1 1)88. 36.	.024 .01	4.0 15.	02	.003. 19.0	058.000 29.0	13	OFF	9	FRINGE	RAMP
.633 4 13 01 1	.192.0 50.3 1)88. 36.	.024 .01	4.C 14.	02	.003. 14.0	058.000 23.0	13	OFF	9	FRINGE	LOCAL
.603 4 13 01 1	.205.0 41.3 1)95. 36.	.02 .01	7.C 14.	02	.003. 14.0	065.000 24.0	13	OFF	9	URBAN	FREEWAY
.533 4 13 01 1	.253.1 35.1 1	L16. 36.	.02 .02	7.C 20.	02	.004. 21.0	065.000 34.0	13	OFF	9	URBAN	MAJOR REGIONAL
.615 4 13 01 1	.215.0 33.0 1)99. 36.	.019	9.0 33.	02	.003. 33.0	047.000 54.0	13	OFF	9	URBAN	PRINCIPAL ARTERIAL
.643 4 13 01 1	.185.0 24.6 1)85. 36.	.024 .02	4.0 26.	02	.003. 28.0	058.000 43.0	13	OFF	9	URBAN	MINOR ARTERIAL
.643 4 13 01 1	.212.0 35.1 1)98. 36.	.012 .02	2.0 20.	02	.003. 21.0	030.000 34.0	13	OFF	9	URBAN	COLLECTOR
.615 4 13 01 1	.215.0 17.1 1)99. 36.	.019	9.0 18.	02	.003. 20.0	047.000 20.0	13	OFF	9	URBAN	RAMP
.643 4 13 01 1	.212.0 54.9 1)98. 36.	.012 .0 1	2.C 13.	02	.003. 11.0	030.000 21.0	13	OFF	9	URBAN	LOCAL
.534 4 13 01 1	.238.1 43.2 1	L10. 36.	.033 .01	3.C 15.	02	.004. 15.0	079.000 25.0	13	OFF	9	SUBURBAN	FREEWAY
.463 4 13 01 1	.280.1 42.4 1	L29. 36.	.030 .02	5.C 22.	02	.004. 21.0	086.000 36.0	13	OFF	9	SUBURBAN	MAJOR REGIONAL
.593 4 13 01 1	.212.0 38.6 1)98. 36.	02	7.0 32.	02	.003. 30.0	065.000 52.0	13	OFF	9	SUBURBAN	PRINCIPAL ARTERIAL
.594 4 13 01 1	.217.1 29.7 1	LOO. 36.	.025 .02	5.C 23.	02	.003. 22.0	059.000 37.0	13	OFF	9	SUBURBAN	MINOR ARTERIAL
.553 4 13 01 1	.273.1 35.3 1	L26. 36.	.012 .02	2.0 22.	02	.004. 21.0	030.000 36.0	13	OFF	9	SUBURBAN	COLLECTOR
.593 4 13	.212.0	.98 36	02	7.C 19.	02	.003. 19.0	065.000 32.0	13	OFF	9	SUBURBAN	RAMP

01 1 1 .553.2 4 13 6	1 273.126.012.002.004.030.000 62.6 36.0 15.0 9.0 25.0	13	OFF 9	SUBURBAN	LOCAL
01 1 1 .423.2 4 13 4	1 226.104.071.001.004.171.000 49.0 36.0 4.0 2.0 6.0	13	OFF 9	RURAL	FREEWAY
01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 246.113.047.002.004.115.000 47.2 36.0 18.0 12.0 29.0	13	OFF 9	RURAL	MAJOR REGIONAL
.443.2	1 293.135.036.002.005.086.000 43.9 36.0 18.0 12.0 29.0	13	OFF 9	RURAL	PRINCIPAL ARTERIAL
.443.2 4 13 2	1 293.135.036.002.005.086.000 34.7 36.0 23.0 13.0 48.0	13	OFF 9	RURAL	MINOR ARTERIAL
.443.2 4 13 2	1 293.135.036.002.005.086.000 38.7 36.0 18.0 12.0 29.0	13	OFF 9	RURAL	COLLECTOR
.443.2 4 13 2	1 293.135.036.002.005.086.000 20.7 36.0 23.0 13.0 48.0	13	OFF 9	RURAL	RAMP
.443.2 4 13 2	1 293.135.036.002.005.086.000 24.4 36.0 21.0 17.0 43.0	13	OFF 9	RURAL	LOCAL
.575.2 4 13 2	1 218.100.030.002.003.072.000 21.9 36.0 21.0 17.0 43.0	13	OFF10	CBD	PRINCIPAL ARTERIAL
.575.2 4 13 2	1 218.100.030.002.003.072.000 18.1 36.0 16.0 12.0 35.0	13	OFF10	CBD	MINOR ARTERIAL
.575.2	1 218.100.030.002.003.072.000 11.2 36.0 16.0 12.0 35.0	13	OFF10	CBD	COLLECTOR
.575.2	1 218.100.030.002.003.072.000 42.2 36.0 9.0 10.0 16.0	13	OFF10	CBD	LOCAL
.503.2	1 246.113.039.002.004.093.000 32.8 36.0 9.0 10.0 16.0	13	OFF10	FRINGE	FREEWAY
.503.2	1 246.113.039.002.004.093.000 29.6 36.0 22.0 25.0 39.0	13	OFF10	FRINGE	MAJOR REGIONAL
.633.2	192.088.024.002.003.058.000 25.6 36.0 22.0 25.0 39.0	13	OFF10	FRINGE	PRINCIPAL ARTERIAL
.633.2	192.088.024.002.003.058.000 22.4 36.0 15.0 19.0 29.0	13	OFF10	FRINGE	MINOR ARTERIAL
.633.2	192.088.024.002.003.058.000 29.9 36.0 22.0 25.0 39.0	13	OFF10	FRINGE	COLLECTOR
.633.2	192.088.024.002.003.058.000 14.1 36.0 15.0 19.0 29.0	13	OFF10	FRINGE	RAMP
.633.2	192.088.024.002.003.058.000 45.8 36.0 14.0 14.0 23.0	13	OFF10	FRINGE	LOCAL
.603.2 4 13 3	205.095.027.002.003.065.000 38.3 36.0 14.0 14.0 24.0	13	OFF10	URBAN	FREEWAY
.533.2 4 13 3	253.116.027.002.004.065.000 33.3 36.0 20.0 21.0 34.0	13	OFF10	URBAN	MAJOR REGIONAL
.615.2 4 13 3	215.099.019.002.003.047.000 31.2 36.0 33.0 33.0 54.0	13	OFF10	URBAN	PRINCIPAL ARTERIAL
.643.1 4 13 2	185.085.024.002.003.058.000 24.4 36.0 26.0 28.0 43.0 1	13	OFF10	URBAN	MINOR ARTERIAL
.643.2 4 13 2 01 1	212.098.012.002.003.030.000 33.6 36.0 20.0 21.0 34.0	13	OFF10	URBAN	COLLECTOR
.615.2 4 13 2 01 1	215.099.019.002.003.047.000 17.1 36.0 18.0 20.0 20.0 1	13	OFF10	URBAN	RAMP
.643.2 4 13 9 01 1	_ 212.098.012.002.003.030.000 52.6 36.0 13.0 11.0 21.0 1	13	OFF10	URBAN	LOCAL
.534.2 4 13 4	_ 238.110.033.002.004.079.000 41.4 36.0 15.0 15.0 25.0	13	OFF10	SUBURBAN	FREEWAY

01 1	1							
.463.	280.129	.036.	002.004	.086.000	13	OFF10	SUBURBAN	MAJOR REGIONAL
4 13	40.5 36	.0 22	.0 21.0	36.0				
01 1	1 212 000	0.07	000 000	065 000	1 2	00010		DDINGIDAL ADMEDIAL
. 593.	212.098	0 32	002.003	52 0	13	OFFIU	SUBURBAN	PRINCIPAL ARIERIAL
01 1	1 1	.0 52	.0 50.0	52.0				
.594.	$\frac{1}{217.100}$.025.	002.003	059.000	13	OFF10	SUBURBAN	MINOR ARTERIAL
4 13	29.4 36	.0 23	.0 22.0	37.0				
01 1	1							
.553.	273.126	.012.	002.004	.030.000	13	OFF10	SUBURBAN	COLLECTOR
4 13	33.6 36	.0 22	.0 21.0	36.0				
01 1	1							
.593.	212.098	.027.0	002.003	.065.000	13	OFFIO	SUBURBAN	RAMP
4 13	19.8 30 1	.0 19	.0 19.0	32.0				
553	⊥ 273 126	012	002 004	030 000	13	0.5.510	SUBURBAN	LOCAL
4 13	62.0 36	.0 15	.0 9.0	25.0	10	01110	Bobbitbiii	Hoerin
01 1	1							
.423.	226.104	.071.	001.004	.171.000	13	OFF10	RURAL	FREEWAY
4 13	48.9 36	.0 4	.0 2.0	6.0				
01 1	1							
.473.	246.113	.047.	002.004	.115.000	13	OFF10	RURAL	MAJOR REGIONAL
4 13	46.6 36	.0 18	.0 12.0	29.0				
01 I .	1 202 125	026		0.96 0.00	1 2	0.000010	ΤΚΠΙΤΟ	DDINGIDAL ADTEDIAL
4 13	43 8 36	0 18	0 12 0	29 0	13	OFFIU	RUKAL	PRINCIPAL ARIERIAL
01 1	13.0 50	.0 10	.0 12.0	27.0				
.443.	293.135	.036.	002.005	.086.000	13	OFF10	RURAL	MINOR ARTERIAL
4 13	34.5 36	.0 23	.0 13.0	48.0				
01 1	1							
.443.	293.135	.036.	002.005	.086.000	13	OFF10	RURAL	COLLECTOR
4 13	38.5 36	.0 18	.0 12.0	29.0				
01 1	1	0.00		000 000	10	0		
.443.	293.135	.036.	0 1 2 0	.086.000	13	OF. F. TO	RURAL	RAMP
01 1	20.0 30 1	.0 43	.0 13.0	10.0				
.443.	$\frac{1}{293.135}$.036.	002.005	.086.000	13	OFF10	RURAL	LOCAL
					-			

12013 RAOC 6/16 strats; I/M 240 w/4 yr exempt; 80%RSD, 1.7% oxy MOBILE5b (14-Sep-96) 0 -M 22 Warning: 0.346E-01 mileage with zero registration + -M 22 Warning: 0.626E-01 mileage with zero registration -M 22 Warning: 0.373E-01 mileage with zero registration -M 22 Warning: 0.222E-01 mileage with zero registration + 0R Ρ Composite Emission Factors Vehicle Mix е Amb. 0 g CY Tmp Cold/Hot Start l LDGV LDGT1 LDGT2 LDGT HDGV LDDV LDDT AllVeh LDGV LDGT1LDGT2HDGV LDDV LDDT HDDV MC HDDV MC _ __ ____ OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 16.0 8.0 16.0 2 14.76 21.89 25.72 23.10 18.68 1.27 1.41 10.65 0.00 17.19 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 16.0 8.0 16.0 2 15.34 22.66 26.62 23.91 19.86 1.35 1.50 11.28 0.00 17.87 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 7.0 11.0 7.0 2 15.48 22.35 26.74 23.74 23.49 1.50 1.67 13.22 0.00 18.13 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.0 11.0 7.0 2 18.96 27.00 32.29 28.67 32.36 2.01 0.00 22.28 .580 .219 .101 .028 .002 .003 .067 .000 1 13 27 2.26 17.80 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 1.0 8.0 2 6.43 10.24 12.24 10.87 10.34 0.64 1 13 27 0.71 5.84 0.00 7.93 .556 .223 .103 .033 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 8.0 1.0 8.0 2 8.41 12.95 15.48 13.75 12.22 0.77 7.01 0.00 10.13 .556 .223 .103 .033 .002 .003 .080 .000 0.85 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 13.06 20.52 23.10 21.33 14.02 1.15 1.27 8.05 0.00 14.56 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 15.08 23.39 26.34 24.32 15.87 1.30 9.10 0.00 16.71 .652 .159 .073 .032 .002 .003 .079 .000 1.44 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 2.0 22.0 2 15.77 23.63 27.48 24.84 18.99 1.32 1.46 10.81 0.00 17.52 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 11.44 18.21 20.50 18.93 12.60 1.04 1.14 7.23 0.00 12.83 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 1.0 23.0 2 18.85 27.92 32.42 29.33 26.40 1.80 1.99 14.74 0.00 21.11 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 2.0 22.0 2 6.07 10.08 11.72 10.60 9.71 0.65 0.72 5.37 0.00 7.36 .629 .192 .089 .025 .002 .003 .060 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

 1
 13
 27
 24.0
 2.0
 24.0
 2
 8.20
 13.12
 15.21
 13.78
 11.00
 0.78

 0.86 6.27 0.00 9.99 .569 .231 .106 .026 .002 .004 .062 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 4.0 40.0 2 10.51 16.83 19.01 17.52 11.94 0.97 1.06 6.84 0.00 12.28 .626 .195 .090 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 81.0 7.0 83.0 2 18.46 29.73 31.92 30.42 12.69 1.49 1.63 7.28 0.00 20.77 .668 .176 .081 .020 .002 .003 .050 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

CDPHE/APCD/Technical Services Program

1 13 27 69.0 7.0 71.0 2 21.02 32.97 35.81 33.87 15.87 1.68 1.84 9.10 0.00 23.56 .637 .186 .086 .025 .002 .003 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 4.0 40.0 2 9.77 15.77 17.81 16.41 11.36 0.91 1.01 6.49 0.00 11.46 .626 .195 .090 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 44.0 4.0 46.0 2 20.49 31.18 34.92 32.36 21.81 1.81 2.00 12.33 0.00 23.16 .637 .186 .086 .025 .002 .003 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 28.0 2.0 28.0 2 5.17 8.97 10.32 9.40 9.55 0.65 0.72 5.09 0.00 6.73 .555 .239 .110 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 19.0 2.0 19.0 2 7.18 11.55 13.51 12.17 10.44 0.71 0.78 5.91 0.00 8.94 .498 .247 .114 .039 .002 .004 .096 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 3.0 39.0 2 8.06 13.33 15.08 13.88 10.25 0.81 0.89 5.77 0.00 9.91 .567 .232 .107 .026 .002 .004 .062 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 77.0 8.0 77.0 2 14.29 23.48 25.35 24.07 11.08 1.24 6.32 0.00 16.53 .622 .199 .092 .024 .002 .003 .058 .000 1.36 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 73.0 7.0 73.0 2 16.80 26.96 29.23 27.68 12.92 1.39 1.53 7.42 0.00 20.10 .610 .234 .108 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 3.0 39.0 2 10.75 17.15 19.40 17.86 12.22 0.98 7.01 0.00 12.91 .567 .232 .107 .026 .002 .004 .062 .000 1.08 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 52.0 5.0 52.0 2 20.20 31.07 34.51 32.16 18.68 1.66 1.83 10.65 0.00 23.87 .610 .234 .108 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 36.0 1.0 35.0 2 7.59 12.92 14.71 13.49 12.47 5.76 9.56 .373 .227 .105 .085 .001 .004 .205 .000 0.78 0.85 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 0.0 8.0 2 4.34 7.36 8.80 7.82 9.57 0.56 1 13 27 5.86 .477 .230 .106 .053 .002 .004 .128 .000 0.62 5.08 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 5.23 8.70 10.29 9.20 9.57 0.60 0.66 5.23 0.00 6.72 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 5.12 8.54 10.11 9.04 9.55 0.59 0.65 5.20 0.00 6.60 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 57.0 2.0 57.0 2 11.38 18.62 20.57 19.23 11.26 1.03 1.13 6.43 0.00 13.79 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 6.81 10.88 12.88 11.51 10.42 0.67 0.74 5.89 0.00 8.48 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 57.0 2.0 57.0 2 19.06 29.68 32.80 30.67 17.08 1.56 1.71 9.77 0.00 22.43 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 16.0 8.0 16.0 2 16.91 24.79 29.12 26.16 24.09 1.62 1.80 13.54 0.00 19.77 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 16.0 8.0 16.0 2 17.82 26.03 30.57 27.46 26.40 1.76 1.96 14.74 0.00 20.86 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 7.0 11.0 7.0 2 16.96 24.32 29.09 25.83 27.50 1.73 1.94 15.31 0.00 19.90 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 7.0 11.0 7.0 2 18.96 27.00 32.29 28.67 32.36 2.01 2.26 17.80 0.00 22.28 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 8.0 1.0 8.0 2 8.45 13.00 15.54 13.80 12.26 0.77 0.86 7.03 0.00 10.17 .556 .223 .103 .033 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 1.0 8.0 2 11.73 17.51 20.93 18.59 16.10 1.01 1.12 1 13 27 9.23 0.00 13.86 .556 .223 .103 .033 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 17.97 27.52 30.98 28.61 18.58 1.52 1.67 10.59 0.00 19.79 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 19.00 28.93 32.58 30.08 20.32 1.65 1.82 11.53 0.00 20.94 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 2.0 22.0 2 17.56 26.09 30.34 27.42 23.64 1.62 1.79 13.30 0.00 19.63 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 13.94 21.77 24.51 22.64 14.82 1.22 8.51 0.00 15.49 .652 .159 .073 .032 .002 .003 .079 .000 1.35 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 1.0 23.0 2 18.85 27.92 32.42 29.33 26.40 1.80 1.99 14.74 0.00 21.11 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 2.0 22.0 2 7.77 12.46 14.49 13.11 10.76 0.75 0.82 6.11 0.00 9.21 .629 .192 .089 .025 .002 .003 .060 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 24.0 2.0 24.0 2 10.74 16.69 19.34 17.52 13.36 0.95 1.05 7.68 0.00 12.85 .569 .231 .106 .026 .002 .004 .062 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 4.0 40.0 2 13.21 20.68 23.35 21.52 14.31 1.16 1.28 8.22 0.00 15.25 .626 .195 .090 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 81.0 7.0 83.0 2 24.23 38.07 40.87 38.95 15.95 1.87 2.05 9.14 0.00 26.98 .668 .176 .081 .020 .002 .003 .050 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 69.0 7.0 71.0 2 24.03 37.31 40.53 38.33 17.90 1.88 2.06 10.22 0.00 26.82 .637 .186 .086 .025 .002 .003 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 4.0 40.0 2 11.29 17.94 20.26 18.67 12.60 1.02 1.12 7.23 0.00 13.14 .626 .195 .090 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 44.0 4.0 46.0 2 20.49 31.18 34.92 32.36 21.81 1.81 2.00 12.33 0.00 23.16 .637 .186 .086 .025 .002 .003 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 28.0 2.0 28.0 2 6.56 10.92 12.57 11.44 9.78 0.69 0.77 5.44 0.00 8.24 .555 .239 .110 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 19.0 2.0 19.0 2 9.62 14.96 17.49 15.76 12.64 0.87 0.96 7.26 0.00 11.67 .498 .247 .114 .039 .002 .004 .096 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 3.0 39.0 2 10.56 16.88 19.10 17.58 12.06 0.96 1.06 6.91 0.00 12.69 .567 .232 .107 .026 .002 .004 .062 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits $1 \ 13 \ 27 \ 77.0 \ 8.0 \ 77.0 \ 2 \ 18.84 \ 30.05 \ 32.43 \ 30.80 \ 13.57 \ 1.53 \ 1.67$ 7.80 0.00 21.47 .622 .199 .092 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 73.0 7.0 73.0 2 19.92 31.47 34.11 32.30 14.88 1.61 1.76 8.55 0.00 23.64 .610 .234 .108 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 3.0 39.0 2 12.53 19.69 22.27 20.50 13.79 1.11 1.22 7.92 0.00 14.91 .567 .232 .107 .026 .002 .004 .062 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 52.0 5.0 52.0 2 20.20 31.07 34.51 32.16 18.68 1.66 1.83 10.65 0.00 23.87 .610 .234 .108 .012 .002 .004 .030 .000 219 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 36.0 1.0 35.0 2 5.98 10.41 11.85 10.86 11.23 0.73 0.80 5.41 0.00 7.91 .373 .227 .105 .085 .001 .004 .205 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 8.0 0.0 8.0 2 5.30 8.68 10.38 9.22 9.66 0.58 0Emission factors are as of Jan. 1st of the indicated calendar year. 0.64 5.33 0.00 6.82 .477 .230 .106 .053 .002 .004 .128 .000 LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 6.08 9.88 11.69 10.45 9.93 0.63 0.70 5.55 0.00 7.67.549.243.112.026.002.004.064.000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 5.38 8.91 10.54 9.42 9.61 0.60 0.66 5.28 0.00 6.89 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 57.0 2.0 57.0 2 12.08 19.63 21.69 20.28 11.72 1.07 1.18 6.71 0.00 14.57 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 7.92 12.43 14.70 13.14 11.39 0.74 0.82 6.51 0.00 9.73 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 57.0 2.0 57.0 2 19.06 29.68 32.80 30.67 17.08 1.56 1.71 9.77 0.00 22.43 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 16.0 8.0 16.0 2 20.32 29.41 34.55 31.03 32.12 2.11 2.35 17.68 0.00 23.81 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 16.0 8.0 16.0 2 21.15 30.54 35.87 32.22 33.83 2.21 2.46 18.55 0.00 24.78 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.0 11.0 7.0 2 19.07 27.14 32.46 28.82 32.60 2.03 1 13 27 2.27 17.92 0.00 22.41 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.0 11.0 7.0 2 18.96 27.00 32.29 28.67 32.36 2.01 1 13 27 2.26 17.80 0.00 22.28 .580 .219 .101 .028 .002 .003 .067 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 8.0 1.0 8.0 2 11.36 17.00 20.32 18.05 15.65 0.99 1.09 8.97 0.00 13.44 .556 .223 .103 .033 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 8.0 1.0 8.0 2 15.34 22.41 26.79 23.79 22.62 1.40 1.55 12.76 0.00 18.06 .556 .223 .103 .033 .002 .003 .080 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 21.10 31.86 35.87 33.12 24.88 2.00 2.21 13.95 0.00 23.35 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 21.50 32.42 36.50 33.71 25.71 2.06 2.27 14.38 0.00 23.81 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 2.0 22.0 2 19.69 29.00 33.72 30.48 28.66 1.94 2.14 15.91 0.00 22.09 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 41.0 5.0 42.0 2 17.14 26.34 29.65 27.38 17.80 1.46 1.61 10.17 0.00 18.91 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 1.0 23.0 2 18.85 27.92 32.42 29.33 26.40 1.80 1.99 14.74 0.00 21.11 .652 .159 .073 .032 .002 .003 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 22.0 2.0 22.0 2 10.26 15.95 18.55 16.78 13.06 0.91 1.01 7.50 0.00 11.95 .629 .192 .089 .025 .002 .003 .060 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 24.0 2.0 24.0 2 14.51 21.97 25.47 23.07 17.35 1.23 1.36 9.92 0.00 17.11 .569 .231 .106 .026 .002 .004 .062 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

CDPHE/APCD/Technical Services Program

1 13 27 39.0 4.0 40.0 2 16.91 25.94 29.30 27.00 17.80 1.43 1.58 10.17 0.00 19.33 .626 .195 .090 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 2.30 2.51 11.22 1 13 27 81.0 7.0 83.0 2 29.96 46.28 49.68 47.36 19.75 0.00 33.15 .668 .176 .081 .020 .002 .003 .050 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 69.0 7.0 71.0 2 26.78 41.20 44.75 42.32 20.80 2.17 2.38 11.79 0.00 29.82 .637 .186 .086 .025 .002 .003 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 4.0 40.0 2 13.08 20.49 23.14 21.33 14.19 1.15 1.27 8.15 0.00 15.11 .626 .195 .090 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 44.0 4.0 46.0 2 20.49 31.18 34.92 32.36 21.81 1.81 2.00 12.33 0.00 23.16 .637 .186 .086 .025 .002 .003 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 28.0 2.0 28.0 2 8.97 14.32 16.49 15.00 11.42 0.83 0.92 6.52 0.00 10.94 .555 .239 .110 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 19.0 2.0 19.0 2 12.68 19.23 22.49 20.26 15.95 1.09 9.14 0.00 15.14 .498 .247 .114 .039 .002 .004 .096 .000 1.21 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 3.0 39.0 2 13.85 21.56 24.40 22.46 15.02 1.20 1.32 8.62 0.00 16.40 .567 .232 .107 .026 .002 .004 .062 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 77.0 8.0 77.0 2 24.97 38.89 41.97 39.86 17.35 1.95 9.92 2.13 0.00 28.13 .622 .199 .092 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 73.0 7.0 73.0 2 23.54 36.69 39.77 37.66 17.26 1.85 2.03 9.87 27.76 .610 .234 .108 .012 .002 .004 .030 .000 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 39.0 3.0 39.0 2 14.29 22.19 25.10 23.11 15.43 1.24 16.89 .567 .232 .107 .026 .002 .004 .062 .000 1.36 8.85 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 52.0 5.0 52.0 2 20.20 31.07 34.51 32.16 18.68 1.66 23.87 .610 .234 .108 .012 .002 .004 .030 .000 1.83 10.65 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 36.0 1.0 35.0 2 5.13 9.07 10.33 9.47 10.06 0.69 0.76 5.12 0.00 6.97 .373 .227 .105 .085 .001 .004 .205 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 8.0 0.0 8.0 2 6.56 10.41 12.45 11.05 10.44 0.65 0.71 5.91 0.00 8.16 .477 .230 .106 .053 .002 .004 .128 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 7.26 11.51 13.62 12.17 10.79 0.70 0.77 6.13 0.00 8.98 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 6.06 9.85 11.65 10.42 9.91 0.63 0.70 5.54 0.00 7.64 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 57.0 2.0 57.0 2 12.85 20.73 22.91 21.42 12.26 1.13 1.23 7.03 0.00 15.43 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 13.0 1.0 13.0 2 8.83 13.69 16.20 14.48 12.30 0.80 0.89 7.05 0.00 10.77 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 27 57.0 2.0 57.0 2 19.06 29.68 32.80 30.67 17.08 1.56 1.71 9.77 0.00 22.43 .549 .243 .112 .026 .002 .004 .064 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 46.0 12.0 59.0 2 14.61 21.27 24.03 22.14 15.55 1.54 1.72 9.36 0.00 16.15 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 46.0 12.0 59.0 2 17.36 24.92 28.15 25.94 18.28 1.80 2.01 10.93 0.00 19.08 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 221 CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 45.0 8.0 56.0 2 17.93 25.64 29.07 26.72 21.68 2.03 2.26 12.84 0.00 19.89 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 45.0 8.0 56.0 2 22.33 31.44 35.65 32.77 30.81 2.81 3.13 17.80 0.00 24.88 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 8.0 7.0 12.0 2 5.33 8.11 9.69 8.61 9.70 0.66 0.73 5.74 0.00 6.64 .533 .246 .113 .030 .002 .004 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 8.0 7.0 12.0 2 6.56 9.72 11.62 10.32 10.90 0.75 8.00 .533 .246 .113 .030 .002 .004 .072 .000 0.84 6.54 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 10.29 15.11 17.34 15.81 12.72 1.14 1.29 7.68 0.00 11.74 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 12.06 17.47 20.04 18.28 14.56 1.31 8.77 0.00 13.66 .614 .198 .091 .027 .002 .003 .065 .000 1.48 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 34.0 14.0 46.0 2 14.29 20.53 23.50 21.46 16.86 1.51 1.70 10.12 0.00 16.09 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 10.10 14.86 17.05 15.55 12.53 1.12 1.27 7.56 0.00 11.53 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 34.0 14.0 46.0 2 18.30 25.78 29.51 26.96 25.14 2.20 2.48 14.74 0.00 20.68 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 7.0 12.0 2 4.42 6.92 8.27 1 13 52 7.34 9.15 0.60 0.67 5.28 0.00 5.47 .603 .212 .098 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 15.0 14.0 23.0 2 5.99 9.11 10.72 9.62 9.92 0.74 0.84 5.89 0.00 7.33 .573 .246 .113 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 17.0 30.0 2 7.53 11.23 13.09 11.82 11.10 0.89 1.01 6.67 0.00 8.86 .609 .212 .098 .022 .002 .003 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 39.0 37.0 60.0 2 12.30 18.03 20.24 18.73 11.79 1.33 1.54 7.10 0.00 14.04 .633 .212 .098 .015 .002 .003 .037 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 24.0 24.0 38.0 2 11.79 16.96 19.55 17.78 14.56 1.28 8.77 0.00 13.30 .683 .185 .085 .012 .002 .003 .030 .000 1.46 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 17.0 30.0 2 7.43 11.10 12.94 11.68 11.00 0.88 1.00 6.61 0.00 8.75 .609 .212 .098 .022 .002 .003 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 19.0 31.0 2 14.68 20.60 23.97 21.66 20.77 1.67 1.89 12.33 0.00 16.50 .683 .185 .085 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 13.0 10.0 19.0 2 3.69 6.04 7.15 6.39 9.43 0.61 0.69 5.09 0.00 4.83 .562 .237 .109 .025 .002 .004 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 14.0 23.0 22.0 2 5.22 8.05 9.46 8.49 9.37 0.71 0.81 5.48 0.00 6.72 .462 .287 .132 .033 .002 .005 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 12.0 11.0 18.0 2 5.24 8.06 9.55 8.53 9.49 0.67 0.75 5.58 0.00 6.56 .544 .259 .119 .021 .002 .004 .051 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 25.0 24.0 37.0 2 6.79 10.36 11.96 10.86 9.85 0.85 0.97 5.84 0.00 8.17 .583 .234 .108 .020 .002 .004 .049 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 28.0 26.0 43.0 2 9.78 14.40 16.50 15.07 11.87 1.10 1.26 7.15 0.00 11.31 .633 .212 .098 .015 .002 .003 .037 .000 222 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 12.0 11.0 18.0 2 6.72 10.00 11.85 10.59 10.81 0.78 0.88 6.49 0.00 8.22 .544 .259 .119 .021 .002 .004 .051 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 18.0 29.0 2 13.17 18.65 21.76 19.63 17.79 1.42 1.61 10.65 0.00 15.09 .633 .212 .098 .015 .002 .003 .037 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 9.0 23.0 2 6.04 9.49 11.18 10.02 12.44 0.73 0.82 5.93 0.00 7.86 .404 .246 .113 .068 .001 .004 .164 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 3.0 2.0 5.0 2 3.37 5.48 6.62 5.84 9.22 0.54 0.60 5.07 0.00 4.67 .483 .266 .123 .036 .002 .004 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 4.20 6.77 7.96 7.15 9.07 0.65 0.73 5.12 0.00 5.28 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 4.46 7.12 8.36 7.51 9.08 0.66 0.74 5.18 0.00 5.56 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 23.0 13.0 34.0 2 6.79 10.34 12.00 10.86 10.27 0.83 0.93 6.13 0.00 8.13 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 5.55 8.55 10.04 9.02 9.56 0.71 0.80 5.63 0.00 6.74 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 23.0 13.0 34.0 2 12.35 17.72 20.56 18.62 16.43 1.33 1.50 9.87 0.00 14.32 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 46.0 12.0 59.0 2 19.44 27.65 31.24 28.78 22.94 2.23 2.49 13.54 0.00 21.46 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 46.0 12.0 59.0 2 21.00 29.71 33.56 30.92 26.18 2.52 2.82 15.31 0.00 23.23 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 45.0 8.0 56.0 2 20.32 28.78 32.64 30.00 26.91 2.48 2.76 15.71 0.00 22.62 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 45.0 8.0 56.0 2 22.33 31.44 35.65 32.77 30.81 2.81 3.13 17.80 0.00 24.88 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 7.0 12.0 2 7.59 11.07 13.23 11.75 12.12 0.83 0.93 7.31 0.00 9.16 .533 .246 .113 .030 .002 .004 .072 .000 1 13 52 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 8.0 7.0 12.0 2 8.89 12.77 15.27 13.56 13.81 0.95 1.06 8.33 0.00 10.63 .533 .246 .113 .030 .002 .004 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 15.33 21.77 24.98 22.78 17.98 1.60 1.81 10.76 0.00 17.19 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 16.08 22.75 26.10 23.80 19.92 1.76 2.00 11.85 0.00 18.07 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 34.0 14.0 46.0 2 16.20 23.03 26.36 24.08 20.04 1.78 2.00 11.92 0.00 18.23 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 12.59 18.16 20.83 19.00 15.11 1.35 1.53 9.10 0.00 14.23 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 34.0 14.0 46.0 2 18.30 25.78 29.51 26.96 25.14 2.20 2.48 14.74 0.00 20.68 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

CDPHE/APCD/Technical Services Program

1 13 52 8.0 7.0 12.0 2 6.53 9.68 11.57 10.28 10.87 0.75 0.83 6.52 0.00 7.77 .603 .212 .098 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 7.99 1 13 52 15.0 14.0 23.0 2 9.08 13.17 15.50 13.91 13.24 1.01 1.14 0.00 10.79 .573 .246 .113 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 17.0 30.0 2 10.31 14.90 17.37 15.68 14.24 1.14 1.29 8.58 0.00 11.92 .609 .212 .098 .022 .002 .003 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 39.0 37.0 60.0 2 16.94 24.11 27.06 25.04 15.40 1.73 2.00 9.27 0.00 19.07 .633 .212 .098 .015 .002 .003 .037 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 24.0 24.0 38.0 2 13.59 19.33 22.28 20.26 16.52 1.45 9.92 0.00 15.25 .683 .185 .085 .012 .002 .003 .030 .000 1.65 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 17.0 30.0 2 8.81 12.93 15.06 13.60 12.48 1.00 1.14 7.53 0.00 10.27 .609 .212 .098 .022 .002 .003 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 19.0 31.0 2 14.68 20.60 23.97 21.66 20.77 1.67 1.89 12.33 0.00 16.50 .683 .185 .085 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 13.0 10.0 19.0 2 4.61 7.25 8.57 7.67 9.15 0.64 0.71 5.28 0.00 5.80 .562 .237 .109 .025 .002 .004 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 14.0 23.0 22.0 2 7.29 10.75 12.64 11.35 11.16 0.87 0.99 6.71 0.00 9.03 .462 .287 .132 .033 .002 .005 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 6.65 1 13 52 12.0 11.0 18.0 2 6.95 10.31 12.22 10.91 11.06 0.80 0.90 0.00 8.48 .544 .259 .119 .021 .002 .004 .051 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 25.0 24.0 37.0 2 8.72 12.90 14.89 13.53 11.48 1.01 6.91 10.29 .583 .234 .108 .020 .002 .004 .049 .000 1.15 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 28.0 26.0 43.0 2 11.15 16.21 18.58 16.96 13.19 1.22 1.40 7.96 0.00 12.82 .633 .212 .098 .015 .002 .003 .037 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 12.0 11.0 18.0 2 8.10 11.81 13.99 12.50 12.39 0.90 1.01 7.47 0.00 9.78 .544 .259 .119 .021 .002 .004 .051 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 18.0 29.0 2 13.17 18.65 21.76 19.63 17.79 1.42 1.61 10.65 0.00 15.09 .633 .212 .098 .015 .002 .003 .037 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 9.0 23.0 2 4.99 7.97 9.39 8.42 11.24 0.69 0.77 5.57 0.00 6.72 .404 .246 .113 .068 .001 .004 .164 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 3.0 2.0 5.0 2 3.81 6.05 7.31 6.45 9.07 0.55 0.61 5.14 0.00 5.12 .483 .266 .123 .036 .002 .004 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 4.92 7.72 9.07 8.15 9.21 0.68 0.76 5.34 0.00 6.06 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 4.59 7.29 8.56 7.69 9.10 0.66 0.74 5.22 0.00 5.70 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 23.0 13.0 34.0 2 7.11 10.76 12.48 11.30 10.56 0.85 0.96 6.32 0.00 8.48 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 6.05 9.20 10.81 9.71 9.94 0.75 0.84 5.91 0.00 7.29 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 23.0 13.0 34.0 2 12.35 17.72 20.56 18.62 16.43 1.33 1.50 9.87 0.00 14.32 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. CDPHE/APCD/Technical Services Program January 4, 2000

224

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 46.0 12.0 59.0 2 22.98 32.31 36.50 33.63 29.93 2.85 3.19 17.33 0.00 25.45 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 46.0 12.0 59.0 2 25.74 35.94 40.60 37.41 34.48 3.25 3.64 19.74 0.00 28.49 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 45.0 8.0 56.0 2 23.40 32.84 37.24 34.23 32.70 2.97 3.31 18.80 0.00 26.06 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 45.0 8.0 56.0 2 22.33 31.44 35.65 32.77 30.81 2.81 3.13 17.80 0.00 24.88 .633 .178 .082 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 7.0 12.0 2 10.08 14.33 17.12 15.21 15.40 1.06 1 13 52 1.18 9.27 0.00 11.97 .533 .246 .113 .030 .002 .004 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 7.0 12.0 2 12.04 16.88 20.17 17.92 18.08 1.23 1 13 52 1.38 10.81 0.00 14.18 .533 .246 .113 .030 .002 .004 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 17.54 24.65 28.28 25.79 23.54 2.06 2.34 13.87 0.00 19.77 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 18.60 26.03 29.86 27.24 26.00 2.26 2.57 15.22 0.00 21.00 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 34.0 14.0 46.0 2 18.30 25.78 29.51 26.96 25.14 2.20 2.48 14.74 0.00 20.68 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 30.0 19.0 43.0 2 15.37 21.82 25.04 22.84 18.08 1.61 1.82 10.81 0.00 17.24 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 34.0 14.0 46.0 2 18.30 25.78 29.51 26.96 25.14 2.20 2.48 14.74 0.00 20.68 .614 .198 .091 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 8.0 7.0 12.0 2 8.80 12.66 15.13 13.44 13.69 0.94 1 13 52 1.06 8.26 0.00 10.29 .603 .212 .098 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 15.0 14.0 23.0 2 12.03 17.06 20.07 18.01 16.95 1.28 1.45 10.17 0.00 14.12 .573 .246 .113 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 17.0 30.0 2 13.51 19.11 22.27 20.11 18.18 1.45 1.64 10.87 0.00 15.46 .609 .212 .098 .022 .002 .003 .054 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 39.0 37.0 60.0 2 21.37 29.85 33.51 31.00 20.28 2.25 2.61 12.05 0.00 23.90 .633 .212 .098 .015 .002 .003 .037 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 24.0 24.0 38.0 2 15.42 21.70 25.01 22.74 19.13 1.66 1.90 11.41 0.00 17.25 .683 .185 .085 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 17.0 30.0 2 10.00 14.49 16.89 15.25 13.87 1.11 8.36 0.00 11.58 .609 .212 .098 .022 .002 .003 .054 .000 1.26 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 19.0 31.0 2 14.68 20.60 23.97 21.66 20.77 1.67 1.89 12.33 0.00 16.50 .683 .185 .085 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 13.0 10.0 19.0 2 6.04 9.13 10.81 9.66 10.11 0.73 0.82 6.02 0.00 7.36 .562 .237 .109 .025 .002 .004 .061 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 14.0 23.0 22.0 2 9.45 13.58 15.97 14.33 13.69 1.07 1.22 8.26 0.00 11.48 .462 .287 .132 .033 .002 .005 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 12.0 11.0 18.0 2 9.04 13.06 15.47 13.82 13.57 0.98 1.11 8.19 0.00 10.85 .544 .259 .119 .021 .002 .004 .051 .000 225 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 25.0 24.0 37.0 2 11.44 16.48 19.02 17.28 14.30 1.25 1.43 8.62 0.00 13.30 .583 .234 .108 .020 .002 .004 .049 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 28.0 26.0 43.0 2 12.85 18.46 21.15 19.31 14.90 1.38 1.57 8.97 0.00 14.69 .633 .212 .098 .015 .002 .003 .037 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 12.0 11.0 18.0 2 9.04 13.06 15.47 13.82 13.57 0.98 1.11 8.19 0.00 10.85 .544 .259 .119 .021 .002 .004 .051 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 19.0 18.0 29.0 2 13.17 18.65 21.76 19.63 17.79 1.42 1.61 10.65 0.00 15.09 .633 .212 .098 .015 .002 .003 .037 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 0.72 1 13 52 16.0 9.0 23.0 2 3.77 6.20 7.29 6.54 9.99 0.64 5.21 0.00 5.41 .404 .246 .113 .068 .001 .004 .164 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 3.0 2.0 5.0 2 4.65 7.15 8.64 7.62 9.38 0.59 0.65 5.49 0.00 6.03 .483 .266 .123 .036 .002 .004 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 5.66 8.69 10.21 9.17 9.64 0.72 0.81 5.69 0.00 6.86 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 5.09 7.94 9.33 8.38 9.29 0.68 0.77 5.41 0.00 6.24 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 23.0 13.0 34.0 2 7.44 11.20 13.00 11.77 10.87 0.88 0.99 6.52 0.00 8.85 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 16.0 13.0 24.0 2 6.69 10.06 11.82 10.61 10.53 0.80 0.90 6.30 0.00 8.00 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 52 23.0 13.0 34.0 2 12.35 17.72 20.56 18.62 16.43 1.33 9.87 1.50 0.00 14.32 .602 .226 .104 .018 .002 .004 .044 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 21.0 17.0 43.0 2 11.63 17.87 20.12 18.58 12.66 1.10 7.68 0.00 13.53 .575 .218 .100 .030 .002 .003 .072 .000 1.26 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 21.0 17.0 43.0 2 12.75 19.44 21.88 20.21 13.68 1.18 8.29 0.00 14.77 .575 .218 .100 .030 .002 .003 .072 .000 1.36 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 16.0 12.0 35.0 2 15.02 22.39 25.52 23.38 17.50 1.39 1.58 10.54 0.00 17.36 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 16.0 12.0 35.0 2 21.05 30.58 34.85 31.92 30.65 2.34 2.67 17.80 0.00 24.47 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 9.0 10.0 16.0 2 3.89 6.58 7.74 6.95 10.17 0.62 1 13 36 0.70 5.28 0.00 5.34 .503 .246 .113 .039 .002 .004 .093 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 9.0 10.0 16.0 2 5.21 8.37 9.85 8.84 9.25 0.64 0.72 5.42 0.00 6.66 .503 .246 .113 .039 .002 .004 .093 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 8.12 12.86 14.53 13.39 9.97 0.87 1.00 5.96 0.00 9.48 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 10.02 15.47 17.47 16.10 11.39 1.01 1.15 6.89 0.00 11.53 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 19.0 29.0 2 10.94 16.48 18.92 17.25 13.73 1.10 1.25 8.33 $0.00 \quad 12.58 \quad .633 \quad .192 \quad .088 \quad .024 \quad .002 \quad .003 \quad .058 \quad .000$ OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

CDPHE/APCD/Technical Services Program

1 13 36 22.0 25.0 39.0 2 6.98 11.29 12.76 11.76 9.34 0.80 0.92 5.50 0.00 8.26 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 2.22 14.74 1 13 36 15.0 19.0 29.0 2 17.58 25.48 29.26 26.67 25.01 1.94 0.00 20.06 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 14.0 14.0 23.0 2 5.28 8.77 10.17 9.21 11.01 0.69 0.78 5.52 0.00 6.61 .603 .205 .095 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 14.0 14.0 24.0 2 4.62 7.72 8.95 8.11 9.02 0.73 $6.03 \ .533 \ .253 \ .116 \ .027 \ .002 \ .004 \ .065 \ .000$ 0.64 5.12 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 20.0 21.0 34.0 2 6.97 11.15 12.70 11.64 9.60 0.79 0.90 5.70 0.00 8.39 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 33.0 33.0 54.0 2 10.14 16.09 17.79 16.62 9.97 1.03 1.19 5.96 0.00 11.60 .643 .185 .085 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 26.0 28.0 43.0 2 13.49 20.35 22.85 21.14 13.73 1.28 8.33 0.00 15.65 .643 .212 .098 .012 .002 .003 .030 .000 1.47 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 20.0 21.0 34.0 2 6.46 10.44 11.90 10.90 9.33 0.76 0.87 5.49 0.00 7.83 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 20.0 20.0 2 14.70 21.22 24.73 22.33 20.66 1.59 1.79 12.33 0.00 17.00 .643 .212 .098 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 13.0 11.0 21.0 2 5.18 8.59 10.01 9.04 11.01 0.67 0.76 5.52 0.00 6.72 .534 .238 .110 .033 .002 .004 .079 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 15.0 25.0 2 4.66 7.80 9.02 8.19 9.02 0.65 5.12 0.00 6.28 .463 .280 .129 .036 .002 .004 .086 .000 0.74 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 21.0 36.0 2 5.31 8.93 10.14 9.31 9.02 0.72 0.82 5.12 0.00 6.62 .593 .212 .098 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 32.0 30.0 52.0 2 8.12 13.24 14.69 13.70 9.25 0.91 1.04 5.42 0.00 9.72 .594 .217 .100 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 22.0 37.0 2 9.67 14.94 16.94 15.57 11.39 0.99 1.12 6.89 0.00 11.91 .553 .273 .126 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 21.0 36.0 2 6.61 10.71 12.16 11.17 9.33 0.78 0.88 5.49 0.00 7.99 .593 .212 .098 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 19.0 19.0 32.0 2 15.24 22.46 25.66 23.47 17.79 1.45 1.65 10.70 0.00 18.33 .553 .273 .126 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 9.0 25.0 2 7.29 11.87 13.74 12.46 13.12 0.76 0.86 6.16 0.00 9.18 .423 .226 .104 .071 .001 .004 .171 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 4.0 2.0 6.0 2 3.55 5.96 7.16 6.34 9.22 0.55 0.61 5.07 0.00 4.98 .473 .246 .113 .047 .002 .004 .115 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 4.34 7.45 8.56 7.80 9.14 0.66 0.74 5.07 0.00 6.03 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 4.99 8.34 9.59 8.74 9.02 0.67 0.75 5.16 0.00 6.72 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 13.0 48.0 2 8.54 13.75 15.39 14.27 9.97 0.86 0.98 5.96 0.00 10.77 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 227 CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 5.96 9.69 11.14 10.14 9.32 0.71 0.80 5.48 0.00 7.80 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 13.0 48.0 2 16.90 25.43 28.47 26.39 16.95 1.48 1.69 10.22 0.00 20.28 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 21.0 17.0 43.0 2 12.08 18.50 20.83 19.24 13.06 1.13 1.30 7.92 0.00 14.03 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 21.0 17.0 43.0 2 13.28 20.17 22.71 20.97 14.16 1.23 $0.00 \quad 15.36 \quad .575 \quad .218 \quad .100 \quad .030 \quad .002 \quad .003 \quad .072 \quad .000$ 1.40 8.58 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 16.0 12.0 35.0 2 15.56 23.11 26.34 24.13 18.19 1.44 1.64 10.93 0.00 17.96 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 16.0 12.0 35.0 2 21.05 30.58 34.85 31.92 30.65 2.34 2.67 17.80 0.00 24.47 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 9.0 10.0 16.0 2 3.89 6.58 7.74 6.95 9.49 0.60 0.68 5.11 0.00 5.30 .503 .246 .113 .039 .002 .004 .093 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 9.0 10.0 16.0 2 5.49 8.76 10.30 9.24 9.40 0.65 0.73 5.55 0.00 6.97 .503 .246 .113 .039 .002 .004 .093 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 8.46 13.32 15.05 13.87 10.20 0.89 1.03 0.00 9.84 .633 .192 .088 .024 .002 .003 .058 .000 6.11 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 10.52 16.16 18.26 16.82 11.81 1.05 1.20 7.15 0.00 12.07 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 19.0 29.0 2 11.28 16.95 19.46 17.73 14.10 1.13 1.29 8.55 0.00 12.95 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 7.75 12.34 13.95 12.85 9.74 0.85 0.97 5.80 0.00 9.07 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 19.0 29.0 2 17.58 25.48 29.26 26.67 25.01 1.94 2.22 14.74 0.00 20.06 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 5.33 .603 .205 .095 .027 .002 .003 .065 .000 1 13 36 14.0 14.0 23.0 2 4.14 7.04 8.18 7.40 10.11 0.66 0.75 5.26 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 14.0 14.0 24.0 2 4.91 8.11 9.40 8.52 9.04 0.65 0.74 5.19 0.00 6.34 .533 .253 .116 .027 .002 .004 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 20.0 21.0 34.0 2 7.16 11.41 13.00 11.91 9.72 0.80 0.92 5.79 0.00 8.60 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 33.0 33.0 54.0 2 10.43 16.48 18.23 17.03 10.13 1.04 1.21 6.07 0.00 11.91 .643 .185 .085 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 26.0 28.0 43.0 2 13.63 20.54 23.06 21.34 13.85 1.29 1.48 8.40 $0.00 \quad 15.81 \quad .643 \quad .212 \quad .098 \quad .012 \quad .002 \quad .003 \quad .030 \quad .000$ OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 20.0 21.0 34.0 2 7.05 11.26 12.82 11.75 9.65 0.80 0.91 5.74 0.00 8.48 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 20.0 20.0 2 14.70 21.22 24.73 22.33 20.66 1.59 1.79 12.33 0.00 17.00 .643 .212 .098 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 13.0 11.0 21.0 2 4.80 8.03 9.36 8.45 10.70 6.29 .534 .238 .110 .033 .002 .004 .079 .000 0.66 0.74 5.43 0.00 228 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 15.0 25.0 2 4.76 7.94 9.18 8.33 9.02 0.65 0.74 5.14 0.00 6.38 .463 .280 .129 .036 .002 .004 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 21.0 36.0 2 5.49 9.16 10.41 9.56 9.02 0.73 OEmission factors are as of Jan. 1st of the indicated calendar year. 0.83 5.15 0.00 6.80 .593 .212 .098 .027 .002 .003 .065 .000 LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 32.0 30.0 52.0 2 8.27 13.45 14.93 13.92 9.30 0.91 1.05 5.46 0.00 9.89 .594 .217 .100 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 22.0 37.0 2 9.71 15.00 17.01 15.64 11.42 0.99 1.13 6.91 0.00 11.96 .553 .273 .126 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 21.0 36.0 2 7.24 11.58 13.15 12.08 9.67 0.81 0.93 5.75 0.00 8.68 .593 .212 .098 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 19.0 19.0 32.0 2 15.14 22.33 25.52 23.34 17.69 1.45 1.64 10.65 0.00 18.23 .553 .273 .126 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 9.0 25.0 2 7.25 11.81 13.67 12.40 13.07 0.76 0.86 6.15 0.00 9.14 .423 .226 .104 .071 .001 .004 .171 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 4.0 2.0 6.0 2 3.55 5.96 7.16 6.34 9.22 0.55 0.61 5.07 0.00 4.98 .473 .246 .113 .047 .002 .004 .115 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 4.40 7.53 8.66 7.89 9.11 0.66 5.07 0.74 0.00 6.09 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 4.99 8.34 9.59 8.74 9.02 0.67 0.75 5.16 0.00 6.72 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 13.0 48.0 2 8.61 13.85 15.50 14.37 10.02 0.87 5.99 0.99 0.00 10.85 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 6.01 9.75 11.21 10.21 9.34 0.71 0.80 5.50 7.85 .443 .293 .135 .036 .002 .005 .086 .000 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 13.0 48.0 2 16.90 25.43 28.47 26.39 16.95 1.48 1.69 10.22 0.00 20.28 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 21.0 17.0 43.0 2 12.56 19.18 21.59 19.93 13.50 1.17 8.19 0.00 14.56 .575 .218 .100 .030 .002 .003 .072 .000 1.34 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 21.0 17.0 43.0 2 13.99 21.16 23.82 22.00 14.82 1.28 1.47 8.97 0.00 16.14 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 16.0 12.0 35.0 2 15.81 23.44 26.72 24.47 18.81 1.49 1.69 11.28 0.00 18.26 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 16.0 12.0 35.0 2 21.05 30.58 34.85 31.92 30.65 2.34 2.67 17.80 0.00 24.47 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 9.0 10.0 16.0 2 4.10 6.86 8.07 7.24 9.06 0.60 0.67 5.09 0.00 5.49 .503 .246 .113 .039 .002 .004 .093 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 9.0 10.0 16.0 2 6.05 9.51 11.19 10.04 9.79 0.69 0.77 5.84 0.00 7.58 .503 .246 .113 .039 .002 .004 .093 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 9.23 14.38 16.25 14.97 10.76 0.95 1.09 6.49 $0.00 \quad 10.67 \quad .633 \quad .192 \quad .088 \quad .024 \quad .002 \quad .003 \quad .058 \quad .000$ OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits

CDPHE/APCD/Technical Services Program

1 13 36 22.0 25.0 39.0 2 11.17 17.05 19.27 17.75 12.37 1.10 1.26 7.50 0.00 12.78 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 19.0 29.0 2 12.01 17.95 20.60 18.78 14.89 1.19 1.36 9.02 0.00 13.75 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 8.81 13.81 15.60 14.37 10.45 0.92 1.05 6.28 0.00 10.22 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 19.0 29.0 2 17.58 25.48 29.26 26.67 25.01 1.94 2.22 14.74 0.00 20.06 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 14.0 14.0 23.0 2 4.14 7.04 8.18 7.40 9.36 0.64 0.72 5.09 5.30 .603 .205 .095 .027 .002 .003 .065 .000 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 14.0 14.0 24.0 2 5.27 8.62 9.99 9.05 9.13 0.67 0.75 5.30 0.00 6.75 .533 .253 .116 .027 .002 .004 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 20.0 21.0 34.0 2 7.51 11.89 13.54 12.41 9.95 0.83 0.94 5.95 0.00 8.99 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 33.0 33.0 54.0 2 11.01 17.27 19.10 17.85 10.45 1.08 1.25 6.28 0.00 12.52 .643 .185 .085 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 26.0 28.0 43.0 2 13.77 20.73 23.28 21.54 13.97 1.30 8.47 0.00 15.96 .643 .212 .098 .012 .002 .003 .030 .000 1.50 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 20.0 21.0 34.0 2 7.51 11.89 13.54 12.41 9.95 0.83 0.94 5.95 0.00 8.99 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 20.0 20.0 2 14.70 21.22 24.73 22.33 20.66 1.59 1.79 12.33 0.00 17.00 .643 .212 .098 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 13.0 11.0 21.0 2 4.05 6.90 8.04 7.26 10.15 0.64 5.45 .534 .238 .110 .033 .002 .004 .079 .000 0.72 5.27 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 15.0 25.0 2 4.97 8.22 9.51 8.63 9.04 0.66 0.75 5.19 0.00 6.61 .463 .280 .129 .036 .002 .004 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 21.0 36.0 2 5.83 9.64 10.95 10.05 9.07 0.74 0.84 5.24 0.00 7.16 .593 .212 .098 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 32.0 30.0 52.0 2 8.49 13.76 15.26 14.23 9.38 0.92 1.06 5.53 0.00 10.12 .594 .217 .100 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 22.0 37.0 2 9.80 15.12 17.14 15.76 11.50 1.00 1.14 6.96 0.00 12.06 .553 .273 .126 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 21.0 36.0 2 7.62 12.11 13.75 12.63 9.91 0.84 0.95 5.92 0.00 9.09 .593 .212 .098 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 19.0 19.0 32.0 2 15.14 22.33 25.52 23.34 17.69 1.45 1.64 10.65 0.00 18.23 .553 .273 .126 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 9.0 25.0 2 7.13 11.63 13.47 12.21 12.91 0.76 0.85 6.10 0.00 9.01 .423 .226 .104 .071 .001 .004 .171 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 4.0 2.0 6.0 2 3.55 5.96 7.16 6.34 9.22 0.55 0.61 5.07 0.00 4.98 .473 .246 .113 .047 .002 .004 .115 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 4.46 7.61 8.76 7.97 9.09 0.74 5.08 0.00 0.66 6.16 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. 230 CDPHE/APCD/Technical Services Program January 4, 2000

LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 5.00 8.37 9.62 8.76 9.03 0.67 0.75 6.74 .443 .293 .135 .036 .002 .005 .086 .000 5.16 0.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 13.0 48.0 2 8.64 13.89 15.56 14.42 10.04 0.87 0.99 6.01 0.00 10.88 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 6.05 9.81 11.28 10.27 9.37 0.71 0.81 5.52 0.00 7.90 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 13.0 48.0 2 16.80 25.29 28.32 26.25 16.86 1.47 0.00 20.17 .443 .293 .135 .036 .002 .005 .086 .000 1.68 10.17 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 21.0 17.0 43.0 2 13.21 20.08 22.60 20.87 14.10 1.22 1.40 8.55 0.00 15.28 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 21.0 17.0 43.0 2 15.10 22.69 25.55 23.59 15.86 1.37 9.58 0.00 17.36 .575 .218 .100 .030 .002 .003 .072 .000 1.57 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 16.0 12.0 35.0 2 16.07 23.80 27.12 24.84 19.47 1.54 1.75 11.66 0.00 18.57 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 16.0 12.0 35.0 2 21.05 30.58 34.85 31.92 30.65 2.34 2.67 17.80 0.00 24.47 .575 .218 .100 .030 .002 .003 .072 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 9.0 10.0 16.0 2 4.77 7.78 9.15 8.21 9.08 0.62 1 13 36 0.69 5.25 0.00 6.19 .503 .246 .113 .039 .002 .004 .093 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 9.0 10.0 16.0 2 6.86 10.61 12.48 11.20 10.50 0.74 1 13 36 0.84 6.32 0.00 8.47 .503 .246 .113 .039 .002 .004 .093 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 10.20 15.71 17.75 16.35 11.53 1.02 1.17 6.98 0.00 11.72 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 12.30 18.60 21.01 19.36 13.39 1.19 1.36 8.12 0.00 14.00 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 19.0 29.0 2 12.54 18.67 21.44 19.54 15.47 1.23 1.41 9.36 0.00 14.33 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 25.0 39.0 2 10.06 15.53 17.54 16.16 11.42 1.01 1.16 6.91 0.00 11.58 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 19.0 29.0 2 17.58 25.48 29.26 26.67 25.01 1.94 2.22 14.74 0.00 20.06 .633 .192 .088 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 14.0 14.0 23.0 2 4.46 7.49 8.69 7.87 9.04 0.64 0.72 5.10 0.00 5.63 .603 .205 .095 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 9.94 9.42 0.70 1 13 36 14.0 14.0 24.0 2 5.90 9.47 10.97 0.79 5.56 0.00 7.43 .533 .253 .116 .027 .002 .004 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 20.0 21.0 34.0 2 8.08 12.67 14.43 13.23 10.37 0.87 0.99 6.23 0.00 9.61 .615 .215 .099 .019 .002 .003 .047 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 33.0 33.0 54.0 2 11.88 18.47 20.42 19.08 10.97 1.14 1.32 6.63 0.00 13.44 .643 .185 .085 .024 .002 .003 .058 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 26.0 28.0 43.0 2 13.91 20.93 23.50 21.74 14.10 1.31 1.51 8.55 0.00 16.12 .643 .212 .098 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 20.0 21.0 34.0 2 7.98 12.53 14.28 13.08 10.29 9.51 .615 .215 .099 .019 .002 .003 .047 .000 0.86 0.98 6.18 0.00 231 CDPHE/APCD/Technical Services Program January 4, 2000

OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 20.0 20.0 2 14.70 21.22 24.73 22.33 20.66 1.59 1.79 12.33 0.00 17.00 .643 .212 .098 .012 .002 .003 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 13.0 11.0 21.0 2 4.05 6.90 8.04 7.26 9.69 0Emission factors are as of Jan. 1st of the indicated calendar year. 0.63 0.71 5.15 0.00 5.42 .534 .238 .110 .033 .002 .004 .079 .000 LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 15.0 25.0 2 5.31 8.68 10.04 9.11 9.12 0.67 0.76 5.30 0.00 6.97 .463 .280 .129 .036 .002 .004 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 21.0 36.0 2 6.25 10.21 11.60 10.65 9.19 0.76 0.86 5.36 0.00 7.61 .593 .212 .098 .027 .002 .003 .065 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 32.0 30.0 52.0 2 8.96 14.40 15.98 14.90 9.57 0.95 1.09 5.68 0.00 10.63 .594 .217 .100 .025 .002 .003 .059 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 22.0 37.0 2 9.93 15.30 17.35 15.95 11.61 1.01 1.15 7.03 0.00 12.21 .553 .273 .126 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 22.0 21.0 36.0 2 8.17 12.85 14.59 13.40 10.29 0.87 6.18 0.00 9.68 .593 .212 .098 .027 .002 .003 .065 .000 1.00 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 19.0 19.0 32.0 2 15.14 22.33 25.52 23.34 17.69 1.45 1.64 10.65 0.00 18.23 .553 .273 .126 .012 .002 .004 .030 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 15.0 9.0 25.0 2 6.90 11.28 13.06 11.84 12.61 0.75 0.84 6.01 0.00 8.75 .423 .226 .104 .071 .001 .004 .171 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 4.0 2.0 6.0 2 3.55 5.96 7.16 6.34 9.21 0.55 0.61 5.07 0.00 4.98 .473 .246 .113 .047 .002 .004 .115 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 4.55 7.74 8.90 8.11 9.06 0.66 5.08 0.00 0.74 6.26 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 5.02 8.39 9.65 8.79 9.03 0.67 0.75 5.17 0.00 6.76 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 13.0 48.0 2 8.71 13.99 15.66 14.52 10.08 0.87 1.00 6.04 0.00 10.96 .443 .293 .135 .036 .002 .005 .086 .000 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 18.0 12.0 29.0 2 6.10 9.87 11.35 10.34 9.39 0.72 5.54 0.00 7.95 .443 .293 .135 .036 .002 .005 .086 .000 0.81 OEmission factors are as of Jan. 1st of the indicated calendar year. LEV phase-in begins in 2001 without using (4/8/94) Guidance Memo Credits 1 13 36 23.0 13.0 48.0 2 16.90 25.43 28.47 26.39 16.95 1.48 1.69 10.22 0.00 20.28 .443 .293 .135 .036 .002 .005 .086 .000

```
DIMENSION SPD(8,5,10),XHIALT(7),VMIX(7),XLOALT(2),XNLEV(2)
CHARACTER*40 JUNK
C read speed and emission factor data
         OPEN(10,FILE='speeddb11-10.dat',TYPE='OLD')
         READ(10,*)(((SPD(IFC,IAREA,IP),IFC=1,8),IAREA=1,5),IP=1,10)
C open the output file with all the I/M bells &whistles; plus mech train OPEN(1,FILE='work.hi',TYPE='OLD',FORM='FORMATTED')
C open the low altitude WITH NLEV
         OPEN(3,FILE='work.lo',TYPE='OLD',FORM='FORMATTED')
         OPEN(4, FILE='efact.hinlev')
 5
         FORMAT(40A)
 4
         format(8F5.1)
 3
         format(a20)
         Format(13,',',F7.2)
format(13,',',F5.1)
format(31x,2f6.2,51x,f6.2)
format(30x,3f7.2,7x,4f7.2,14x,7f5.3)
format(7f6.2/7f5.3)
Format(7f6.2/7f5.3)
 2
 б
 7
 1
 8
C 1 FORMAT(1X,11,1X,12,1X,13,1X,3F6.1,1X,A1,10F7.2,8F5.2)
C read top six lines of output files
DO ILINE = 1,15
              READ(1,5)JUNK
READ(3,5)JUNK
         END DO
c read mode data and total vmt
         DO IP = 1, 10
         DO IAREA = 1,5
         DO IFC = 1,8
             IF (SPD(IFC, IAREA, IP).GT.0) THEN
                       read(1,3) junk
                       READ(3,3)JUNK
                       READ(3,3)JUNK
                                                       ! file has extra 'junk'
C Read all veh type emission factor AND veh mix from hi alt file
                       READ(1,1)(xhialt(i),i=1,7),(vmix(i),i=1,7)
C Read only the ldgv and ldgt1 factors from these file
                       READ(3,1)(xnlev(i),i=1,2)
C Calculate NLEV adjustment to the ldgv and t1 emission factors
                       xhialt(1)=xnlev(1)
                       xhialt(2) = xnlev(2)
C Calculate the composite factor for hi altitude
                       efact = 0.0
do i = 1,7
                           efact = efact + xhialt(i) * vmix(i)
                       end do
C Calculate 'code' identifier for efactor
                       ICODE = IFC * 100 + IAREA * 10 + (IP-1)
C make calculations to adjust for nev
WRITE(4,2)ICODE,EFACT
         END IF
         END DO
         END DO
         END DO
 100
         CONTINUE
         END
```

Appendix C – Mobile Source Emissions Modeling: Emission Factors

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

2013 Emission Factors (grams/mile)

Area Clas	Roa sTyj	ad AM1 pe	AM2	AM3	PM1	PM2	PM3	OP1	OP2	OP3	OP4
Clas 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3	sTyn 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 8 1 2 3 4 5 6 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	0.00 0.00 18.28 19.02 19.48 0.00 24.13 8.64 10.97 15.50 17.78 18.79 13.68 0.00 22.87 7.86	$\begin{array}{c} 0.00\\ 0.00\\ 21.15\\ 22.38\\ 21.48\\ 0.00\\ 0.00\\ 24.13\\ 11.01\\ 14.96\\ 21.04\\ 22.30\\ 21.20\\ 16.49\\ 0.00\\ 22.87\\ 9.77\\ $	$\begin{array}{c} 0.00\\ 0.00\\ 25.64\\ 26.70\\ 24.26\\ 0.00\\ 24.13\\ 14.52\\ 19.60\\ 25.01\\ 25.52\\ 23.99\\ 20.10\\ 0.00\\ 22.87\\ 12.63\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 17.14\\ 20.24\\ 21.25\\ 0.00\\ 0.00\\ 26.80\\ 7.25\\ 8.70\\ 12.47\\ 14.50\\ 17.06\\ 12.25\\ 0.00\\ 22.10\\ 5.93\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 22.91\\ 24.88\\ 24.30\\ 0.00\\ 26.80\\ 9.93\\ 11.51\\ 18.22\\ 19.21\\ 19.38\\ 15.10\\ 0.00\\ 22.10\\ 8.322\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 27.32\\ 30.64\\ 28.10\\ 0.00\\ 26.80\\ 12.95\\ 15.33\\ 21.11\\ 22.47\\ 22.10\\ 18.27\\ 0.00\\ 22.10\\ 10.99\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 14.34\\ 15.65\\ 18.48\\ 0.00\\ 0.00\\ 26.39\\ 6.13\\ 7.41\\ 9.99\\ 12.11\\ 13.28\\ 8.73\\ 0.00\\ 21.33\\ 7.19\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 14.86\\ 16.26\\ 19.12\\ 0.00\\ 0.00\\ 26.39\\ 6.04\\ 7.74\\ 10.36\\ 12.68\\ 13.67\\ 9.57\\ 0.00\\ 21.33\\ 5.88\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 15.43\\ 17.08\\ 19.45\\ 0.00\\ 26.39\\ 6.22\\ 8.38\\ 11.22\\ 13.41\\ 14.51\\ 10.76\\ 0.00\\ 21.33\\ 5.82\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 16.18\\ 18.37\\ 19.81\\ 0.00\\ 26.39\\ 6.93\\ 9.34\\ 12.31\\ 14.69\\ 15.12\\ 12.16\\ 0.00\\ 21.33\\ 6.13\\ 6.13\end{array}$
3	3	10.58	13.57	18.04	9.38	12.60	14.77	6.54 8.79	6.85 9.00	9.40	10.04
3 3 3 3 3	4 5 6 7 8	21.31 24.39 12.05 0.00 24.30	27.66 27.75 13.79 0.00 24.30	33.99 30.90 15.84 0.00 24 30	14.42 13.68 9.27 0.00	19.57 15.69 10.86 0.00 17.04	24.56 17.75 12.24 0.00 17.04	12.11 16.01 8.21 0.00	12.42 16.17 8.88 0.00	13.05 16.33 9.40 0.00 17.54	14.01 16.49 9.93 0.00
4 4	1 2	7.23	8.77	11.56 16.44	5.32	6.28 9.81	7.90	7.43	6.98	6.11 7.28	6.06
4 4 4	3 4 5	10.45 17.09 20.43	13.35 22.15 24.03	17.21 29.00 28.20	6.98 8.58 11.69	8.98 10.78 13.24	11.46 13.91 15.17	7.12 10.20 12.21	7.31 10.37 12.26	7.67 10.61 12.36	8.13 11.13 12.52
4 4	6 7	13.57 0.00	15.66 0.00	17.73 0.00	8.70 0.00	$10.34 \\ 0.00$	11.46 0.00	8.53 0.00	9.23 0.00	9.66 0.00	10.27 0.00
4 5	8 1	24.35 11.56	24.35 9.74	24.35 8.65	15.66 9.48	15.66 8.21	15.66 6.76	18.80 10.96	18.69 10.91	18.69 10.76	$18.69 \\ 10.47$
5	2 3	6.88 7.24	7.87	9.30	5.35	5.79 6.41	6.73 7.23	5.86	5.86	5.86	5.86
5 5 5	4 5 6	/.11 14.40 9.04	7.41 15.21 10.35	8.18 16.10 11.44	5.90 8.53 7.11	6.04 8.89 7.67	6.59 9.27 8.41	7.39 11.53 8.50	7.39 11.61 8.55	7.41 11.65 8.60	7.43 11.73 8.66
5 5	7 8	0.00 23.36	0.00 23.36	0.00 23.36	0.00 14.95	0.00 14.95	0.00 14.95	0.00 21.58	0.00 21.58	0.00 21.46	0.00 21.58

Road Class: 1=Freeway, 2=Major Regional, 3=Principal Arterial, 4=Minor Arterial 5=Collector, 6=Ramp, 7=Frontage, 8=Local Area Types: 1=Central Business District, 2=Fringe, 3=Urban, 4=Suburban, 5=Rural

2006 Emission Factors (grams/mile)

Area Class	Roa STyp	ad AM1 pe	AM2	AM3	PM1	PM2	PM3	OP1	OP2	OP3	OP4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1234567812345678123456781234567812345678123456	0.00 0.00 17.46 19.94 19.36 0.00 24.76 8.91 11.02 17.68 20.22 13.93 0.00 25.41 8.50 11.45 14.86 25.26 13.24 0.00 27.10 7.96 9.99 12.40 19.26 13.24 0.00 23.11 14.14 7.87 7.87 16.18 9.72	0.00 0.00 21.55 23.09 20.74 0.00 24.76 12.26 15.22 23.58 24.92 20.92 16.50 0.00 25.41 11.17 13.89 19.18 32.25 0.00 27.10 9.72 12.20 15.92 23.97 15.92 15.92 23.97 15.92 23.97 15.92 23.97 15.92 15.92 15.92 3.97 15.92 15.92 3.97 15.92 15.92 3.97 15.92 15.92 3.97 15.92 3.97 15.92 3.97 15.92 3.97 15.92 3.97 15.92 3.97 15.92 3.97 15.92 3.97 15.92 3.97 15.92 3.97 15.72 0.000 25.33 8.46 8.63 8.63 11.17	0.00 0.00 26.20 22.91 0.00 24.76 16.88 19.422 28.12 29.69 23.68 20.32 0.00 25.41 14.71 18.05 24.26 39.59 34.69 17.49 0.00 27.10 12.39 14.56 20.95 32.023 17.72 0.00 25.41 14.56 20.95 32.025	0.00 0.00 17.73 21.14 21.97 0.00 28.46 7.47 8.33 13.34 15.94 16.63 12.11 0.00 24.65 6.32 9.45 10.47 16.00 14.57 9.83 0.00 18.563 8.03 7.882 9.32 12.57 8.83 0.00 16.555 5.555 6.000 6.47 7.39	0.00 0.00 23.42 25.73 23.74 0.000 28.46 10.58 11.93 19.88 21.26 20.20 15.32 0.00 24.65 9.48 11.73 14.66 23.02 16.94 11.57 0.000 18.56 10.58 12.20 14.65 9.48 11.57 0.000 18.56 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 12.20 10.58 10.58 12.20 10.58 10.58 12.20 10.58 12.20 10.58 10.58 12.20 10.58 12.8 10.66 12.8	0.00 0.00 28.20 30.77 26.33 0.00 28.46 13.97 15.31 23.21 25.72 22.62 18.48 0.00 24.65 12.98 15.56 18.32 27.23 19.31 13.27 0.00 18.56 8.94 11.36 13.63 15.54 16.90 10.85 0.005 6.74 7.66 7.71 0.598 8.20	0.00 0.00 15.53 16.92 19.75 0.00 28.09 6.48 7.83 10.90 13.16 14.23 9.56 0.00 23.81 7.83 7.03 9.55 13.39 17.42 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 19.04 8.92 0.00 11.27 13.21 9.28 0.00 20.03 11.89 6.11 7.24 7.95 12.54 8.97	0.00 0.00 15.74 17.40 20.25 0.00 28.09 6.42 8.16 11.34 13.65 14.37 10.600 0.00 23.81 6.43 8.12 9.82 13.68 17.59 9.65 0.00 19.04 7.63 7.57 8.11 11.49 13.26 9.86 0.003 11.833 6.11 7.31 7.97 12.58 9.02	0.00 0.00 16.23 18.26 20.60 0.00 28.09 6.44 8.47 12.08 14.36 14.71 11.25 0.00 23.81 6.27 8.55 10.355 17.67 10.20 0.00 19.04 1.677 10.37 0.000 19.92 11.611 7.377 8.01 12.666 9.08	0.00 0.00 16.84 19.39 20.97 0.00 28.09 7.19 9.32 13.43 15.83 15.83 11.89 0.00 23.81 16.65 9.07 11.17 15.37 10.784 10.73 0.000 19.04 8.18 9.300 12.23 13.42 10.89 0.000 19.04 8.18 9.300 12.23 13.42 10.90
5	8	24.95	24.95	24.95	15.50	15.50	15.50	22.53	22.65	22.65	22.65

Road Class: 1=Freeway, 2=Major Regional, 3=Principal Arterial, 4=Minor Arterial 5=Collector, 6=Ramp, 7=Frontage, 8=Local Area Types: 1=Central Business District, 2=Fringe, 3=Urban, 4=Suburban, 5=Rural

Appendix D – Mobile Source Emissions Modeling: Emission Estimates

2006 Mobile Sources Emissions in Dispersion Modeling Domain

AM PERIOD Emissions

ROAD	AREA	AMEM	AMEM	AMEM	AMEM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	1,274,105.7	970,317.1	1,418,076.6	3,662,499.4
	3	3,284,237.7	2,396,270.4	3,359,820.9	9,040,329.0
	4	6,113,457.9	4,483,501.0	6,412,560.8	17,009,519.7
	5	3,324,579.6	1,605,511.1	1,806,291.1	6,736,381.8
1		13,996,381.0	9,455,599.6	12,996,749.4	36,448,730.0
	2	143,248.0	117,499.1	164,431.2	425,178.3
	3	515,428.2	358,278.6	511,056.0	1,384,762.8
	4	1,293,394.8	950,822.2	1,284,486.3	3,528,703.3
	5	276,294.2	194,165.4	264,644.0	735,103.7
2		2,228,365.2	1,620,765.3	2,224,617.6	6,073,748.0
	1	388,425.6	303,050.3	423,157.2	1,114,633.1
	2	1,483,951.1	1,161,239.3	1,537,385.3	4,182,575.7
	3	7,189,977.2	5,566,701.9	7,899,231.3	20,655,910.4
	4	7,383,709.0	5,732,348.5	8,577,885.2	21,693,942.7
	5	861,565.8	636,609.3	872,088.4	2,370,263.4
3		17,307,628.7	13,399,949.2	19,309,747.4	50,017,325.3
	1	233,338.6	167,054.0	224,647.7	625,040.3
	2	701,436.1	546,911.1	759,095.9	2,007,443.2
	3	4,239,708.1	3,421,675.1	4,880,404.6	12,541,787.9
	4	5,246,295.0	4,317,829.7	6,944,742.6	16,508,867.2
	5	635,689.2	500,964.8	749,495.6	1,886,149.6
4		11,056,467.0	8,954,434.7	13,558,386.5	33,569,288.2
	1	62,968.2	48,850.5	70,751.2	182,569.8
	2	285,912.8	269,902.9	412,414.9	968,230.5
	3	2,225,519.0	2,338,585.8	3,910,151.6	8,474,256.4
	4	2,695,579.9	2,456,882.4	4,037,018.7	9,189,481.0
	5	785,756.0	581,001.0	878,760.9	2,245,517.9
5		6,055,735.9	5,695,222.5	9,309,097.3	21,060,055.6
	2	89,378.5	62,331.3	87,588.0	239,297.8
	3	227,234.0	146,864.5	189,201.0	563,299.5
	4	358,939.0	236,839.6	304,799.4	900,578.0
	5	29,239.5	21,363.3	30,356.8	80,959.6
б		704,791.0	467,398.7	611,945.2	1,784,134.9
	1	64,957.0	39,508.2	45,018.8	149,484.0
	2	558,582.1	341,781.1	389,608.1	1,289,971.3
	3	2,977,004.0	1,814,989.6	2,062,634.5	6,854,628.1
	4	4,524,526.3	2,774,187.2	3,171,321.4	10,470,034.8
	5	1,706,682.1	1,047,048.3	1,194,036.7	3,947,767.0
8		9,831,751.4	6,017,514.4	6,862,619.5	22,711,885.3
		61,181,120.3	45,610,884.4	64,873,162.8	171,665,167.4

2006 Mobile Sources Emissions in Dispersion Modeling Domain

PM PERIOD Emissions

ROAD	AREA	PMEM	PMEM	PMEM	PMEM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	3,129,529.2	1,672,130.9	1,168,238.2	5,969,898.3
	3	7,478,633.1	4,273,428.1	3,111,320.9	14,863,382.1
	4	13,028,217.9	7,254,884.0	5,096,828.2	25,379,930.0
	5	7,975,377.8	2,696,040.2	1,494,002.6	12,165,420.6
1		31,611,758.0	15,896,483.2	10,870,389.8	58,378,631.0
	2	333,688.3	199,495.4	140,915.6	674,099.3
	3	1,274,649.3	624,070.7	452,157.2	2,350,877.2
	4	3,137,647.1	1,613,530.8	1,077,044.1	5,828,222.1
	5	582,823.6	312,387.4	210,779.0	1,105,990.0
2		5,328,808.3	2,749,484.3	1,880,895.9	9,959,188.5
	1	1,231,779.4	759,341.1	525,470.0	2,516,590.5
	2	3,415,748.3	2,175,040.4	1,409,205.9	6,999,994.5
	3	15,965,994.1	9,601,781.9	6,697,229.1	32,265,005.1
	4	14,529,815.5	8,522,233.3	6,211,096.9	29,263,145.7
	5	1,893,016.2	1,037,835.5	704,313.0	3,635,164.7
3		37,036,353.5	22,096,232.2	15,547,314.9	74,679,900.5
	1	782,951.8	429,202.3	291,420.9	1,503,575.0
	2	1,771,999.2	1,089,560.1	765,386.5	3,626,945.8
	3	8,347,619.3	5,698,160.1	3,854,028.8	17,899,808.1
	4	8,009,732.2	5,239,966.3	3,976,522.6	17,226,221.0
	5	1,411,718.9	815,430.2	621,726.3	2,848,875.4
4		20,324,021.4	13,272,318.9	9,509,085.1	43,105,425.4
	1	224,308.2	143,683.6	107,567.2	475,559.0
	2	741,723.3	618,918.6	471,764.8	1,832,406.7
	3	3,436,553.9	3,221,344.5	2,704,570.8	9,362,469.2
	4	3,966,008.5	3,091,421.7	2,515,909.8	9,573,340.0
	5	1,207,214.3	664,576.5	471,294.7	2,343,085.5
5		9,575,808.2	7,739,944.8	6,271,107.3	23,586,860.4
	2	267,899.1	135,131.0	90,223.1	493,253.2
	3	527,808.9	245,802.1	155,803.7	929,414.7
	4	667,306.3	312,759.8	196,363.6	1,176,429.8
	5	59,666.6	30,610.5	18,789.8	109,066.8
6		1,522,681.0	724,303.4	461,180.2	2,708,164.6
	1	253,458.7	112,169.0	64,019.9	429,647.7
	2	1,720,942.1	768,881.9	438,348.8	2,928,172.7
	3	6,991,160.4	3,105,331.6	1,770,449.9	11,866,941.9
	4	10,007,956.1	4,482,155.7	2,572,224.7	17,062,336.5
	5	3,228,010.1	1,441,841.6	827,265.2	5,497,116.8
8		22,201,527.4 ====================================	9,910,379.8 ====== 72,389,146.6	5,672,308.5 50,212,281.8	37,784,215.7 ====================================

2006 Mobile Sources Emissions in Dispersion Modeling Domain

Off Peak Emissions

FUN	AREA	OFF	OFF	OFF	OFF	TOTAL
CLASS	TYPE	PD1	PD2	PD3	PD4	OFF
	2	1,647,797.0	1,848,716.4	3,773,379.2	944,491.8	8,214,384.5
	3	5,346,538.8	4,948,350.8	10,047,650.9	2,430,910.0	22,773,450.5
	4	9,043,853.3	10,149,394.6	18,999,867.5	4,542,516.9	42,735,632.4
	5	5,395,324.5	6,284,178.6	13,560,043.7	3,114,491.2	28,354,038.0
1		21,433,513.6	23,230,640.4	46,380,941.3	11,032,410.0	102,077,505.4
	2	160,410.9	191,401.6	436,625.5	113,019.4	901,457.5
	3	493,032.0	671,042.8	1,448,490.8	343,138.9	2,955,704.5
	4	1,389,717.4	1,650,939.0	3,735,865.6	958,939.7	7,735,461.7
	5	305,133.4	361,401.6	811,279.0	203,199.1	1,681,013.1
2		2,348,293.7	2,874,785.1	6,432,260.9	1,618,297.1	13,273,636.8
	1	399,733.5	481,582.4	1,145,891.8	314,620.4	2,341,828.0
	2	1,245,869.6	1,563,860.8	3,743,608.0	1,020,066.1	7,573,404.5
	3	6,267,967.6	7,737,653.9	18,336,628.3	4,913,287.9	37,255,537.7
	4	7,164,972.5	8,619,478.1	19,731,332.6	5,084,626.8	40,600,409.9
	5	1,028,060.9	1,217,590.9	2,731,410.6	707,187.0	5,684,249.4
3		16,106,604.0	19,620,166.1	45,688,871.3	12,039,788.3	93,455,429.6
	1	260,804.8	315,936.0	753,340.2	199,771.3	1,529,852.3
	2	595,893.3	725,443.3	1,725,666.0	478,063.4	3,525,066.0
	3	2,653,253.2	3,238,186.1	8,030,937.8	2,216,565.7	16,138,942.7
	4	3,764,242.0	4,526,399.2	10,521,326.8	2,889,927.8	21,701,895.8
	5	722,630.9	858,863.9	1,908,492.3	482,721.3	3,972,708.4
4		7,996,824.1	9,664,828.5	22,939,763.0	6,267,049.5	46,868,465.2
	1	74,640.7	89,275.6	202,012.7	51,626.3	417,555.2
	2	177,836.6	220,066.8	529,489.9	150,365.9	1,077,759.3
	3	994,743.2	1,168,643.4	2,815,141.4	817,856.6	5,796,384.5
	4	1,231,371.1	1,466,615.7	3,464,250.6	949,028.3	7,111,265.8
	5	727,560.7	851,674.5	1,870,560.8	461,327.7	3,911,123.7
5		3,206,152.3	3,796,276.0	8,881,455.4	2,430,204.8	18,314,088.5
	2	107,705.8	139,002.7	313,460.6	76,420.8	636,589.9
	3	262,087.5	314,148.6	703,146.3	169,960.7	1,449,343.1
	4	349,649.0	429,212.1	949,789.5	238,257.1	1,966,907.7
	5	32,051.0	37,764.5	82,877.2	20,852.6	173,545.2
6		751,493.3	920,127.9	2,049,273.6	505,491.1	4,226,385.9
	1	120,207.4	139,808.2	304,719.3	74,408.9	639,143.8
	2	781,490.8	911,406.5	1,993,209.9	484,302.9	4,170,410.1
	3	3,441,469.6	3,989,439.7	8,716,647.9	2,118,718.8	18,266,276.0
	4	5,810,883.5	6,768,430.2	14,767,447.7	3,596,022.1	30,942,783.5
	5	2,294,204.0	2,652,138.2	5,798,795.9	1,414,072.5	12,159,210.6
8	:	12,448,255.4	14,461,222.7	31,580,820.7	7,687,525.3	66,177,824.0
		64,291,136.6	74,568,046.7	163,953,386.2	41,580,766.0	344,393,335.5

2006 Mobile Sources Emissions in Nonattainment Area

AMEM PERIOD Emissions

ROAD	AREA	AMEM	AMEM	AMEM	AMEM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	1,274,105.7	970,317.1	1,418,076.6	3,662,499.4
	3	3,284,237.7	2,396,270.4	3,359,820.9	9,040,329.0
	4	5,971,397.0	4,383,993.3	6,274,333.1	16,629,723.5
	5	2,330,447.5	1,138,344.9	1,295,657.4	4,764,449.8
1		12,860,187.9	8,888,925.7	12,347,888.0	34,097,001.7
	2	143,248.0	117,499.1	164,431.2	425,178.3
	3	515,428.2	358,278.6	511,056.0	1,384,762.8
	4	1,097,820.0	784,582.3	1,033,530.4	2,915,932.8
	5	87,872.1	65,693.9	90,557.9	244,123.9
2		1,844,368.4	1,326,053.9	1,799,575.6	4,969,997.8
	1	388,425.6	303,050.3	423,157.2	1,114,633.1
	2	1,483,951.1	1,161,239.3	1,537,385.3	4,182,575.7
	3	7,157,211.9	5,542,859.0	7,863,226.2	20,563,297.1
	4	7,064,082.5	5,486,802.6	8,207,900.5	20,758,785.7
	5	560,112.2	414,539.6	566,189.5	1,540,841.2
3		16,653,783.3	12,908,490.8	18,597,858.6	48,160,132.7
	1	233,338.6	167,054.0	224,647.7	625,040.3
	2	701,436.1	546,911.1	759,095.9	2,007,443.2
	3	4,209,378.2	3,397,213.6	4,844,543.7	12,451,135.5
	4	5,039,665.4	4,152,720.0	6,683,886.4	15,876,271.8
	5	412,766.3	325,067.7	487,534.6	1,225,368.6
4		10,596,584.6	8,588,966.4	12,999,708.4	32,185,259.3
	1	62,968.2	48,850.5	70,751.2	182,569.8
	2	285,912.8	269,902.9	412,414.9	968,230.5
	3	2,220,940.6	2,335,203.9	3,905,490.4	8,461,635.0
	4	2,615,931.3	2,400,994.3	3,963,342.1	8,980,267.7
	5	643,161.1	484,343.9	747,148.3	1,874,653.2
5		5,828,913.9	5,539,295.4	9,099,146.9	20,467,356.2
	2	89,378.5	62,331.3	87,588.0	239,297.8
	3	227,234.0	146,864.5	189,201.0	563,299.5
	4	353,079.5	233,076.4	299,740.9	885,896.8
	5	23,417.5	17,190.7	24,969.8	65,577.9
6		693,109.5	459,462.9	601,499.7	1,754,072.0
	1	64,957.0	39,508.2	45,018.8	149,484.0
	2	558,582.1	341,781.1	389,608.1	1,289,971.3
	3	2,957,326.0	1,803,025.1	2,048,972.7	6,809,323.8
	4	4,390,654.1	2,691,588.1	3,076,944.0	10,159,186.2
	5	706,899.2	436,557.4	496,439.3	1,639,895.9
8		8,678,418.4	5,312,459.9	6,056,982.9	20,047,861.2
		57,155,365.9	43,023,655.0	61,502,660.0	161,681,681.0

2006 Mobile Sources Emissions in Nonattainment Area

PM PERIOD Emissions

ROAD	AREA	PMEM	PMEM	PMEM	PMEM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	3,129,529.2	1,672,130.9	1,168,238.2	5,969,898.3
	3	7,478,633.1	4,273,428.1	3,111,320.9	14,863,382.1
	4	12,721,716.4	7,098,000.9	4,992,338.1	24,812,055.4
	5	5,459,489.7	1,909,421.2	1,081,438.2	8,450,349.1
1		28,789,368.4	14,952,981.1	10,353,335.4	54,095,684.9
	2	333,688.3	199,495.4	140,915.6	674,099.3
	3	1,274,649.3	624,070.7	452,157.2	2,350,877.2
	4	2,689,232.6	1,334,912.4	863,029.3	4,887,174.2
	5	158,971.6	100,468.5	66,928.9	326,369.0
2		4,456,541.7	2,258,947.0	1,523,031.0	8,238,519.7
	1	1,231,779.4	759,341.1	525,470.0	2,516,590.5
	2	3,415,748.3	2,175,040.4	1,409,205.9	6,999,994.5
	3	15,884,224.7	9,554,368.7	6,663,853.8	32,102,447.2
	4	13,903,197.4	8,137,186.7	5,931,204.2	27,971,588.3
	5	1,198,095.1	663,482.5	452,438.1	2,314,015.6
3		35,633,044.9	21,289,419.3	14,982,172.0	71,904,636.2
	1	782,951.8	429,202.3	291,420.9	1,503,575.0
	2	1,771,999.2	1,089,560.1	765,386.5	3,626,945.8
	3	8,283,445.9	5,650,507.7	3,820,769.6	17,754,723.3
	4	7,661,310.3	5,034,368.9	3,822,405.5	16,518,084.7
	5	892,987.3	536,218.1	400,233.4	1,829,438.7
4		19,392,694.5	12,739,857.1	9,100,216.0	41,232,767.6
	1	224,308.2	143,683.6	107,567.2	475,559.0
	2	741,723.3	618,918.6	471,764.8	1,832,406.7
	3	3,430,432.1	3,216,866.8	2,701,132.0	9,348,430.8
	4	3,818,984.2	3,014,890.8	2,465,199.4	9,299,074.3
	5	971,684.3	542,732.9	391,113.2	1,905,530.4
5		9,187,132.1	7,537,092.6	6,136,776.5	22,861,001.2
	2	267,899.1	135,131.0	90,223.1	493,253.2
	3	527,808.9	245,802.1	155,803.7	929,414.7
	4	657,835.0	308,292.2	193,483.8	1,159,611.1
	5	45,293.1	24,053.2	15,133.2	84,479.5
б		1,498,836.2	713,278.5	454,643.8	2,666,758.6
	1	253,458.7	112,169.0	64,019.9	429,647.7
	2	1,720,942.1	768,881.9	438,348.8	2,928,172.7
	3	6,946,935.2	3,085,669.0	1,759,183.7	11,791,787.9
	4	9,715,305.2	4,349,207.0	2,495,514.9	16,560,027.1
	5	1,330,954.1	593,344.7	340,622.2	2,264,921.0
8		19,967,595.3 ======= 118,925,213.1	8,909,271.6 ====================================	5,097,689.4 ======= 47,647,864.1	33,974,556.4 ====================================

2006 Mobile Sources Emissions in Nonattainment Area

Off Peak Emissions

FUN	AREA	OFF	OFF	OFF	OFF	TOTAL
CLASS	TYPE	PD1	PD2	PD3	PD4	OFF
	2	1,647,797.0	1,848,716.4	3,773,379.2	944,491.8	8,214,384.5
	3	5,346,538.8	4,948,350.8	10,047,650.9	2,430,910.0	22,773,450.5
	4	8,798,191.2	9,877,792.6	18,485,832.5	4,421,424.3	41,583,240.7
	5	3,542,355.2	4,161,351.3	9,001,097.3	2,078,139.8	18,782,943.7
1		19,334,882.2	20,836,211.2	41,307,960.0	9,874,966.0	91,354,019.3
	2	160,410.9	191,401.6	436,625.5	113,019.4	901,457.5
	3	493,032.0	671,042.8	1,448,490.8	343,138.9	2,955,704.5
	4	1,178,211.2	1,403,325.4	3,173,723.4	810,302.8	6,565,562.8
	5	61,516.6	72,188.6	174,723.2	46,284.7	354,713.1
2		1,893,170.7	2,337,958.5	5,233,562.9	1,312,745.8	10,777,437.9
	1	399,733.5	481,582.4	1,145,891.8	314,620.4	2,341,828.0
	2	1,245,869.6	1,563,860.8	3,743,608.0	1,020,066.1	7,573,404.5
	3	6,230,581.9	7,692,252.1	18,231,658.9	4,884,671.1	37,039,164.0
	4	6,876,686.5	8,254,961.9	18,871,381.9	4,858,528.1	38,861,558.4
	5	591,415.2	697,133.0	1,574,078.9	411,088.7	3,273,715.7
3		15,344,286.7	18,689,790.1	43,566,619.4	11,488,974.5	89,089,670.7
	1	260,804.8	315,936.0	753,340.2	199,771.3	1,529,852.3
	2	595,893.3	725,443.3	1,725,666.0	478,063.4	3,525,066.0
	3	2,633,252.7	3,212,249.3	7,969,966.6	2,198,146.5	16,013,615.0
	4	3,557,065.5	4,282,799.7	9,996,017.6	2,753,062.0	20,588,944.8
	5	438,728.5	516,376.5	1,148,671.8	297,337.4	2,401,114.2
4		7,485,744.8	9,052,804.8	21,593,662.1	5,926,380.6	44,058,592.4
	1	74,640.7	89,275.6	202,012.7	51,626.3	417,555.2
	2	177,836.6	220,066.8	529,489.9	150,365.9	1,077,759.3
	3	992,235.1	1,165,810.4	2,808,890.1	816,197.4	5,783,133.1
	4	1,159,152.5	1,378,948.5	3,268,273.8	901,162.9	6,707,537.8
	5	570,615.6	670,771.6	1,477,378.4	364,791.4	3,083,556.9
5		2,974,480.5	3,524,872.9	8,286,044.9	2,284,144.0	17,069,542.3
	2	107,705.8	139,002.7	313,460.6	76,420.8	636,589.9
	3	262,087.5	314,148.6	703,146.3	169,960.7	1,449,343.1
	4	344,606.0	422,831.7	934,916.3	234,483.7	1,936,837.7
	5	24,219.1	28,589.6	62,600.0	16,004.8	131,413.5
6		738,618.3	904,572.6	2,014,123.2	496,870.0	4,154,184.2
	1	120,207.4	139,808.2	304,719.3	74,408.9	639,143.8
	2	781,490.8	911,406.5	1,993,209.9	484,302.9	4,170,410.1
	3	3,420,577.1	3,964,669.5	8,662,820.7	2,105,605.0	18,153,672.4
	4	5,636,929.2	6,566,882.5	14,330,604.4	3,489,843.4	30,024,259.5
	5	905,006.0	1,039,312.8	2,271,097.3	554,616.4	4,770,032.6
8		10,864,210.6	12,622,079.5 ======== 67,968,289.6	27,562,451.7 ====================================	6,708,776.6 ==================================	57,757,518.4 ====================================

2013 Mobile Sources Emissions in Dispersion Modeling Domain

AM	PERIOD	Emissions
----	--------	-----------

ROAD	AREA	AMEM	AMEM	AMEM	AMEM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	1,306,252.3	908,511.4	1,269,359.6	3,484,123.2
	3	3,334,771.3	2,287,663.8	3,148,270.4	8,770,705.6
	4	6,376,551.5	4,685,758.4	6,922,311.1	17,984,621.0
	5	3,626,305.5	1,895,709.3	1,937,528.4	7,459,543.2
1		14,643,880.6	9,777,642.9	13,277,469.6	37,698,993.0
	2	199,487.6	156,904.1	227,093.1	583,484.8
	3	1,953,007.2	1,424,581.4	2,040,831.9	5,418,420.5
	4	4,279,258.5	3,318,464.7	4,801,067.0	12,398,790.2
	5	530,218.2	397,747.7	546,873.4	1,474,839.4
2		6,961,971.6	5,297,697.9	7,615,865.4	19,875,534.9
	1	462,011.5	330,640.7	454,566.9	1,247,219.1
	2	1,551,847.7	1,248,309.3	1,650,676.7	4,450,833.7
	3	6,136,348.8	4,660,733.3	6,689,908.2	17,486,990.4
	4	6,021,138.4	4,697,573.5	6,913,294.7	17,632,006.6
	5	918,647.6	673,857.5	949,336.4	2,541,841.5
3		15,089,994.0	11,611,114.3	16,657,782.9	43,358,891.2
	1	248,496.9	177,464.9	237,649.6	663,611.5
	2	525,395.4	416,918.8	549,376.1	1,491,690.3
	3	2,825,726.6	2,367,286.2	3,358,794.9	8,551,807.7
	4	3,413,536.2	3,031,577.2	4,863,666.7	11,308,780.1
	5	375,330.8	284,563.1	407,093.1	1,066,987.0
4		7,388,485.8	6,277,810.2	9,416,580.5	23,082,876.5
	1	85,488.8	68,517.7	100,666.7	254,673.2
	2	316,260.5	297,311.9	451,344.9	1,064,917.4
	3	1,882,456.7	2,025,348.3	3,422,334.0	7,330,139.0
	4	2,461,006.6	2,296,043.8	3,729,419.0	8,486,469.3
	5	747,744.8	560,262.2	832,283.7	2,140,290.6
5		5,492,957.5	5,247,483.8	8,536,048.3	19,276,489.6
	2	97,236.5	66,881.5	90,987.5	255,105.4
	3	222,977.5	146,072.7	186,747.6	555,797.7
	4	385,505.0	263,447.9	335,533.2	984,486.1
	5	28,678.6	20,886.5	27,350.3	76,915.4
6		734,397.5	497,288.6	640,618.5	1,872,304.6
	1	83,791.5	50,966.1	57,720.4	192,478.0
	2	548,592.0	335,123.9	381,008.2	1,264,724.1
	3	2,902,193.9	1,772,970.7	2,011,916.5	6,687,081.1
	4	4,773,188.1	2,925,971.9	3,334,620.4	11,033,780.3
	5	1,758,207.9	1,075,700.7	1,226,333.8	4,060,242.5
8		10,065,973.4	6,160,733.3	7,011,599.3	23,238,306.0
		60,377,660.4	44,869,771.1	63,155,964.5	168,403,396.0

2013 Mobile Sources Emissions in Dispersion Modeling Domain

PM PERIOD Emissions

ROAD	AREA	PMEM	PMEM	PMEM	PMEM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	3,229,492.2	1,665,224.8	1,148,454.6	6,043,171.5
	3	7,668,418.5	4,073,235.0	2,856,572.3	14,598,225.9
	4	14,281,460.2	7,509,652.8	5,290,215.9	27,081,328.9
	5	8,773,738.2	3,569,098.8	1,689,623.7	14,032,460.7
1		33,953,109.1	16,817,211.4	10,984,866.5	61,755,187.0
	2	495,305.8	263,265.3	191,636.2	950,207.3
	3	4,435,403.8	2,590,638.3	1,815,247.5	8,841,289.7
	4	9,900,033.9	5,695,276.2	4,032,822.6	19,628,132.7
	5	1,161,017.8	622,139.8	427,615.6	2,210,773.1
2		15,991,761.3	9,171,319.6	6,467,321.8	31,630,402.8
	1	1,322,349.9	823,280.4	556,508.8	2,702,139.1
	2	3,882,997.8	2,416,007.3	1,559,588.6	7,858,593.6
	3	13,887,098.1	8,301,160.6	6,076,181.4	28,264,440.1
	4	12,566,737.1	7,143,701.4	5,231,250.3	24,941,688.8
	5	2,016,183.1	1,091,931.3	734,626.4	3,842,740.7
3		33,675,365.9	19,776,080.9	14,158,155.4	67,609,602.3
	1	839,499.2	442,552.3	306,173.2	1,588,224.7
	2	1,375,727.4	839,292.8	572,606.4	2,787,626.7
	3	5,839,007.1	3,896,802.5	2,841,840.6	12,577,650.1
	4	5,354,023.6	3,482,748.2	2,747,997.1	11,584,768.9
	5	828,113.0	445,030.2	337,944.3	1,611,087.6
4		14,236,370.3	9,106,426.1	6,806,561.6	30,149,358.0
	1	279,755.9	199,738.1	153,492.4	632,986.5
	2	828,700.6	661,709.8	515,702.3	2,006,112.7
	3	3,010,636.6	2,897,782.2	2,484,160.4	8,392,579.3
	4	3,773,168.7	2,870,408.4	2,311,246.0	8,954,823.1
	5	1,209,071.5	630,526.0	431,892.7	2,271,490.3
5		9,101,333.4	7,260,164.6	5,896,493.9	22,257,991.8
	2	300,521.8	147,554.7	97,933.3	546,009.8
	3	534,803.4	249,592.6	156,303.5	940,699.6
	4	739,823.4	369,563.5	228,553.3	1,337,940.1
	5	63,515.4	31,754.1	21,090.0	116,359.5
б		1,638,663.9	798,464.9	503,880.1	2,941,009.0
	1	317,933.8	140,698.8	80,284.9	538,917.5
	2	1,673,892.1	743,562.2	424,296.8	2,841,751.1
	3	7,019,272.3	3,114,769.0	1,775,602.6	11,909,644.0
	4	10,832,865.4	4,849,858.7	2,780,475.0	18,463,199.1
	5	3,426,382.5	1,531,569.5	877,015.0	5,834,967.0
8		23,270,346.2	10,380,458.3	5,937,674.2	39,588,478.8
		131,866,950.1	73,310,125.9	50,754,953.6	255,932,029.6
2013 Mobile Sources Emissions in Dispersion Modeling Domain

Off Peak Emissions

FUN	AREA	OFF	OFF	OFF	OFF	TOTAL
CLASS	TYPE	PD1	PD2	PD3	PD4	OFF
	2	1,820,064.5	1,929,752.1	3,954,902.1	972,455.2	8,677,173.9
	3	5,671,049.7	5,127,401.0	10,438,443.9	2,482,097.7	23,718,992.2
	4	10,022,356.4	10,976,259.1	20,936,264.1	4,962,724.2	46,897,603.9
	5	5,705,055.1	6,682,805.8	14,574,467.6	3,464,924.0	30,427,252.5
1		23,218,525.7	24,716,218.0	49,904,077.8	11,882,201.0	109,721,022.5
	2	212,897.4	252,545.8	589,503.0	156,206.4	1,211,152.6
	3	1,903,357.9	2,345,168.7	5,397,850.1	1,389,951.8	11,036,328.4
	4	4,318,240.0	5,257,320.0	12,102,926.5	3,126,595.8	24,805,082.4
	5	562,108.9	688,021.5	1,575,207.4	412,819.1	3,238,156.9
2		6,996,604.2	8,543,055.9	19,665,487.1	5,085,573.1	40,290,720.3
	1	427,111.1	544,513.7	1,303,704.0	354,760.2	2,630,089.0
	2	1,392,267.2	1,794,716.9	4,325,347.3	1,134,470.6	8,646,802.1
	3	5,507,654.7	6,837,609.6	16,152,861.0	4,294,085.9	32,792,211.2
	4	6,279,179.4	7,494,372.1	16,958,427.8	4,345,210.7	35,077,189.9
	5	1,125,452.6	1,310,460.9	2,949,516.1	735,686.5	6,121,116.1
3		14,731,664.9	17,981,673.3	41,689,856.3	10,864,213.9	85,267,408.3
	1	278,924.2	343,417.6	821,404.4	217,465.6	1,661,211.8
	2	477,177.3	608,649.9	1,425,971.2	389,377.1	2,901,175.5
	3	1,779,653.0	2,231,846.4	5,603,404.7	1,562,784.9	11,177,689.0
	4	2,529,000.3	3,027,737.7	7,167,473.3	1,930,587.4	14,654,798.7
	5	446,424.5	535,730.3	1,200,310.7	294,111.4	2,476,576.9
4		5,511,179.2	6,747,381.9	16,218,564.3	4,394,326.4	32,871,451.8
	1	94,053.0	111,734.4	250,715.0	66,314.5	522,816.8
	2	183,903.3	231,680.2	598,931.1	170,726.7	1,185,241.3
	3	978,209.0	1,161,251.3	2,767,272.1	769,719.5	5,676,451.7
	4	1,308,680.6	1,576,771.0	3,696,140.2	975,306.0	7,556,897.9
	5	737,787.6	894,812.3	1,980,533.1	474,308.0	4,087,441.0
5		3,302,633.5	3,976,249.1	9,293,591.4	2,456,374.7	19,028,848.7
	2	105,966.2	137,167.7	331,962.2	88,206.6	663,302.6
	3	272,141.4	317,733.6	704,166.2	171,199.8	1,465,241.1
	4	378,488.8	466,358.5	1,030,325.0	258,640.3	2,133,812.6
	5	34,650.2	40,498.0	90,775.4	22,340.5	188,264.2
6		791,246.7	961,757.8	2,157,228.7	540,387.2	4,450,620.5
	1	153,035.0	177,009.5	387,946.4	93,284.5	811,275.4
	2	775,220.6	902,590.5	1,974,485.7	475,666.2	4,127,963.1
	3	3,529,989.7	4,096,057.3	8,972,552.8	2,165,020.0	18,763,619.7
	4	6,385,141.8	7,381,663.3	16,163,817.5	3,907,453.2	33,838,075.8
	5	2,489,319.4	2,885,085.1	6,295,789.0	1,524,154.2	13,194,347.8
8		13,332,706.6	15,442,405.6 ====================================	33,794,591.4 ====================================	8,165,578.1	70,735,281.8
		07,004,000.8	10,300,141.1	112,123,390.9	43,300,034.4	JUZ,JUJ,JJJ.Ö

2013 Mobile Sources Emissions in Nonattainment Area

ROAD	AREA	AMEM	AMEM	AMEM	AMEM
CLASS	TYPE	PD1	PD2	PD3	TOTAL
	2	1,306,252.3	908,511.4	1,269,359.6	3,484,123.2
	3	3,334,771.3	2,287,663.8	3,148,270.4	8,770,705.6
	4	6,224,175.1	4,574,199.1	6,758,414.5	17,556,788.7
	5	2,488,182.0	1,313,692.8	1,346,380.1	5,148,254.8
1		13,353,380.6	9,084,067.1	12,522,424.7	34,959,872.4
	2	199,487.6	156,904.1	227,093.1	583,484.8
	3	1,953,007.2	1,424,581.4	2,040,831.9	5,418,420.5
	4	3,944,456.6	3,049,463.1	4,379,343.5	11,373,263.2
	5	353,145.2	270,137.6	375,798.7	999,081.4
2		6,450,096.6	4,901,086.2	7,023,067.2	18,374,250.0
	1	462,011.5	330,640.7	454,566.9	1,247,219.1
	2	1,551,847.7	1,248,309.3	1,650,676.7	4,450,833.7
	3	6,100,046.2	4,634,062.1	6,650,845.1	17,384,953.5
	4	5,649,194.2	4,415,558.4	6,504,243.1	16,568,995.7
	5	617,684.5	449,095.2	625,365.7	1,692,145.4
3		14,380,784.1	11,077,665.7	15,885,697.5	41,344,147.2
	1	248,496.9	177,464.9	237,649.6	663,611.5
	2	525,395.4	416,918.8	549,376.1	1,491,690.3
	3	2,802,695.8	2,347,460.3	3,331,471.6	8,481,627.8
	4	3,264,950.8	2,909,701.4	4,680,743.2	10,855,395.4
	5	210,771.5	161,489.6	234,961.0	607,222.1
4		7,052,310.4	6,013,035.0	9,034,201.5	22,099,546.9
	1	85,488.8	68,517.7	100,666.7	254,673.2
	2	316,260.5	297,311.9	451,344.9	1,064,917.4
	3	1,879,353.1	2,022,583.5	3,417,555.0	7,319,491.6
	4	2,374,006.5	2,232,635.5	3,641,161.0	8,247,802.9
	5	608,824.0	466,953.2	714,044.8	1,789,822.0
5		5,263,932.9	5,088,001.8	8,324,772.4	18,676,707.1
	2	97,236.5	66,881.5	90,987.5	255,105.4
	3	222,977.5	146,072.7	186,747.6	555,797.7
	4	378,898.3	258,829.3	329,521.8	967,249.3
	5	22,761.5	16,778.2	21,895.9	61,435.6
6		721,873.7	488,561.6	629,152.7	1,839,588.0
	1	83,791.5	50,966.1	57,720.4	192,478.0
	2	548,592.0	335,123.9	381,008.2	1,264,724.1
	3	2,883,520.3	1,761,512.3	1,998,944.7	6,643,977.3
	4	4,597,683.9	2,817,999.1	3,211,807.8	10,627,490.8
	5	769,895.3	472,394.4	536,825.9	1,779,115.6
8		8,883,483.0	5,437,995.9	6,186,307.0	20,507,785.9
		56,105,861.4	42,090,413.2	59,605,623.1	157,801,897.6

2013 Mobile Sources Emissions in Nonattainment Area

PM PERIOD Emissions

PMEM	PMEM	PMEM	PMEM	AREA	ROAD
TOTAL	PD3	PD2	PD1	TYPE	CLASS
6,043,171.5	1,148,454.6	1,665,224.8	3,229,492.2	2	
14,598,225.9	2,856,572.3	4,073,235.0	7,668,418.5	3	
26,442,557.1	5,167,986.3	7,333,824.8	13,940,746.0	4	
9,540,814.0	1,169,890.8	2,461,891.8	5,909,031.5	5	
56,624,768.5	10,342,904.0	15,534,176.3	30,747,688.1		1
950,207.3	191,636.2	263,265.3	495,305.8	2	
8,841,289.7	1,815,247.5	2,590,638.3	4,435,403.8	3	
18,052,727.4	3,672,228.8	5,234,331.8	9,146,166.7	4	
1,426,943.7	283,268.3	409,179.5	734,495.8	5	
29,271,167.9	5,962,380.9	8,497,415.0	14,811,372.1		2
2,702,139.1	556,508.8	823,280.4	1,322,349.9	1	
7,858,593.6	1,559,588.6	2,416,007.3	3,882,997.8	2	
28,078,297.8	6,037,791.0	8,249,024.9	13,791,482.0	3	
23,393,399.2	4,908,256.4	6,697,869.2	11,787,273.5	4	
2,531,583.8	480,105.9	717,265.7	1,334,212.3	5	
64,564,013.5	13,542,250.7	18,903,447.5	32,118,315.4		3
1,588,224.7	306,173.2	442,552.3	839,499.2	1	
2,787,626.7	572,606.4	839,292.8	1,375,727.4	2	
12,467,375.6	2,815,565.1	3,861,188.2	5,790,622.3	3	
11,061,386.3	2,635,406.0	3,334,076.3	5,091,903.9	4	
900,987.6	202,783.8	255,119.8	443,083.9	5	
28,805,600.8	6,532,534.6	8,732,229.5	13,540,836.7		4
632,986.5	153,492.4	199,738.1	279,755.9	1	
2,006,112.7	515,702.3	661,709.8	828,700.6	2	
8,380,857.4	2,481,110.6	2,893,799.6	3,005,947.1	3	
8,634,098.4	2,251,734.9	2,781,658.0	3,600,705.5	4	
1,849,677.8	360,084.9	517,595.8	971,997.2	5	
21,503,732.8	5,762,125.1	7,054,501.3	8,687,106.4		5
546,009.8	97,933.3	147,554.7	300,521.8	2	
940,699.6	156,303.5	249,592.6	534,803.4	3	
1,318,562.7	224,656.7	364,207.5	729,698.5	4	
88,204.3	16,202.5	24,074.3	47,927.6	5	
2,893,476.4	495,096.1	785,429.1	1,612,951.2		6
538,917.5	80,284.9	140,698.8	317,933.8	1	
2,841,751.1	424,296.8	743,562.2	1,673,892.1	2	
11,836,112.6	1,764,573.0	3,095,431.6	6,976,108.1	3	
17,784,119.3	2,677,765.7	4,671,351.6	10,435,002.1	4	
2,544,654.6	381,873.7	667,928.8	1,494,852.0	5	
35,545,555.1 ==================================	5,328,794.1 ======= 47,966,085.3	9,318,973.0 ====================================	20,897,788.1 ===================================		8

2013 Mobile Sources Emissions in Nonattainment Area

Off Peak Emissions

FUN	AREA	OFF	OFF	OFF	OFF	TOTAL
CLASS	TYPE	PD1	PD2	PD3	PD4	OFF
	2	1,820,064.5	1,929,752.1	3,954,902.1	972,455.2	8,677,173.9
	3	5,671,049.7	5,127,401.0	10,438,443.9	2,482,097.7	23,718,992.2
	4	9,763,022.3	10,682,783.9	20,364,791.5	4,824,058.0	45,634,655.6
	5	3,729,599.1	4,340,016.1	9,445,543.0	2,247,519.8	19,762,678.1
1		20,983,735.5	22,079,953.1	44,203,680.5	10,526,130.6	97,793,499.8
	2	212,897.4	252,545.8	589,503.0	156,206.4	1,211,152.6
	3	1,903,357.9	2,345,168.7	5,397,850.1	1,389,951.8	11,036,328.4
	4	3,953,074.9	4,815,322.7	11,097,619.1	2,871,008.2	22,737,024.9
	5	284,044.7	357,775.8	846,274.4	236,314.9	1,724,409.7
2		6,353,374.9	7,770,812.9	17,931,246.6	4,653,481.3	36,708,915.7
	1	427,111.1	544,513.7	1,303,704.0	354,760.2	2,630,089.0
	2	1,392,267.2	1,794,716.9	4,325,347.3	1,134,470.6	8,646,802.1
	3	5,460,466.8	6,780,858.5	16,022,361.4	4,259,506.4	32,523,193.0
	4	5,867,667.1	7,005,134.9	15,865,484.8	4,063,011.5	32,801,298.3
	5	722,061.3	834,369.9	1,865,753.2	463,077.2	3,885,261.6
3		13,869,573.4	16,959,593.8	39,382,650.8	10,274,825.9	80,486,644.0
	1	278,924.2	343,417.6	821,404.4	217,465.6	1,661,211.8
	2	477,177.3	608,649.9	1,425,971.2	389,377.1	2,901,175.5
	3	1,762,558.3	2,210,944.3	5,554,460.5	1,548,887.5	11,076,850.6
	4	2,370,757.0	2,841,624.6	6,734,036.5	1,823,843.9	13,770,262.1
	5	216,615.6	269,063.4	605,414.4	151,694.6	1,242,788.0
4		5,106,032.4	6,273,699.9	15,141,287.1	4,131,268.8	30,652,288.1
	1	94,053.0	111,734.4	250,715.0	66,314.5	522,816.8
	2	183,903.3	231,680.2	598,931.1	170,726.7	1,185,241.3
	3	976,655.2	1,159,375.5	2,762,941.9	768,569.2	5,667,541.8
	4	1,220,477.9	1,474,465.3	3,464,070.0	918,639.8	7,077,653.1
	5	583,746.2	717,862.9	1,578,246.5	378,126.9	3,257,982.5
5		3,058,835.7	3,695,118.4	8,654,904.4	2,302,377.0	17,711,235.5
	2	105,966.2	137,167.7	331,962.2	88,206.6	663,302.6
	3	272,141.4	317,733.6	704,166.2	171,199.8	1,465,241.1
	4	373,192.6	459,623.4	1,014,758.9	254,712.5	2,102,287.4
	5	26,893.3	30,927.7	68,661.0	16,923.9	143,405.8
6		778,193.5	945,452.3	2,119,548.3	531,042.8	4,374,236.9
	1	153,035.0	177,009.5	387,946.4	93,284.5	811,275.4
	2	775,220.6	902,590.5	1,974,485.7	475,666.2	4,127,963.1
	3	3,508,794.1	4,071,061.6	8,917,838.7	2,151,934.3	18,649,628.7
	4	6,147,814.6	7,107,935.4	15,565,673.3	3,763,127.2	32,584,550.5
	5	1,045,053.4	1,199,079.7	2,612,222.5	629,111.6	5,485,467.2
8		11,629,917.7	13,457,676.6	29,458,166.7	7,113,123.8	61,658,884.8
		61,779,663.0	71,182,307.1	156,891,484.5	39,532,250.2	329,385,704.8

Appendix E – Urban Airshed Modeling: High Episode 2006 Results (Run H)

Maximum 8-hr Average Carbon Monoxide Concentration Estimates (ppm) from the Urban Airshed Model for Denver Colorado 2006 Projection for the "High" Episode (05DEC88) Control Strategy: 1.5%oxyFuels; 80%RemoteSensing;4yrExempt I/M240 On-Road Mobile Emission Inventory Total = 845 tons/day

1.3	1.2	1.7	1.5	1.7	1.6	28	2.8	3.6	3.4	2.5	2.0	1.5	1.4	1.4	1.4	1.5	1.3	1.0	0.9	0.8
1.2	1.9	2.3	2.0	2.2	2.3	3.3	3.3	3.8	3.5	2.7	1.9	1.5	1.4	1.4	1.5	1.6	1.4	1.0	0.9	0.8
1.2	1.6	1.8	43	2.3	2.2	3.8	3.5	4.0	3.5	2.5	2.0	1.6	1.5	1.4	1.5	1.6	1.4	1.0	0.9	0.8
1.2	1.6	1.8	2.1		3.0	3.8	4.1	▲ WE 4.2	LF.	2.8	2.0	1.7	1.5	1.5	1.6	1.7	1.6	1.1	1.0	0.9
1.2	1.5	1.6	1.7	2.3	2.4			4.1	3.5	2.7	2.2	1.8	1.6	1.5	1.7	1.8	1.6	1.1	0.9	0.8
1.5 ▲ AR	1.6 V	1.6	2.0	3.0	3.1	5.0	4.5	4.	4.1	3.0	2.3	2.0	1.7	1.6	1.9	1.9	1.7	1.2	1.0	0.9
1.6	2.1	A	2.6	3.9	3.8	8	4.9	4.1	3.6		2.6	2.2	2.0	1.7	2.0	2.0	1.8	1.3	1.0	0.9
1.7	1.9	2.7	3.5	4.3	4.8		5.7	4.8	3.7	3.5	3.0	3.9	2.8	2.3	2.5	2.4	1.9	1.4	1.0	0.9
1.6	2.0	2.8	3.3	4.5	6.6	7.1	4.7	3.8	2.9	3.0	2.8	2.6	2.6	2.2	2.5	2.3	2	1.5	1.1	1.0
1.9	2.4	3.4	3.3	CRG 5.2	7.5	▲ CA 8.1	MP 4.7	3.8	2.8	3.0	3.0	2.7	2.8	2.5	2.9	2.4	2.2	1.6	R	1.1
2.3	2.5	3.3	2.9	4.3	5.6	7.1	4.3	3.8	NJH 3.0	3.2	2.9	2.8	2.8	2.5	3.3	2.7	2.3	1.6	1.2	1.1
2.2	2.5	3.1	2.6	3.4	×,	4.8	4.0	4.1	2.9	3.1	2.9	2.7	2.7	2.5	3.7	3.1	2.3	1.6	1.2	1.2
1.3	1.7	2.0	1.8	2.2	2.3	R°	2.9	2.9	3.0	3.2	2.7	2.8	2.8	2.8	3.8	3.3	2.7	1.9	1.3	1.3
1.2	1.5	2.0	1.7	1.9	1.8	2.8	3.0	3.0	2.6	2.8	2.3	2.5	2.4	2.7	3.2	2.9	2.6	2.0	1.5	1.4
1.1	1.4	1.6	1.3	1.5	1.5	2.4	2.4	2.3	N	2.7	2.3	2.7	2.8	2.9	3.4	2.8	2.6	1.9	1.5	1.4
1.1	1.4	1.5	1.1	1.4	1.6	engo	2.2	2.0	1.9	2.4	2.3	2.4	2.9	J₽	2.7	2.5	2.5	1.9	1.4	1.4
0.9	1.4	1.3	1.1	1.3	1.5	1.9	1.7	1.5	1.5	1	2.3	2.5	2.6	2.5	2.2	2.3	2.2	1.9	1.4	1.3
1.1	1.4	1.1	0.9	1.2	1.4	1.6	1.5	1.4	1.4	2.0	3.0	2.5	2.1	1.8	2.1	2.1	1.9	1.6	1.3	1.2
1.3	1.0	0.9	0.9	1.5	1.2	1.5	1.4	1.1	1.2	1.4	8	2.2	2.0	1.7	1.5	1.8	1.5	1.4	1.3	1.1
0.9	0.9	0.7	0.8	1.1	1.0	1.3	1.4	1.3	1.2	1.4	2.8	2.3	2.2	1.8	1.4	1.8	1.4	1.1	1.1	0.9
0.8	1.0	0.9	0.8	1.0	0.9	1.2	1.4	1.2	1.2	1.4	1.6	2.5	2.0	1.6	1.2	1.3	1.0	0.9	0.9	0.8

One Grid is One Square Mile

The value in each grid cell shows the maximum CO 8-hr running average for the entire simulation

URBAN AIRHSED MODEL OUTPUT - RUNNING 8-HOUR AVERAGES FOR ENTIRE DOMAIN \ FILENAME: c:\den_co\graphix\h\tmap8_h.max UAM Level 1 CO SIP for Denver, Colorado Episode code processed: h Base episode code: a (05DEC88) H: 2006 mobile=844.7 tpd 27aug99 06aoxy15.prn 2006 mob=844.7tpd;1.5;80;I/M 240 w/newest 4myr exempt;27aug99PTS ADD MET A7: DWMZ=12,UAMZ=5,DB=40-225,SimDrainJet,ModEC, 11-01-93
QA Check - select files used in 2nd day of simulation: c:\den_co\inputs\h\pt_h2.bi?, 08-27-99 (EI year: 2006) c:\den_co\inputs\h\pt_h2.bin, 01-11-94 c:\den_co\inputs\a\uw_a2.bin, 11-01-93 c:\den_co\outputs\h\avg_h2.out, 08-27-99 TMAP run dated: 08:52:45 08-31-99 \ 8-Hr Averaging Period \ Time, magnitude, and location of max/min predicted concentration \ Ending time 600. UAM Maximum 8-hr average: 2.12 cell (21,47) UAM Minimum 8-hr average: 0.16 cell (9,44) _____ _____ Ending time 700. UAM Maximum 8-hr average: 2.02 cell (21,47) UAM Minimum 8-hr average: 0.17 cell (9,44) Ending time 800. UAM Maximum 8-hr average: 1.95 cell (21,47) UAM Minimum 8-hr average: 0.16 cell (9,44) Ending time 900. UAM Maximum 8-hr average: 1.72 cell (21,47) UAM Minimum 8-hr average: 0.16 cell (9,44) _____ Ending time 1000. UAM Maximum 8-hr average: 1.46 cell (21,47) UAM Minimum 8-hr average: 0.18 cell (9,44) _____ Ending time 1100. UAM Maximum 8-hr average: 1.35 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) _____ Ending time 1200. UAM Maximum 8-hr average: 1.37 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) _____ Ending time 1300. UAM Maximum 8-hr average: 1.41 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) Ending time 1400. UAM Maximum 8-hr average: 1.49 cell (23,43) UAM Minimum 8-hr average: 0.19 cell (3,37) _____

Ending time 1500. UAM Maximum 8-hr average: 1.61 cell (23,43) UAM Minimum 8-hr average: 0.19 cell (3,37) _____ Ending time 1600. UAM Maximum 8-hr average: 1.63 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (3,37) Ending time 1700. UAM Maximum 8-hr average: 2.66 cell (23,42) UAM Minimum 8-hr average: 0.18 cell (3,37) Ending time 1800. UAM Maximum 8-hr average: 4.74 cell (23,42) UAM Minimum 8-hr average: 0.18 cell (28,15) _____ Ending time 1900. UAM Maximum 8-hr average: 6.62 cell (23,42) UAM Minimum 8-hr average: 0.18 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Y Predicted (ppm) Х 42 6.618 23 23 6.162 43 _____ Ending time 2000. UAM Maximum 8-hr average: 7.42 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Predicted (ppm) 7.094 Υ Х 23 42 6.886 2.2 43 23 43 7.418 _____ Ending time 2100. UAM Maximum 8-hr average: 7.70 cell (23,43) UAM Minimum 8-hr average: 0.17 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Predicted (ppm) Х 23 42 7.114 22 43 7.177 23 43 7.704 23 44 6.149 23 45 6.594 _____ Ending time 2200. UAM Maximum 8-hr average: 7.90 cell (23,43) UAM Minimum 8-hr average: 0.17 cell (28,15)

Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.)

	X 23 22 23 22 23 23 23	Y 1 42 43 43 44 44 45	Predicted	(ppm) 7.091 7.362 7.904 6.036 6.544 7.103	
End: UAM UAM	ing time Maximun Minimun	e 2300. n 8-hr n 8-hr	average: average:	8.08 0.17	cell (23,43) cell (28,15)
	Predict (Only g	ed UAM grid cel	concentr Lls with	ation a conc	for select grid cells: 8-hr averaging period. entration > 6.0 ppm are printed.)
	X 23 22 23 22 23 23 23	Y 1 42 43 43 44 44 45	Predicted	(ppm) 7.023 7.498 8.078 6.362 6.874 7.460	
End: UAM UAM	ing time Maximun Minimun	e 0. n 8-hr n 8-hr	average: average:	8.06 0.16	cell (23,43) cell (28,16)
	Predict (Only g	ed UAM grid cel	concentr Lls with	ation a conc	for select grid cells: 8-hr averaging period. entration > 6.0 ppm are printed.)
	X 23 22 23 22 23 23 23	Y 1 42 43 43 44 44 45	Predicted	(ppm) 6.771 7.489 8.058 6.595 7.079 7.712	
End: UAM UAM	ing time Maximun Minimun	e 100. n 8-hr n 8-hr	average: average:	7.32 0.17	cell (23,45) cell (9,44)
	Predict (Only g	ed UAM grid cel	concentr Lls with	ation a conc	for select grid cells: 8-hr averaging period. entration > 6.0 ppm are printed.)
	X 22 23 22 23 23 23	Y 1 43 43 44 44 45	Predicted	(ppm) 6.654 7.129 6.321 6.699 7.317	
End: UAM UAM	ing time Maximun Minimun	e 200. n 8-hr n 8-hr	average: average:	6.33 0.17	cell (23,45) cell (9,44)
	Predict (Only g	ed UAM grid cel	concentr Lls with	ation a conc	for select grid cells: 8-hr averaging period. entration > 6.0 ppm are printed.)
	X 23	Y 1 45	Predicted	(ppm) 6.333	

Ending time 300. UAM Maximum 8-hr average: 5.27 cell (23,45)

UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 400. UAM Maximum 8-hr average: 4.09 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 500. UAM Maximum 8-hr average: 3.25 cell (25,49) UAM Minimum 8-hr average: 0.17 cell (9,44) -----_____ Ending time 600. UAM Maximum 8-hr average: 2.69 cell (25,50) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 700. UAM Maximum 8-hr average: 2.25 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 800. UAM Maximum 8-hr average: 2.27 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 900. UAM Maximum 8-hr average: 2.05 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 1000. UAM Maximum 8-hr average: 2.00 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (28,28) Ending time 1100. UAM Maximum 8-hr average: 2.17 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (16,28) _____ Ending time 1200. UAM Maximum 8-hr average: 2.28 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (16,28) _____

File: ar h tot.ga0

Daily emissions for each source category as input to the Urban Airshed Model CO: TOTAL EMISSIONS FOR CATEGORY AMP BEFORE HRLY SCALARS APPLIED = 189.222419 TONS/DAY INVENTORY CODE: H AFTER HRLY SCALARS APPLIED = 189.222424 AFTER HRLY SCALARS APPLIED = 189.222424 ...RUNNING SUBTOTAL BEFORE SCALARS = 189.222419 TONS/DAY TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY PMP BEFORE HRLY SCALARS APPLIED = 243.444664 TONS/DAY INVENTORY CODE: H AFTER HRLY SCALARS APPLIED = 243.444664 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 432.667083 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY OFP BEFORE HRLY SCALARS APPLIED = INVENTORY CODE: H AFTER HRLY SCALARS APPLIED = ...RUNNING SUBTOTAL BEFORE SCALARS = 411.966074 TONS/DAY 411.883685 TONS/DAY 844.633157 TONS/DAY _____ 0.333074 TONS/DAY 0.333074 TONS/DAY 844.966232 TONS/DAY CO: TOTAL EMISSIONS FOR CATEGORY RR BEFORE HRLY SCALARS APPLIED = INVENTORY CODE: H AFTER HRLY SCALARS APPLIED = AFTER HRLY SCALARS APPLIED = ...RUNNING SUBTOTAL BEFORE SCALARS = _____ CO: TOTAL EMISSIONS FOR CATEGORY HLI CO: TOTAL EMISSIONS FOR GALLCOLL INVENTORY CODE: H AFTER HRLY SUBLARS ATTELL ...RUNNING SUBTOTAL BEFORE SCALARS = BEFORE HRLY SCALARS APPLIED = 0.370857 TONS/DAY AFTER HRLY SCALARS APPLIED = 0.370857 TONS/DAY 845.337089 TONS/DAY CO: TOTAL EMISSIONS FOR CATEGORY AC INVENTORY CODE: H BEFORE HRLY SCALARS APPLIED = 22.300800 TONS/DAY AFTER HRLY SCALARS APPLIED = 22.456905 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 867.637889 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY ACS BEFORE HRLY SCALARS APPLIED = 7.140000 TONS/DAY INVENTORY CODE: H AFTER HRLY SCALARS APPLIED = 7.189980 TONS/DAY AFIER AND SCHEME SCALARS = 874.777889 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY AG INVENTORY CODE: H BEFORE HRLY SCALARS APPLIED = 0.260928 TONS/DAY AFTER HRLY SCALARS APPLIED = 0.260928 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 875.038817 TONS/DAY _____ 7.869200 CO: TOTAL EMISSIONS FOR CATEGORY CST BEFORE HRLY SCALARS APPLIED = TONS/DAY INVENTORY CODE: H AFTER HRLY SCALARS APPLIED = 7.869200 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 882.908017 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY IND 22.800000 BEFORE HRLY SCALARS APPLIED = TONS/DAY INVENTORY CODE: H 1 AFTER HRLY SCALARS APPLIED = 22.800000 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 905.708017 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY LTC BEFORE HRLY SCALARS APPLIED = 125.993000 TONS/DAY AFTER HRLY SCALARS APPLIED = 125.993002 INVENTORY CODE: H TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 1031.701017 TONS/DAY CO: TOTAL EMISSIONS FOR CATEGORY INVENTORY CODE: H ...RUNNING SUBTOTAL BEFORE SCALARS = 14.681125 14.681125 1046.382142 TONS/DAY AFTER HRLY SCALARS APPLIED = 14.681125 TONS/DAY TONS/DAY _____

	CO: TOTAL INVENTORY	EMISSIONS CODE: H	FOR	CATEGORY		STV RU	BEFORE HR AFTER HRL NNING SUBTO	LY SCALARS Y SCALARS TAL BEFORI	S APPLIED APPLIED E SCALARS	= = =	18.066721 18.066721 1064.448863		TONS/DAY TONS/DAY TONS/DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: H	FOR	CATEGORY		SFR	BEFORE HR AFTER HRL NNING SUBTO	LY SCALARS Y SCALARS TAL BEFORI	S APPLIED APPLIED E SCALARS	= = =	5.000257 5.000657 1069.449120		TONS/DAY TONS/DAY TONS/DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: H	FOR	CATEGORY		NG RU	BEFORE HR AFTER HRL NNING SUBTO	LY SCALARS Y SCALARS TAL BEFORI	S APPLIED APPLIED E SCALARS	= = =	9.107856 9.107856 1078.556976		TONS/DAY TONS/DAY TONS/DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: H	FOR	CATEGORY		MIN RU	BEFORE HR AFTER HRL NNING SUBTO	LY SCALARS Y SCALARS TAL BEFORI	S APPLIED APPLIED E SCALARS	= = =	21.075900 21.077585 1099.632876		TONS/DAY TONS/DAY TONS/DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: H	FOR	CATEGORY		MJA	BEFORE HR AFTER HRL NNING SUBTO	LY SCALARS Y SCALARS TAL BEFORI	S APPLIED APPLIED E SCALARS	= = =	0.000000 0.000000 1099.632876		TONS/DAY TONS/DAY TONS/DAY
	QA check o INVENTORY	f CODE: H	CO E	MISSIONS	total	in UAM	binary fil	e (NOTES:	1. hourly	scal = =	ars applied; 1099.758664 35631581 4	2. MJ	TE excluded) TONS/DAY
* * * * * * * *	CO: TOTAL	********* EMISSIONS	**** FROM	********** I ALL CATE	GORIES	****** 5 INCLU	************ DING ELEVAT	********* ED POINTS	* * * * * * * * * *	****	****	*****	****
* * * * * * * *	**********	*****	* * * * *	******	* * * * * * *	****	BEFORE HR AFTER HRL	LY SCALARS Y SCALARS	S APPLIED APPLIED	= = ****	1125.197776 1125.323564	* * * * * * *	TONS/DAY TONS/DAY

File: ar omay gal										
The. al_onax.qao										
Maximum emission	rate a	and corres	ponding	UAM grid ce	ell foi	r each s	ource	category		
CATEGORY=	AMP:	MAXIMUM	VALUE=	0.991000	TPD	@GRID	CELL	(X,Y): (23,	45)
CATEGORY=	PMP:	MAXIMUM	VALUE=	1.970000	TPD	@GRID	CELL	(X,Y): (23,	43)
CATEGORY=	OFP:	MAXIMUM	VALUE=	2.650000	TPD	@GRID	CELL	(X,Y): (23,	43)
CATEGORY=	RR :	MAXIMUM	VALUE=	0.029800	TPD	@GRID	CELL	(X,Y): (22,	47)
CATEGORY=	HLI:	MAXIMUM	VALUE=	0.008990	TPD	@GRID	CELL	(X,Y): (23,	43)
CATEGORY=	AC:	MAXIMUM	VALUE=	2.820000	TPD	@GRID	CELL	(X,Y): (39,	50)
CATEGORY=	ACS:	MAXIMUM	VALUE=	1.020000	TPD	@GRID	CELL	(X,Y): (28,	44)
CATEGORY=	AG:	MAXIMUM	VALUE=	0.000151	TPD	@GRID	CELL	(X,Y): (7,	69)
CATEGORY=	CST:	MAXIMUM	VALUE=	0.020600	TPD	@GRID	CELL	(X,Y): (З,	26)
CATEGORY=	IND:	MAXIMUM	VALUE=	0.400000	TPD	@GRID	CELL	(X,Y): (8,	61)
CATEGORY=	LTC:	MAXIMUM	VALUE=	0.574000	TPD	@GRID	CELL	(X,Y): (8,	61)
CATEGORY=	FP:	MAXIMUM	VALUE=	0.083000	TPD	@GRID	CELL	(X,Y): (24,	42)
CATEGORY=	STV:	MAXIMUM	VALUE=	0.151000	TPD	@GRID	CELL	(X,Y): (17,	35)
CATEGORY=	SFR:	MAXIMUM	VALUE=	0.031800	TPD	@GRID	CELL	(X,Y): (23,	42)
CATEGORY=	NG:	MAXIMUM	VALUE=	0.205000	TPD	@GRID	CELL	(X,Y): (23,	43)
CATEGORY=	MIN:	MAXIMUM	VALUE=	2.560000	TPD	@GRID	CELL	(X,Y): (28,	67)
CATEGORY=	MJA:	MAXIMUM	VALUE=	0.00000	TPD	@GRID	CELL	(X,Y): (28,	67)
CATEGORY=	MJE:	MAXIMUM	VALUE=	5.950000	TPD	@GRID	CELL	(X,Y): (24,	47)
CATEGORY=	TOT:	MAXIMUM	VALUE=	7.360000	TPD	@GRID	CELL	(X,Y): (24,	47)
CATEGORY=	SUM:	MAXIMUM	VALUE=	7.355687	TPD	@GRID	CELL	(X,Y): (24,	47)

Air Quality Modeling Results for the Denver Carbon Monoxide Maintenance Plan UAM and CAL3QHC Estimates at Monitoring Sites and Roadway Intersections

The attached report is one of several files generated by a the Colorado Department of Public Health and Environment's postprocessing batch program "DPLOT.BTM." This particular report, which presents 1-hour and 8-hour average UAM and CAL3QHC estimates for each monitoring site and roadway intersection, was generated by the FORTRAN program "P_STATS." Strings of text at the beginning of the report uniquely identify the modeling scenario. These IDs (see example on page 2) are auto-built by DPLOT.BTM. Automated title generation for each modeling run streamlines postprocessing while enhancing QA procedures.

P_STATS reads SAI's DPLOT format data files which contain hourly concentration estimates from the Urban Airshed Model and observed concentrations from various monitoring sites. In addition, P_STATS reads another set of DPLOT format files containing hourly concentration estimates from the CAL3QHC model. While there are UAM estimates for every monitoring site and roadway intersection, CAL3QHC estimates are available only at intersections where refined modeling was performed. Please note that all "observed" values are from the historic episode on which the modeling is based. The "DATE" column indicates the year of the MODELED estimates; all observed estimates are for the base year (e.g., 1988 for the "high" and "2nd-high" episodes).

A "-9.00" entry indicates that values were not generated. "NA" is used for all 8-hour CAL3QHC entries because 8-hour average values are not computed; instead, hourly CAL3QHC and UAM estimates are summed before 8-hour average UAM/CAL3QHC values are computed. A key to site abbreviations follows:

Monitoring Sites	Description
СМР	CAMP
WBY	Welby
CRG	Carriage
TIV	Tivoli
FED	Roof of Federal Bldg (downtown) - inlet 72 meters above ground
NJH	NJH-E
PLM	Palmer School (inlet on top of 2 story bldg)
ARV	Arvada
ENG	Englewood
BOU	Boulder (Marine St)
GRDS	Boulder Grandys Special Study Site
HLD	Highland
AUR	Aurora
AURS	Aurora Special Study Site
BTN	Brighton
Intersections	
ICMP	Broadway & Champa (CAMP intersection)
U 1	University & 1 st
FA	Foothills & Arapahoe (Boulder)
H U	Hampden & University
UA	University & Arapahoe
P_I	Parker & Iliff

Denver Carbon Monoxide CO SIP Modeling

High: 2006 mob=844.7tpd;1.5;80;I/M 240 w/newest 4myr exempt; MET A7, 08-27-99 EI, 01-11-94 PT, 09-09-99 CAL, 08-27-99 UAM

			High: 2006	mob=844.7	/tpd;	1.5;8	80;I/M	240 w/newest	4myr exempt	;	
			-		-			2006	2006	2006	1988
SITE	AVG	DATE		F	łR	POLI	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
	PERIOD							(UAM)	(CAL3QHC)	(UAM+CAL3)	
CMD	1	Fridada	Day 1 2006		0	CO	(M (U ()	-9.00	_9_00	_ 9_ 0.0	2 50
CMP	1	Episode	Day 1, 2000 Day 1, 2006		1	CO	(PPM)	-9.00	-9.00	-9.00	2.50
CMP	1	Episode	Day 1, 2000		2	CO	(PPM)	-9.00	-9.00	-9.00	1.50
CMP	1	Episode	Day 1, 2006		3	CO	(PPM)	-9.00	-9.00	-9.00	2.70
CMP	1	Episode	Day 1, 2006		4	CO	(PPM)	-9.00	-9.00	-9.00	3.00
CMP	1	Episode	Day 1, 2006		5	CO	(PPM)	-9.00	-9.00	-9.00	1.80
CMP	1	Episode	Day 1, 2006		6	CO	(PPM)	-9.00	-9.00	-9.00	1.50
CMP	1	Episode	Day 1, 2006		7	CO	(PPM)	-9.00	-9.00	-9.00	1.50
CMP	1	Episode	Day 1, 2006		8	CO	(PPM)	-9.00	-9.00	-9.00	1.40
CMP	1	Episode	Day 1, 2006		9	CO	(PPM)	-9.00	-9.00	-9.00	1.30
CMP	1	Episode	Day 1, 2006	1	LO	CO	(PPM)	-9.00	-9.00	-9.00	1.30
CMP	1	Episode	Day 1, 2006	1	L1	CO	(PPM)	-9.00	-9.00	-9.00	1.80
CMP	1	Episode	Day 1, 2006	1	L2	CO	(PPM)	-9.00	-9.00	-9.00	2.10
CMP	1	Episode	Day 1, 2006	1	L3	CO	(PPM)	-9.00	-9.00	-9.00	1.60
CMP	1	Episode	Day 1, 2006	1	L4	CO	(PPM)	-9.00	-9.00	-9.00	1.60
CMP	1	Episode	Day 1, 2006	1	L5	CO	(PPM)	-9.00	-9.00	-9.00	2.80
CMP	1	Episode	Day 1, 2006	1	L6	CO	(PPM)	-9.00	-9.00	-9.00	6.40
CMP	1	Episode	Day 1, 2006	1	L7	CO	(PPM)	-9.00	-9.00	-9.00	7.60
CMP	1	Episode	Day 1, 2006	1	18	CO	(PPM)	-9.00	-9.00	-9.00	6.80
CMP	1	Episode	Day 1, 2006	1	19	CO	(PPM)	-9.00	-9.00	-9.00	3.60
CMP	1	Episode	Day 1, 2006	2	20	CO	(PPM)	-9.00	-9.00	-9.00	1.30
CMP	1	Episode	Day 1, 2006	2	2T	CO	(PPM)	-9.00	-9.00	-9.00	1.20
CMP	1	Episode	Day 1, 2006	4	22	CO	(PPM)	1.28	-9.00	1.28	1.00
CMP	1	Episode	Day 1, 2006	4	23	00	(PPM)	1.//	-9.00	1.//	1.60
CMP	1	Episode	Day 2, 2006		1	00	(PPM)	2.13	-9.00	2.13	1.50
CMP	1	Episode	Day 2, 2006		1	00	(PPM)	1.74	-9.00	1.74	0.80
CMP	1	Episode	Day 2, 2006		2	00	(PPM)	0.88	-9.00	0.88	0.00
CMP	1	Episode	Day 2, 2006		5 4	CO	(PPM) (DDM)	0.76	-9.00	0.76	0.00
CMP	1	Episode	Day 2, 2000		5	CO	(PPM)	0.78	-9.00	0.78	0.00
CMP	1	Episode	Day 2, 2000		5	CO	(PPM)	0.72	-9.00	0.72	0.30
CMP	1	Episode	Day 2, 2000 Day 2, 2006		7	CO	(PPM)	2 81	-9.00	2 81	4 10
CMP	1	Episode	Day 2, 2000		8	CO	(PPM)	1 62	-9 00	1 62	5 40
CMP	1	Episode	Day 2, 2000		9	CO	(PPM)	1 15	-9 00	1 15	2 90
CMP	1	Episode	Day 2, 2006	1	0	CO	(PPM)	0.97	-9.00	0.97	2.90
CMP	1	Episode	Day 2, 2006	- 1	1	CO	(PPM)	1.22	-9.00	1.22	4.50
CMP	1	Episode	Day 2, 2006	-	2	CO	(PPM)	1.30	-9.00	1.30	4.00
CMP	1	Episode	Day 2, 2006	1	L3	CO	(PPM)	1.40	-9.00	1.40	4.30
CMP	1	Episode	Day 2, 2006	1	L4	CO	(PPM)	1.81	-9.00	1.81	4.50
CMP	1	Episode	Day 2, 2006	1	L5	CO	(PPM)	2.88	-9.00	2.88	7.00
CMP	1	Episode	Day 2, 2006	1	L6	CO	(PPM)	8.23	-9.00	8.23	45.00
CMP	1	Episode	Day 2, 2006	1	L7	CO	(PPM)	12.99	-9.00	12.99	50.50
CMP	1	Episode	Day 2, 2006	1	L8	CO	(PPM)	14.02	-9.00	14.02	30.00
CMP	1	Episode	Day 2, 2006	1	L9	CO	(PPM)	11.02	-9.00	11.02	3.90
CMP	1	Episode	Day 2, 2006	2	20	CO	(PPM)	4.59	-9.00	4.59	2.10
CMP	1	Episode	Day 2, 2006	2	21	CO	(PPM)	3.44	-9.00	3.44	2.30
CMP	1	Episode	Day 2, 2006	2	22	CO	(PPM)	3.53	-9.00	3.53	3.80
CMP	1	Episode	Day 2, 2006	2	23	CO	(PPM)	3.29	-9.00	3.29	4.00
CMP	1	Episode	Day 3, 2006		0	CO	(PPM)	2.30	-9.00	2.30	4.50
CMP	1	Episode	Day 3, 2006		1	CO	(PPM)	1.61	-9.00	1.61	2.60
CMP	1	Episode	Day 3, 2006		2	CO	(PPM)	1.04	-9.00	1.04	1.10
CMP	1	Episode	Day 3, 2006		3	CO	(PPM)	0.58	-9.00	0.58	0.80
CMP	1	Episode	Day 3, 2006		4	CO	(PPM)	0.61	-9.00	0.61	1.10
CMP	1	Episode	Day 3, 2006		5	CO	(PPM)	1.15	-9.00	1.15	2.40
CMP	1	Episode	Day 3, 2006		6	CO	(PPM)	2.07	-9.00	2.07	5.10
CMP	1	Episode	Day 3, 2006		.7	CO	(PPM)	4.49	-9.00	4.49	9.30
CMP	1	Episode	Day 3, 2006		8	CO	(PPM)	2.47	-9.00	2.47	10.70
CMP	1	Episode	Day 3, 2006	-	9	00	(PPM)	2.39	-9.00	2.39	/.20
CMP	1	rprsoae	Day 3, 2006	L r	LU 1	00	(PPM)	2.21	-9.00	2.21	5.1U
CMP	1	Episode	Day 3, 2006	L r	L I I I I I I I I I I I I I I I I I I I	00	(PPM)	1.49	-9.00	1.49	3.60
CMP	1	Episode	Day 3, 2000	1	∟⊿ ∣ 2	CO	(PPM)	-9.00	-9.00	-9.00	2.50
CMP	1	Episode	Day 3, 2000	L r	13	00	(PPM)	-9.00	-9.00	-9.00	2.00
CMD	1	Episode	Day 3, 2000	L 1	1-11 5	C0	(PPM)	-9.00 _0 00	-9.00	-9.00 _0 00	2.40
CMP	1	Episode	Day 3, 2000	1	6	CO	(DDM)	-9.00	-9.00	-9.00	10 10
CMP	1	Friende	Day 3, 2000	1	17	C0		-9.00	_9.00	-9.00 _0 00	12 00
CMD	1	Episode	Day 3, 2000	1	8	CO	(PPM)	-9.00	-9.00	-9.00	5 30
CMP	1	Episode	Day 3, 2006	1	9	CO	(PPM)	-9.00	-9.00	-9.00	3.90
CMD	1	Episode	Day 3, 2000	2	20	CO	(PPM)	-9 00	-9 00	-9 00	5.20
CMP	1	Episode	Day 3, 2006	2	21	CO	(PPM)	-9.00	-9.00	-9.00	4.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt;		
						2006	2006	2006	1988
SITE	AVG	DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
	PERIOD					(UAM)	(CAL3QHC)	(UAM+CAL3)	
(1) (T)	1		0.0		(5514)	0.00	0.00	0.00	0.00
CMP	1	Episode Day 3, 2006	22	CO	(PPM)	-9.00	-9.00	-9.00	2.90
CMP	1	Episode Day 3, 2006	23	CO	(PPM)	-9.00	-9.00	-9.00	4.50
WBY	1	Episode Day 1, 2006	0	CO	(PPM)	-9.00	-9.00	-9.00	4.00
WBY	1	Episode Day 1, 2006		CO	(PPM)	-9.00	-9.00	-9.00	4.50
WBY	1	Episode Day 1, 2006	2	00	(PPM)	-9.00	-9.00	-9.00	3.00
WBY	1	Episode Day 1, 2006	3	00	(PPM)	-9.00	-9.00	-9.00	3.00
WBY	1	Episode Day 1, 2006	4	CO	(PPM)	-9.00	-9.00	-9.00	1.30
WBY	1	Episode Day 1, 2006	5	00	(PPM)	-9.00	-9.00	-9.00	0.70
WBY	1	Episode Day 1, 2006	6	00	(PPM)	-9.00	-9.00	-9.00	1.30
WBY	1	Episode Day 1, 2006	7	CO	(PPM)	-9.00	-9.00	-9.00	1.70
WBY	1	Episode Day 1, 2006	8	CO	(PPM)	-9.00	-9.00	-9.00	1.60
WBY	1	Episode Day 1, 2006	9	CO	(PPM)	-9.00	-9.00	-9.00	1.20
WBY	1	Episode Day 1, 2006	10	CO	(PPM)	-9.00	-9.00	-9.00	1.00
WBY	1	Episode Day 1, 2006		CO	(PPM)	-9.00	-9.00	-9.00	1.00
WBY	1	Episode Day 1, 2006	12	00	(PPM)	-9.00	-9.00	-9.00	0.80
WBI	1	Episode Day 1, 2006	13	00	(PPM)	-9.00	-9.00	-9.00	0.50
WBY	1	Episode Day 1, 2006	14	00	(PPM)	-9.00	-9.00	-9.00	0.30
WBY	1	Episode Day 1, 2006	15	00	(PPM)	-9.00	-9.00	-9.00	0.40
WBY	1	Episode Day 1, 2006	10	CO	(PPM)	-9.00	-9.00	-9.00	0.80
WBI	1	Episode Day 1, 2006	10	00	(PPM)	-9.00	-9.00	-9.00	4.30
WBI	1	Episode Day 1, 2006	10	00	(PPM)	-9.00	-9.00	-9.00	5.40
WDI	1	Episode Day 1, 2006	19	00	(PPM)	-9.00	-9.00	-9.00	3.00
WBI	1	Episode Day 1, 2006	20	00	(PPM)	-9.00	-9.00	-9.00	4.60
WDI	1	Episode Day 1, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	2.10
WDI	1	Episode Day 1, 2000	22	CO	(PPM)	1 25	-9.00	1 25	1 90
WBI	1	Episode Day 1, 2000	23	CO	(PPM)	1.55	-9.00	1.55	4 30
WBI	1	Episode Day 2, 2000	1	CO	(PPM)	1.50	-9.00	1.50	3 40
WBY	1	Episode Day 2, 2000	2	CO	(PPM)	1 22	-9.00	1 32	2 20
WBI	1	Episode Day 2, 2000	2	CO	(PPM)	1 13	-9.00	1 13	2.20
WBY	1	Episode Day 2, 2000	4	CO	(DDM)	0 90	-9.00	0 90	1 40
WBY	1	Episode Day 2, 2000	5	CO	(DDM)	0.90	-9.00	0.90	1 40
WBY	1	Episode Day 2, 2000	5	CO	(DDM)	0.05	-9.00	0.05	1 70
WBY	1	Episode Day 2, 2000	7	CO	(DDM)	1 48	-9.00	1 48	5 70
WBY	1	Episode Day 2, 2006	, 8	CO	(PPM)	0 99	-9.00	0 99	6 90
WBY	1	Episode Day 2, 2006	9	CO	(PPM)	0.94	-9.00	0.94	4,90
WBY	1	Episode Day 2, 2006	10	CO	(PPM)	1.08	-9.00	1.08	2.50
WBY	1	Episode Day 2, 2006	11	CO	(PPM)	0.90	-9.00	0.90	1.40
WBY	1	Episode Day 2, 2006	12	CO	(PPM)	0.75	-9.00	0.75	0.90
WBY	1	Episode Day 2, 2006	13	CO	(PPM)	0.61	-9.00	0.61	0.90
WBY	1	Episode Day 2, 2006	14	CO	(PPM)	0.60	-9.00	0.60	1.00
WBY	1	Episode Day 2, 2006	15	CO	(PPM)	0.81	-9.00	0.81	1.20
WBY	1	Episode Day 2, 2006	16	CO	(PPM)	1.52	-9.00	1.52	2.60
WBY	1	Episode Day 2, 2006	17	CO	(PPM)	2.59	-9.00	2.59	9.50
WBY	1	Episode Day 2, 2006	18	CO	(PPM)	3.64	-9.00	3.64	13.40
WBY	1	Episode Day 2, 2006	19	CO	(PPM)	2.77	-9.00	2.77	9.40
WBY	1	Episode Day 2, 2006	20	CO	(PPM)	3.69	-9.00	3.69	7.70
WBY	1	Episode Day 2, 2006	21	CO	(PPM)	5.02	-9.00	5.02	6.30
WBY	1	Episode Day 2, 2006	22	CO	(PPM)	5.08	-9.00	5.08	7.30
WBY	1	Episode Day 2, 2006	23	CO	(PPM)	5.14	-9.00	5.14	8.50
WBY	1	Episode Day 3, 2006	0	CO	(PPM)	4.45	-9.00	4.45	9.40
WBY	1	Episode Day 3, 2006	1	CO	(PPM)	2.63	-9.00	2.63	7.30
WBY	1	Episode Day 3, 2006	2	CO	(PPM)	1.34	-9.00	1.34	3.00
WBY	1	Episode Day 3, 2006	3	CO	(PPM)	0.81	-9.00	0.81	1.70
WBY	1	Episode Day 3, 2006	4	CO	(PPM)	0.64	-9.00	0.64	1.60
WBY	1	Episode Day 3, 2006	5	CO	(PPM)	0.70	-9.00	0.70	1.70
WBY	1	Episode Day 3, 2006	6	CO	(PPM)	0.78	-9.00	0.78	2.80
WBY	1	Episode Day 3, 2006	7	CO	(PPM)	1.05	-9.00	1.05	2.80
WBY	1	Episode Day 3, 2006	8	CO	(PPM)	1.03	-9.00	1.03	-9.00
WBY	1	Episode Day 3, 2006	9	CO	(PPM)	1.16	-9.00	1.16	3.60
WBY	Ţ	Episode Day 3, 2006	10	CO	(PPM)	1.18	-9.00	1.18	2.70
WBY	1	Episode Day 3, 2006	11	CO	(PPM)	0.93	-9.00	0.93	0.60
WBY	1	Episode Day 3, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	0.40
WBY	1	Episode Day 3, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	0.30
WBY	1	Episode Day 3, 2006	14	00	(PPM)	-9.00	-9.00	-9.00	0.30
WBY	1	Episode Day 3, 2006	15	0.0	(PPM)	-9.00	-9.00	-9.00	0.30
WBI	1	Episode Day 3, 2006	10	00		-9.00	-9.00	-9.00	0.80
WBI	1	Episode Day 3, 2006	1 /	00		-9.00	-9.00	-9.00	1.00
WBI	1	Episode Day 3, 2006	10 10	00	(PPM)	-9.00	-9.00	-9.00	2 10
WBI	1	Episode Day 3, 2000	70 73	00	(PPM)	-9.00	-9.00	-9.00	5.10
WBI	1	Episode Day 3, 2006	∠∪ 21	00	(PPM)	-9.00	-9.00	-9.00	6 00
WBI	1	Episode Day 3, 2006	∠⊥ 2.2	00	(PPM)	-9.00	-9.00	-9.00	5.00
WBI	1	Episode Day 3, 2006	22	00	(PPM)	-9.00	-9.00	-9.00	5.40
CBC	⊥ 1	Episode Day 3, 2000	∠3 ∩	CO	(PPM)	-9.00 _9.00	-9.00 _9.00	-9.00 _9.00	4.40 4 RN
CIUG	±	LPIDOUC DUY I, 2000	0	00	(+ + + + + + + + + + + + + + + + + + +	9.00	2.00	9.00	1.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt;		
						2006	2006	2006	1988
SITE AVG		DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PERI	IOD					(UAM)	(CAL3QHC)	(UAM+CAL3)	
CRG	1	Episode Day 1, 2006	1	CO	(PPM)	-9.00	-9.00	-9.00	4.50
CRG	1	Episode Day 1, 2006	2	CO	(PPM)	-9.00	-9.00	-9.00	3.90
CRG	1	Episode Day 1, 2006	3	CO	(PPM)	-9.00	-9.00	-9.00	3.50
CRG	1	Episode Day 1, 2006	4	CO	(PPM)	-9.00	-9.00	-9.00	1.30
CRG	1	Episode Day 1, 2006	5	CO	(PPM)	-9.00	-9.00	-9.00	0.90
CRG	1	Episode Day 1, 2006	б	CO	(PPM)	-9.00	-9.00	-9.00	1.70
CRG	1	Episode Day 1, 2006	7	CO	(PPM)	-9.00	-9.00	-9.00	2.70
CRG	1	Episode Day 1, 2006	8	CO	(PPM)	-9.00	-9.00	-9.00	1.80
CRG	1	Episode Day 1, 2006	9	CO	(PPM)	-9.00	-9.00	-9.00	1.30
CRG	1	Episode Day 1, 2006	10	CO	(PPM)	-9.00	-9.00	-9.00	1.60
CRG	1	Episode Day 1, 2006	11	CO	(PPM)	-9.00	-9.00	-9.00	1.10
CRG	1	Episode Day 1, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	1.00
CRG	1	Episode Day 1, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	0.40
CRG	1	Episode Day 1, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	0.50
CRG	1	Episode Day 1, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
CRG	1	Episode Day 1 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	2 40
CRG	1	Episode Day 1 2006	17	CO	(DDM)	-9.00	-9.00	-9.00	6 00
CRG	1	Episode Day 1, 2006	18	CO	(DDM)	-9.00	-9.00	-9.00	8 00
CRG	1	Episode Day 1, 2000	10	CO	(PPM)	_9.00	-9.00	-9.00	10 80
CICG	1	Episode Day 1, 2000	20	00	(PPM)	9.00	9.00	9.00	2 50
CRG	1	Episode Day 1, 2000	20	00	(PPM)	-9.00	-9.00	-9.00	3.50
CRG	1	Episode Day 1, 2006	21	00	(PPM)	-9.00	-9.00	-9.00	3.40
CRG	1	Episode Day 1, 2006	22	00	(PPM)	1.08	-9.00	1.08	3.50
CRG	1	Episode Day 1, 2006	23	CO	(PPM)	1.94	-9.00	1.94	3.30
CRG	1	Episode Day 2, 2006	0	CO	(PPM)	2.29	-9.00	2.29	3.70
CRG	Ţ	Episode Day 2, 2006	Ţ	CO	(PPM)	2.29	-9.00	2.29	4.90
CRG	T	Episode Day 2, 2006	2	CO	(PPM)	1.44	-9.00	1.44	3.50
CRG	T	Episode Day 2, 2006	3	CO	(PPM)	0.75	-9.00	0.75	2.50
CRG	1	Episode Day 2, 2006	4	CO	(PPM)	0.58	-9.00	0.58	2.60
CRG	1	Episode Day 2, 2006	5	CO	(PPM)	0.62	-9.00	0.62	2.70
CRG	1	Episode Day 2, 2006	6	CO	(PPM)	0.80	-9.00	0.80	5.80
CRG	1	Episode Day 2, 2006	7	CO	(PPM)	1.83	-9.00	1.83	10.10
CRG	1	Episode Day 2, 2006	8	CO	(PPM)	1.10	-9.00	1.10	10.50
CRG	1	Episode Day 2, 2006	9	CO	(PPM)	0.93	-9.00	0.93	4.00
CRG	1	Episode Day 2, 2006	10	CO	(PPM)	0.80	-9.00	0.80	1.90
CRG	1	Episode Day 2, 2006	11	CO	(PPM)	0.81	-9.00	0.81	1.20
CRG	1	Episode Day 2, 2006	12	CO	(PPM)	1.05	-9.00	1.05	1.50
CRG	1	Episode Day 2, 2006	13	CO	(PPM)	1.17	-9.00	1.17	1.30
CRG	1	Episode Day 2, 2006	14	CO	(PPM)	1.35	-9.00	1.35	1.60
CRG	1	Episode Day 2, 2006	15	CO	(PPM)	1.79	-9.00	1.79	0.80
CRG	1	Episode Day 2, 2006	16	CO	(PPM)	4.01	-9.00	4.01	6.40
CRG	1	Episode Day 2, 2006	17	CO	(PPM)	5.17	-9.00	5.17	9.50
CRG	1	Episode Day 2, 2006	18	CO	(PPM)	5.47	-9.00	5.47	13.70
CRG	1	Episode Day 2, 2006	19	CO	(PPM)	5.22	-9.00	5.22	16.30
CRG	1	Episode Day 2, 2006	20	CO	(DDM)	4 39	-9.00	4 39	12 80
CRG	1	Episode Day 2, 2000	21	CO	(DDM)	3 42	-9.00	3 42	7 10
CRG	1	Episode Day 2, 2000	22	CO	(DDM)	2 69	-9.00	2 69	4 90
CRG	1	Episode Day 2, 2000	22	co	(PPM)	2.05	-9.00	2.05	9 60
CRG	1	Episode Day 2, 2000	23	CO	(PPM)	2.05	-9.00	2.05	10 10
CRG	1	Episode Day 3, 2000	1	00	(PPM)	1.07	-9.00	1.07	1 20
CRG	1	Episode Day 3, 2006	1 Q	00	(PPM)	1.40	-9.00	1.40	4.30
CKG	1	Episode Day 3, 2006	2	00	(PPM)	1.14	-9.00	1.14	5.40
	1	Episode Day 3, 2006	3	00		0.72	-9.00	0.72	3.90
	1	Episode Day 3, 2000	ч г	00		0.00	-9.00	0.55	2 00
CKG	1	Episode Day 3, 2006	5	00	(PPM)	U./L 1 25	-9.00	U./1 1 25	5.00
CKG	1	Episode Day 3, 2006	0	00	(PPM)	1.35	-9.00	1.35	5.10
CRG	1	Episode Day 3, 2006	/	00	(PPM)	2.02	-9.00	2.02	0.10
CRG	1	Episode Day 3, 2006	8	00	(PPM)	1.39	-9.00	1.39	5.10
CRG	1	Episode Day 3, 2006	9	00	(PPM)	1.28	-9.00	1.28	4.10
CRG	Ţ	Episode Day 3, 2006	10	CO	(PPM)	0.98	-9.00	0.98	1.50
CRG	1	Episode Day 3, 2006	11	CO	(PPM)	0.85	-9.00	0.85	-9.00
CRG	1	Episode Day 3, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	0.70
CRG	1	Episode Day 3, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	0.40
CRG	1	Episode Day 3, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	0.30
CRG	1	Episode Day 3, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	0.10
CRG	1	Episode Day 3, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	2.00
CRG	1	Episode Day 3, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	7.00
CRG	1	Episode Day 3, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	9.50
CRG	1	Episode Day 3, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	12.40
CRG	1	Episode Day 3, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	10.10
CRG	1	Episode Day 3, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	7.90
CRG	1	Episode Day 3, 2006	22	CO	(PPM)	-9.00	-9.00	-9.00	7.40
CRG	1	Episode Day 3. 2006	23	CO	(PPM)	-9.00	-9.00	-9.00	7.70
NJH	1	Episode Dav 1, 2006	0	CO	(PPM)	-9.00	-9.00	-9.00	2.30
NJH	1	Episode Dav 1, 2006	1	CO	(PPM)	-9.00	-9.00	-9.00	1.50
NTH	1	Episode Dav 1, 2006	- 2	CO	(PPM)	-9.00	-9.00	-9.00	1.40
NJH	1	Episode Day 1, 2006	3	CO	(PPM)	-9.00	-9.00	-9.00	1.30

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt;	;	
						2006	2006	2006	1988
SITE AVG		DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PERI	OD					(UAM)	(CAL3QHC)	(UAM+CAL3)	
	1			~~	(5514)	0.00	0.00	0.00	0.00
NJH	1	Episode Day 1, 2006	4	CO	(PPM)	-9.00	-9.00	-9.00	2.20
NJH	1	Episode Day 1, 2006	5	CO	(PPM)	-9.00	-9.00	-9.00	2.00
NJH	1	Episode Day 1, 2006	6	CO	(PPM)	-9.00	-9.00	-9.00	2.80
NJH	1	Episode Day 1, 2006	/	00	(PPM)	-9.00	-9.00	-9.00	3.10
NJH	1	Episode Day 1, 2006	8	00	(PPM)	-9.00	-9.00	-9.00	2.00
NJH	1	Episode Day 1, 2006	10	00	(PPM)	-9.00	-9.00	-9.00	2.20
NJH	1	Episode Day 1, 2006	10	00	(PPM)	-9.00	-9.00	-9.00	2.10
NUH	1	Episode Day 1, 2006	11	00	(PPM)	-9.00	-9.00	-9.00	1.60
NUH	1	Episode Day 1, 2006	12	00	(PPM)	-9.00	-9.00	-9.00	1.00
NUTI	1	Episode Day 1, 2006	13	00	(PPM)	-9.00	-9.00	-9.00	1.00
NUT	1	Episode Day 1, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	0.90
NUH	1	Episode Day 1, 2000	15	CO	(PPM)	-9.00	-9.00	-9.00	2 90
NUH	1	Episode Day 1, 2000	10	co	(PPM)	-9.00	-9.00	-9.00	2.90
NUH	1	Episode Day 1, 2000	18	CO	(PPM)	-9.00	-9.00	-9.00	4 00
NUH	1	Episode Day 1, 2000	10	CO	(PPM)	-9.00	-9.00	-9.00	3 10
NUT	1	Episode Day 1, 2000	20	co	(PPM)	-9.00	-9.00	-9.00	2 20
NUH	1	Episode Day 1, 2006	20	co	(PPM)	-9.00	-9.00	-9.00	2.60
NUH	1	Episode Day 1, 2006	21	co	(PPM)	-9.00	-9.00	-9.00	2.00
NUH	1	Episode Day 1, 2000	22	00	(PPM)	1 22	-9.00	1 22	2.40
NUH	1	Episode Day 1, 2006	23	do	(PPM)	1.33	-9.00	1 10	2.00
NUH	1	Episode Day 2, 2000	1	co	(PPM)	0 71	-9.00	1.10	2.30
NUT	⊥ 1	Episode Day 2, 2000	⊥ 2	C0		0./1	-9.00	0./1	1 20
NUH	1	Episode Day 2, 2006	2	do	(PPM)	0.40	-9.00	0.40	1.20
NUH	1	Episode Day 2, 2000	3	co	(PPM)	0.47	-9.00	0.47	1.10
NUH	1	Episode Day 2, 2000		co	(PPM)	0.50	-9.00	0.50	1 60
NUH	1	Episode Day 2, 2000	5	co	(PPM)	0.51	-9.00	0.51	2 20
NUH	1	Episode Day 2, 2000	0 7	CO	(PPM)	2 02	-9.00	2 02	5.30
NUT	1	Episode Day 2, 2000	0	co	(PPM)	1 20	-9.00	1 20	6 10
NUH	1	Episode Day 2, 2000	0	co	(PPM)	1 01	-9.00	1 01	2 20
NUH	1	Episode Day 2, 2000	10	co	(PPM)	1.01	-9.00	1.01	2 20
NUH	1	Episode Day 2, 2000	11	co	(PPM)	0.03	-9.00	0.03	2.00
NUT	1	Episode Day 2, 2006	12	CO	(PPM)	0.05	-9.00	0.05	2.00
NUH	1	Episode Day 2, 2000	12	co	(PPM)	0.71	-9.00	0.71	2.00
NUH	1	Episode Day 2, 2000	14	co	(PPM)	1 12	-9.00	1 12	2.70
NUH	1	Episode Day 2, 2000	15	CO	(PPM)	1 72	-9.00	1 72	4 60
NUH	1	Episode Day 2, 2000	15	CO	(PPM)	3 59	-9.00	3 59	19 70
NUT	1	Episode Day 2, 2000	17	co	(PPM)	1 71	-9.00	1 71	22 00
NUTH	1	Episode Day 2, 2000	18	CO	(PPM)	5 47	-9.00	5 47	19 70
NUH	1	Episode Day 2, 2000	10	CO	(PPM)	5.47	-9.00	5.47	19.70
NUTH	1	Episode Day 2, 2000	20	CO	(PPM)	2 82	-9.00	2 82	6 20
NUTH	1	Episode Day 2, 2000 Episode Day 2 2006	20	CO	(DDM)	1 41	-9.00	1 41	4 40
NUTH	1	Episode Day 2, 2000	21	CO	(DDM)	1 43	-9.00	1 43	4 10
NJH	1	Episode Day 2, 2000	22	CO	(DDM)	1 17	-9.00	1 17	3 20
NJH	1	Episode Day 2, 2000	25	CO	(PPM)	0 81	-9.00	0.81	2 30
NTH	1	Episode Day 3, 2006	1	CO	(PPM)	0.64	-9.00	0.64	1.20
NJTH	1	Episode Day 3 2006	2	CO	(PPM)	0 48	-9.00	0 48	1 30
NJH	1	Episode Day 3, 2006	3	CO	(PPM)	0.34	-9.00	0.34	0.80
NJH	1	Episode Day 3, 2006	4	CO	(PPM)	0.36	-9.00	0.36	0.70
NJH	1	Episode Day 3, 2006	5	CO	(PPM)	0.49	-9.00	0.49	1.60
NJH	1	Episode Dav 3, 2006	6	CO	(PPM)	0.80	-9.00	0.80	2.90
NJH	1	Episode Day 3, 2006	7	CO	(PPM)	2.16	-9.00	2.16	7.00
NJH	1	Episode Day 3, 2006	8	CO	(PPM)	1.37	-9.00	1.37	5.70
NJH	1	Episode Day 3, 2006	9	CO	(PPM)	1.08	-9.00	1.08	4.90
NJH	1	Episode Day 3, 2006	10	CO	(PPM)	0.90	-9.00	0.90	3.60
NJH	1	Episode Day 3, 2006	11	CO	(PPM)	0.86	-9.00	0.86	1.30
NJH	1	Episode Day 3, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	1.10
NJH	1	Episode Day 3, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
NJH	1	Episode Day 3, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	0.60
NJH	1	Episode Day 3, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	0.80
NJH	1	Episode Day 3, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	4.40
NJH	1	Episode Day 3, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	6.60
NJH	1	Episode Day 3, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	5.10
NJH	1	Episode Day 3, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	6.90
NJH	1	Episode Day 3, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	5.50
NJH	1	Episode Day 3, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	4.00
NJH	1	Episode Day 3, 2006	22	CO	(PPM)	-9.00	-9.00	-9.00	3.60
NJH	1	Episode Day 3, 2006	23	CO	(PPM)	-9.00	-9.00	-9.00	2.40
TIV	1	Episode Day 1, 2006	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt	;	
						2006	2006	2006	1988
SITE AVG	}	DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PER	LOD					(UAM)	(CAL3QHC)	(UAM+CAL3)	
	1			~~~	(5514)	0.00	0.00	0.00	0 00
TIV	1	Episode Day 1, 2006	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
1.1.V	1	Episode Day 1, 2006	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
1.T.V	Ţ	Episode Day 1, 2006	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	Ţ	Episode Day 1, 2006	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2006	22	CO	(PPM)	1.39	-9.00	1.39	-9.00
TIV	1	Episode Day 1, 2006	23	CO	(PPM)	1.69	-9.00	1.69	-9.00
TIV	1	Episode Day 2, 2006	0	CO	(PPM)	2.05	-9.00	2.05	-9.00
TIV	1	Episode Day 2, 2006	1	CO	(PPM)	1.75	-9.00	1.75	-9.00
TIV	1	Episode Day 2, 2006	2	CO	(PPM)	0.88	-9.00	0.88	-9.00
TIV	1	Episode Day 2, 2006	3	CO	(PPM)	0.63	-9.00	0.63	-9.00
TIV	1	Episode Day 2, 2006	4	CO	(PPM)	0.62	-9.00	0.62	-9.00
TIV	1	Episode Day 2, 2006	5	CO	(PPM)	0.67	-9.00	0.67	-9.00
TIV	1	Episode Day 2, 2006	6	CO	(PPM)	0.87	-9.00	0.87	-9.00
TIV	1	Episode Day 2, 2006	7	CO	(PPM)	2.52	-9.00	2.52	-9.00
TIV	1	Episode Day 2, 2006	8	CO	(PPM)	1.42	-9.00	1.42	-9.00
TIV	1	Episode Day 2, 2006	9	CO	(PPM)	1.03	-9.00	1.03	-9.00
TIV	1	Episode Day 2, 2006	10	CO	(PPM)	0.87	-9.00	0.87	-9.00
TIV	1	Episode Day 2, 2006	11	CO	(PPM)	1.10	-9.00	1.10	-9.00
TIV	1	Episode Day 2, 2006	12	CO	(PPM)	1.44	-9.00	1.44	-9.00
TIV	1	Episode Day 2, 2006	13	CO	(PPM)	1.55	-9.00	1.55	-9.00
TIV	1	Episode Day 2, 2006	14	CO	(PPM)	1.76	-9.00	1.76	-9.00
TIV	1	Episode Day 2, 2006	15	CO	(PPM)	2.69	-9.00	2.69	-9.00
TIV	1	Episode Day 2, 2006	16	CO	(PPM)	8.25	-9.00	8.25	-9.00
TIV	1	Episode Day 2, 2006	17	CO	(PPM)	13.36	-9.00	13.36	-9.00
TIV	1	Episode Day 2, 2006	18	CO	(PPM)	13.75	-9.00	13.75	-9.00
TIV	1	Episode Day 2, 2006	19	CO	(PPM)	8.31	-9.00	8.31	-9.00
TIV	1	Episode Day 2, 2006	20	CO	(PPM)	3.90	-9.00	3.90	-9.00
TIV	1	Episode Day 2, 2006	21	CO	(PPM)	3.06	-9.00	3.06	-9.00
TIV	1	Episode Day 2, 2006	22	CO	(PPM)	2.81	-9.00	2.81	-9.00
TIV	1	Episode Day 2, 2006	23	CO	(PPM)	2.63	-9.00	2.63	-9.00
TIV	1	Episode Day 3, 2006	0	CO	(PPM)	1.99	-9.00	1.99	-9.00
TIV	1	Episode Day 3, 2006	1	CO	(PPM)	1.49	-9.00	1.49	-9.00
TIV	1	Episode Day 3, 2006	2	CO	(PPM)	1.04	-9.00	1.04	-9.00
TIV	Ţ	Episode Day 3, 2006	3	CO	(PPM)	0.58	-9.00	0.58	-9.00
TIV	Ţ	Episode Day 3, 2006	4	CO	(PPM)	0.57	-9.00	0.57	-9.00
TIV	1	Episode Day 3, 2006	5	CO	(PPM)	1.13	-9.00	1.13	-9.00
TIV	Ţ	Episode Day 3, 2006	6	CO	(PPM)	2.16	-9.00	2.16	-9.00
1.T.V	Ţ	Episode Day 3, 2006	7	CO	(PPM)	4.69	-9.00	4.69	-9.00
TIV	Ţ	Episode Day 3, 2006	8	CO	(PPM)	2.54	-9.00	2.54	-9.00
1.1.V	1	Episode Day 3, 2006	9	CO	(PPM)	2.23	-9.00	2.23	-9.00
T,T A	1	Episode Day 3, 2006	10	00	(PPM)	1.55	-9.00	1.55	-9.00
TT V	1	Episode Day 3, 2006	10	0.0	(PPM)	1.13	-9.00	1.13	-9.00
TTT V	1	Episode Day 3, 2006	12	0.0	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2006	13	00		-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2006	14	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2006	15	00	(PPM)	-9.00	-9.00	-9.00	-9.00
T,T A	1	Episode Day 3, 2006	10	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TT V	1	Episode Day 3, 2006	10	0.0	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2006	10	00		-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2006	19	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2006	∠U 21	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2006	21	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2000	22	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TTA	1	Episode Day 3, 2006	23	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	1	Episode Day 1, 2006	U 1	00		-9.00	-9.00	-9.00	-9.00
TCMP	1	Episode Day 1, 2006	Ţ	00		-9.00	-9.00	-9.00	-9.00
TCMP	1	Episode Day 1, 2006	2	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	1	Episode Day 1, 2006	3	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	1	Episode Day 1, 2006	4 F	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMD	1	Episode Day 1, 2006	5	0.0	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMD	1	Episode Day 1, 2006	6 7	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	1	Episode Day 1, 2006	/	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	1	Episode Day 1, 2006	×	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCWL	1	EPISOUE Day I, 2006	9	00	(PPM)	-9.00	-9.00	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2006 t	nob=844.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt;		
					2006	2006	2006	1988
SITE AVG	DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PERIOD)				(UAM)	(CAL3QHC)	(UAM+CAL3)	
	D D 0000	1.0	~~	(5514)	0.00	0.00		0 00
ICMP 1	Episode Day 1, 2006	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006		CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 1, 2006	22	CO	(PPM)	1.28	-9.00	1.28	-9.00
ICMP 1	Episode Day 1, 2006	23	CO	(PPM)	1.77	-9.00	1.77	-9.00
ICMP 1	Episode Day 2, 2006	0	CO	(PPM)	2.13	-9.00	2.13	-9.00
ICMP 1	Episode Day 2, 2006	1	CO	(PPM)	1.74	-9.00	1.74	-9.00
ICMP 1	Episode Day 2, 2006	2	CO	(PPM)	0.88	-9.00	0.88	-9.00
ICMP 1	Episode Day 2, 2006	3	CO	(PPM)	0.76	-9.00	0.76	-9.00
ICMP 1	Episode Day 2, 2006	4	CO	(PPM)	0.78	-9.00	0.78	-9.00
TCMP 1	Episode Day 2, 2006	5	CO	(PPM)	0.72	-9.00	0.72	-9.00
TCMP 1	Episode Day 2, 2006	6	CO	(PPM)	0.92	-9.00	0.92	-9.00
TCMP 1	Episode Day 2, 2006	7	CO	(PPM)	2.81	-9.00	2.81	-9.00
TCMP 1	Episode Day 2 2006	, R	CO	(PDM)	1 62	_9 00	1 62	_9 00
TCMD 1	Episode Day 2, 2000	9	CO	(DDM)	1 15	-9.00	1 15	-9.00
TCMD 1	Episode Day 2, 2000	10	CO	(DDM)	0 97	-9.00	0 97	-9.00
ICMD 1	Episode Day 2, 2000	11	co	(11M)	1 22	-9.00	1 22	_9.00
TCMP 1	Episode Day 2, 2000	12	CO	(PPM)	1 30	-9.00	1 30	-9.00
TCMP 1	Episode Day 2, 2000	12	co	(PPM)	1.30	-9.00	1.30	-9.00
ICMP I	Episode Day 2, 2000	14	00	(PPM)	1 01	-9.00	2 40	-9.00
ICMP I	Episode Day 2, 2006	14	do	(PPM)	1.01	1 20	3.42	-9.00
ICMP I	Episode Day 2, 2006	15	do	(PPM)	2.00	1.30	4.20	-9.00
ICMP 1	Episode Day 2, 2006	10	00	(PPM)	8.23	2.70	10.99	-9.00
ICMP 1	Episode Day 2, 2006	1/	0.0	(PPM)	12.99	2.65	15.64	-9.00
ICMP 1	Episode Day 2, 2006	18	0.0	(PPM)	14.02	1.04	15.06	-9.00
ICMP I	Episode Day 2, 2006	19	CO	(PPM)	11.02	0.35	11.37	-9.00
ICMP I	Episode Day 2, 2006	20	CO	(PPM)	4.59	0.35	4.94	-9.00
ICMP I	Episode Day 2, 2006	21	CO	(PPM)	3.44	0.00	3.44	-9.00
ICMP 1	Episode Day 2, 2006	22	CO	(PPM)	3.53	0.46	3.99	-9.00
ICMP 1	Episode Day 2, 2006	23	CO	(PPM)	3.29	0.12	3.41	-9.00
ICMP 1	Episode Day 3, 2006	0	CO	(PPM)	2.30	-9.00	2.30	-9.00
ICMP 1	Episode Day 3, 2006	1	CO	(PPM)	1.61	-9.00	1.61	-9.00
ICMP 1	Episode Day 3, 2006	2	CO	(PPM)	1.04	-9.00	1.04	-9.00
ICMP 1	Episode Day 3, 2006	3	CO	(PPM)	0.58	-9.00	0.58	-9.00
ICMP 1	Episode Day 3, 2006	4	CO	(PPM)	0.61	-9.00	0.61	-9.00
ICMP 1	Episode Day 3, 2006	5	CO	(PPM)	1.15	-9.00	1.15	-9.00
ICMP 1	Episode Day 3, 2006	6	CO	(PPM)	2.07	-9.00	2.07	-9.00
ICMP 1	Episode Day 3, 2006	7	CO	(PPM)	4.49	-9.00	4.49	-9.00
ICMP 1	Episode Day 3, 2006	8	CO	(PPM)	2.47	-9.00	2.47	-9.00
ICMP 1	Episode Day 3, 2006	9	CO	(PPM)	2.39	-9.00	2.39	-9.00
ICMP 1	Episode Day 3, 2006	10	CO	(PPM)	2.21	-9.00	2.21	-9.00
ICMP 1	Episode Day 3, 2006	11	CO	(PPM)	1.49	-9.00	1.49	-9.00
ICMP 1	Episode Day 3, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP 1	Episode Day 3, 2006	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ENG 1	Episode Day 1, 2006	0	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ENG 1	Episode Day 1, 2006	1	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ENG 1	Episode Dav 1, 2006	2	CO	(PPM)	-9.00	-9.00	-9.00	1.30
ENG 1	Episode Dav 1, 2006	3	CO	(PPM)	-9.00	-9.00	-9.00	1.60
ENG 1	Episode Dav 1, 2006	4	CO	(PPM)	-9.00	-9.00	-9.00	1.70
ENG 1	Episode Day 1, 2006	5	CO	(PPM)	-9.00	-9.00	-9.00	1.70
ENG 1	Episode Dav 1, 2006	6	CO	(PPM)	-9.00	-9.00	-9.00	1.90
ENG 1	Episode Dav 1, 2006	7	CO	(PPM)	-9.00	-9.00	-9.00	1.80
ENG 1	Episode Day 1 2006	, R	CO	(PDM)	_9 00	_9 00	_9 00	1 20
ENG 1	Episode Day 1 2006	q	C0	(PDM)	_9 00	_9 00	_9 00	1 00
FNC 1	Episode Day 1, 2000	10	C0	(DDM)	_0 00	_9.00	_9.00	1.00
ENG 1	Episode Day 1, 2000	11	C0	(DDM)	_0 00	_0 _0	_0 _0	0.70
ENG 1	Episode Day 1 2000	12	CO	(PPM)	-9.00	-9.00	-9.00	0.50
TT10 T	= = = = = = = = = = = = = = = = = = =	1 L L	~~	(+ + 1,1)	2.00	2.00	2.00	0.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt;		
						2006	2006	2006	1988
SITE A	VG	DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
Р	PERIOD					(UAM)	(CAL3QHC)	(UAM+CAL3)	
5370	1		10	~~~	(5514)	0.00	0.00	0.00	0 60
ENG	1	Episode Day 1, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode Day 1, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	0.70
ENG	Ţ	Episode Day 1, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	0.70
ENG	1	Episode Day 1, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	1.50
ENG	1	Episode Day 1, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	4.40
ENG	1	Episode Day 1, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	2.40
ENG	1	Episode Day 1, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	1.30
ENG	1	Episode Day 1, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	1.20
ENG	1	Episode Day 1, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	1.20
ENG	1	Episode Day 1, 2006	22	CO	(PPM)	0.75	-9.00	0.75	1.70
ENG	1	Episode Day 1, 2006	23	CO	(PPM)	0.47	-9.00	0.47	1.20
ENG	1	Episode Day 2, 2006	0	CO	(PPM)	0.34	-9.00	0.34	0.70
ENG	1	Episode Day 2, 2006	1	CO	(PPM)	0.32	-9.00	0.32	0.70
ENG	1	Episode Day 2, 2006	2	CO	(PPM)	0.29	-9.00	0.29	0.50
ENG	1	Episode Day 2, 2006	3	CO	(PPM)	0.28	-9.00	0.28	0.50
ENG	1	Episode Day 2, 2006	4	CO	(PPM)	0.30	-9.00	0.30	0.50
ENG	1	Episode Day 2, 2006	5	CO	(PPM)	0.33	-9.00	0.33	1.20
ENG	1	Episode Day 2, 2006	6	CO	(PPM)	0.45	-9.00	0.45	2.40
ENG	1	Episode Day 2, 2006	7	CO	(PPM)	1.03	-9.00	1.03	4.70
ENG	1	Episode Day 2, 2006	8	CO	(PPM)	0.61	-9.00	0.61	4.10
ENG	1	Episode Day 2, 2006	9	CO	(PPM)	0.38	-9.00	0.38	1.20
ENG	1	Episode Day 2, 2006	10	CO	(PPM)	0.32	-9.00	0.32	0.70
ENG	1	Episode Day 2, 2006	11	CO	(PPM)	0.37	-9.00	0.37	0.70
ENG	1	Episode Day 2, 2006	12	CO	(PPM)	0.51	-9.00	0.51	0.80
ENG	1	Episode Day 2, 2006	13	CO	(PPM)	0.66	-9.00	0.66	1.10
ENG	1	Episode Day 2 2006	14	CO	(PPM)	0.82	-9.00	0.82	1 50
ENG	1	Episode Day 2, 2006	15	CO	(PPM)	1 54	-9.00	1 54	2 90
ENG	1	Episode Day 2, 2006	16	CO	(PPM)	3 90	-9.00	3 90	6 20
FNG	1	Episode Day 2, 2006	17	CO	(DDM)	2 82	-9.00	2 82	9 40
FNG	1	Episode Day 2, 2000	18	CO	(DDM)	1 40	-9.00	1 40	3 20
ENG	1	Episode Day 2, 2000	10	CO	(PPM)	0 70	-9.00	1.40	1 90
ENG	1	Episode Day 2, 2000	20	co	(PPM)	0.70	-9.00	0.70	1 60
ENG	1	Episode Day 2, 2006	20	CO	(PPM)	0.45	-9.00	0.45	1 90
ENG	1	Episode Day 2, 2006	21	00	(PPM)	0.45	-9.00	0.45	1.00
ENG	1	Episode Day 2, 2000	22	00	(PPM)	0.43	-9.00	0.43	2.30
ENG	1	Episode Day 2, 2006	23	00	(PPM)	0.43	-9.00	0.43	1.60
ENG	1	Episode Day 3, 2006	0	00	(PPM)	0.39	-9.00	0.39	1.50
ENG	1	Episode Day 3, 2006		00	(PPM)	0.35	-9.00	0.35	1.00
ENG	1	Episode Day 3, 2006	2	00	(PPM)	0.28	-9.00	0.28	0.60
ENG	1	Episode Day 3, 2006	3	00	(PPM)	0.26	-9.00	0.26	0.50
ENG	1	Episode Day 3, 2006	4	CO	(PPM)	0.26	-9.00	0.26	0.50
ENG	1	Episode Day 3, 2006	5	CO	(PPM)	0.28	-9.00	0.28	0.70
ENG	1	Episode Day 3, 2006	6	CO	(PPM)	0.43	-9.00	0.43	1.80
ENG	Ţ	Episode Day 3, 2006	7	CO	(PPM)	1.28	-9.00	1.28	3.50
ENG	Ţ	Episode Day 3, 2006	8	CO	(PPM)	0.59	-9.00	0.59	-9.00
ENG	Ţ	Episode Day 3, 2006	9	CO	(PPM)	0.62	-9.00	0.62	2.80
ENG	T	Episode Day 3, 2006	10	CO	(PPM)	0.63	-9.00	0.63	2.00
ENG	1	Episode Day 3, 2006	11	CO	(PPM)	0.68	-9.00	0.68	0.60
ENG	1	Episode Day 3, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode Day 3, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode Day 3, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode Day 3, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode Day 3, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	1.60
ENG	1	Episode Day 3, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	3.80
ENG	1	Episode Day 3, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	4.30
ENG	1	Episode Day 3, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	3.00
ENG	1	Episode Day 3, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	2.10
ENG	1	Episode Day 3, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	1.40
ENG	1	Episode Day 3, 2006	22	CO	(PPM)	-9.00	-9.00	-9.00	1.10
ENG	1	Episode Day 3, 2006	23	CO	(PPM)	-9.00	-9.00	-9.00	1.50
BOU	1	Episode Day 1, 2006	0	CO	(PPM)	-9.00	-9.00	-9.00	0.40
BOU	1	Episode Day 1, 2006	1	CO	(PPM)	-9.00	-9.00	-9.00	0.00
BOU	1	Episode Day 1, 2006	2	CO	(PPM)	-9.00	-9.00	-9.00	0.30
BOU	1	Episode Day 1, 2006	3	CO	(PPM)	-9.00	-9.00	-9.00	0.50
BOU	1	Episode Day 1, 2006	4	CO	(PPM)	-9.00	-9.00	-9.00	1.00
BOU	1	Episode Day 1, 2006	5	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 1, 2006	б	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 1, 2006	7	CO	(PPM)	-9.00	-9.00	-9.00	1.40
BOU	1	Episode Day 1, 2006	8	CO	(PPM)	-9.00	-9.00	-9.00	1.80
BOU	1	Episode Day 1, 2006	9	CO	(PPM)	-9.00	-9.00	-9.00	2.70
BOU	1	Episode Day 1, 2006	10	CO	(PPM)	-9.00	-9.00	-9.00	1.60
BOU	1	Episode Day 1, 2006	11	CO	(PPM)	-9.00	-9.00	-9.00	1.10
BOU	1	Episode Day 1, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	0.70
BOU	1	Episode Day 1. 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	0.60
BOU	1	Episode Dav 1. 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	0.80
BOU	1	Episode Day 1, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	1.50

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 200	6 mob=844.7tp	d;1.5;	80;I/M	240 w/newest	4myr exempt;	;	
						2006	2006	2006	1988
SITE	AVG	DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
	PERIOD					(MAU)	(CAL3QHC)	(UAM+CAL3)	
Borr	-		1.0		(5514)	0.00	0.00	0.00	1 00
BOU	1	Episode Day 1, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	1.20
BOU	1	Episode Day 1, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	0.40
BOU	Ţ	Episode Day 1, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	0.30
BOU	1	Episode Day 1, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	0.10
BOU	1	Episode Day 1, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	0.00
BOU	1	Episode Day 1, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	0.00
BOU	1	Episode Day 1, 2006	22	CO	(PPM)	0.99	-9.00	0.99	0.20
BOU	1	Episode Day 1, 2006	23	CO	(PPM)	0.42	-9.00	0.42	0.50
BOU	1	Episode Day 2, 2006	0	CO	(PPM)	0.25	-9.00	0.25	0.20
BOU	1	Episode Day 2, 2006	1	CO	(PPM)	0.23	-9.00	0.23	0.20
BOU	1	Episode Day 2, 2006	2	CO	(PPM)	0.23	-9.00	0.23	0.10
BOU	1	Episode Day 2, 2006	3	CO	(PPM)	0.23	-9.00	0.23	0.10
BOU	1	Episode Day 2, 2006	4	CO	(PPM)	0.24	-9.00	0.24	0.30
BOU	1	Episode Day 2, 2006	5	CO	(PPM)	0.30	-9.00	0.30	0.60
BOU	1	Episode Day 2, 2006	6	CO	(PPM)	0.52	-9.00	0.52	1.20
BOU	1	Episode Day 2, 2006	7	CO	(PPM)	0.87	-9.00	0.87	2.60
BOU	1	Episode Day 2, 2006	8	CO	(PPM)	0.42	-9.00	0.42	2.20
BOU	1	Episode Day 2, 2006	9	CO	(PPM)	0.50	-9.00	0.50	4.20
BOU	1	Episode Day 2, 2006	10	CO	(PPM)	0.65	-9.00	0.65	2.90
BOU	1	Episode Day 2, 2006	11	CO	(PPM)	0.65	-9.00	0.65	1.30
BOU	1	Episode Day 2, 2006	12	CO	(PPM)	0.62	-9.00	0.62	1.40
BOU	1	Episode Day 2, 2006	13	CO	(PPM)	0.57	-9.00	0.57	1.20
BOU	1	Episode Day 2, 2006	14	CO	(PPM)	0.78	-9.00	0.78	1.20
BOU	1	Episode Day 2, 2006	15	CO	(PPM)	1.46	-9.00	1.46	1.90
BOU	1	Episode Day 2, 2006	16	CO	(PPM)	1.17	-9.00	1.17	2.00
BOU	1	Episode Day 2 2006	17	CO	(PPM)	0.65	-9.00	0 65	1 30
BOU	1	Episode Day 2, 2006	18	CO	(PPM)	0.00	-9.00	0.05	1 10
BOU	1	Episode Day 2, 2006	19	CO	(PPM)	0.50	-9.00	0.50	6 50
BOU	1	Episode Day 2, 2006	20	CO	(DDM)	0.33	-9.00	0.33	1 60
BOU	1	Episode Day 2, 2000	20	CO	(DDM)	0.12	-9.00	0.12	1 30
BOU	1	Episode Day 2, 2000	21	CO	(PPM)	0.30	-9.00	0.30	1.30
BOU	1	Episode Day 2, 2000	22	co	(PPM)	0.20	-9.00	0.20	0.00
BOU	1	Episode Day 2, 2000	2.3 0	CO	(PPM)	0.20	-9.00	0.20	0.40
BOU	1	Episode Day 3, 2006	0	do	(PPM)	0.25	-9.00	0.25	0.00
BOU	1	Episode Day 3, 2000	1	C0 C0	(PPM)	0.24	-9.00	0.24	0.00
BOU	1	Episode Day 3, 2006	2	00	(PPM)	0.24	-9.00	0.24	0.00
BOU	1	Episode Day 3, 2006	3	00	(PPM)	0.25	-9.00	0.25	0.00
BOU	1	Episode Day 3, 2006	4	00	(PPM)	0.25	-9.00	0.25	0.10
BOU	1	Episode Day 3, 2006	5	00	(PPM)	0.24	-9.00	0.24	0.40
BOU	1	Episode Day 3, 2006	6	00	(PPM)	0.46	-9.00	0.46	0.80
BOU	1	Episode Day 3, 2006	1	CO	(PPM)	0.92	-9.00	0.92	4.00
BOU	1	Episode Day 3, 2006	8	CO	(PPM)	0.47	-9.00	0.47	2.30
BOU	1	Episode Day 3, 2006	9	CO	(PPM)	0.40	-9.00	0.40	2.90
BOU	Ţ	Episode Day 3, 2006	10	CO	(PPM)	0.31	-9.00	0.31	0.70
BOU	1	Episode Day 3, 2006	11	CO	(PPM)	0.36	-9.00	0.36	0.90
BOU	1	Episode Day 3, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 3, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	1.30
BOU	1	Episode Day 3, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	1.00
BOU	1	Episode Day 3, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	0.70
BOU	1	Episode Day 3, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	3.50
BOU	1	Episode Day 3, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	1.60
BOU	1	Episode Day 3, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 3, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 3, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	0.80
BOU	1	Episode Day 3, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	0.80
BOU	1	Episode Day 3, 2006	22	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 3, 2006	23	CO	(PPM)	-9.00	-9.00	-9.00	0.70
GRDS	1	Episode Day 1, 2006	0	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2006	1	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2006	2	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2006	3	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2006	4	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2006	5	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2006	6	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode Day 1, 2006	7	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode Day 1, 2006	8	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode Day 1, 2006	9	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode Day 1, 2006	10	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode Day 1, 2006	11	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode Day 1, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2006	14	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1. 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Dav 1. 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode Day 1, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	2.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

SETE AVG PHILO DAT IN POLLOTANI PHILO00 FIRE AUX (LAM) COUNT COUNT <thcount< th=""> COUNT <thcount< th=""><th></th><th></th><th>Hig</th><th>h: 2006</th><th>mob=844.7tp</th><th>d;1.5;</th><th>80;I/M</th><th>240 w/newest</th><th>4myr exempt;</th><th>;</th><th></th></thcount<></thcount<>			Hig	h: 2006	mob=844.7tp	d;1.5;	80;I/M	240 w/newest	4myr exempt;	;	
STE 200 DATE IB POLLOTAR PREDICTED PREDICTED <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2006</td> <td>2006</td> <td>2006</td> <td>1988</td>								2006	2006	2006	1988
PERIOD (DBA) (CDA) (CDA) <t< td=""><td>SITE A</td><td>AVG</td><td>DATE</td><td></td><td>HR</td><td>POL</td><td>LUTANT</td><td>PREDICTED</td><td>PREDICTED</td><td>PREDICTED</td><td>OBSERVED</td></t<>	SITE A	AVG	DATE		HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
CH25 1 Episode Dry 1. 2006 200 PPNI -9.00 0.24 -9.00 0.124 0.00 0.00 0.77 -9.00 0.124 0.00 0.75 1.00 0.00 0.75 1.00 0.00 0.157 1.00 0.00 0.157 1.00 0.124 0.00 0.157 1.00 0.157 1.00 0.157 1.00 0.157 1.00 0.157 1.00 0.157 1.00 0.157 1.00 0.00 0.157 1.00	1	PERIOD						(UAM)	(CAL3QHC)	(UAM+CAL3)	
GRDB 1 Beinnde Dry 1. 2006 19 CO (PMP) -9.00 -9											
GRDB 1 Delaced Day 1 Other Delaced Day 1 Other Delaced Day 1 Other Delaced Day 1 Other Delaced Day 1 Delaced Day 1 Delaced Day 1 Delaced Delaced <thdelaced< th=""> <thdelaced< th=""> Delace</thdelaced<></thdelaced<>	GRDS	1	Episode Day 1,	2006	19	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GEDS 1 Distance Day 1 2000 2 CC CPMIN 1.013 -0.00 9.08 2.00 GRUS 1 Distance Day 2.006 2.00 CO (PMIN) 0.21 -9.00 0.21 3.00 GRUS 1 Distance Day 2.006 1 CO (PMIN) 0.227 -9.00 0.237 0.80 GRUS 1 Distance Day 2.006 3 CO (PMIN) 0.24 -9.00 0.24 0.50 GRUS 1 Distance Day 2.006 3 CO (PMIN) 0.24 -9.00 0.25 -1.50 GRUS 1 Distance Day 2.006 3 CO (PMIN) 0.24 0.55 -9.00 0.55 16.60 GRUS 1 Distance Day 2.006 11 CO (PMIN) 0.73 -9.00 0.55 6.10 0.00 <t< td=""><td>GRDS</td><td>1</td><td>Episode Day 1,</td><td>2006</td><td>20</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>2.00</td></t<>	GRDS	1	Episode Day 1,	2006	20	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDC 1 Periode Pay 1.28	GRDS	1	Episode Day 1,	2006	21	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS 1 Epiesche Day 1, 2006 23 CO (DPMI) 0.51 -9.00 0.51 3.00 GRDS 1 Epiesche Day 3, 2006 2 CO (DPMI) 0.24 -9.00 0.24 0.70 GRDS 1 Epiesche Day 3, 2006 2 CO (DPMI) 0.24 -9.00 0.24 0.70 GRDS 1 Epiesche Day 3, 2006 3 CO (DPMI) 0.25 -9.00 0.24 0.70 GRDS 1 Epiesche Day 3, 2006 6 CO (DPMI) 0.55 -9.00 0.57 5.30 GRDS 1 Epiesche Day 4, 2006 7 CO (DPMI) 0.75 -9.00 0.75 2.00 GRDS 1 Epiesche Day 4, 2006 10 CO (DPMI) 0.75 -9.00 0.75 2.00 GRDS 1 Epiesche Day 4, 2006 13 CO (PPMI) 0.75 -9.00 0.75 3.00 GRDS 1 Epiesche Day 4, 2006 13 CO (PPMI) 0.75 -9.00	GRDS	1	Episode Day 1,	2006	22	CO	(PPM)	1.28	-9.00	1.28	4.00
GRDB 1 Episode Day 3. 2006 0 CO CO 10 ² MI 0.27 -9.00 0.27 0.80 GRDB 1 Episode Day 3. 2006 1 CO 10 ² MI 0.24 -9.00 0.24 0.50 GRDS 1 Episode Day 3. 2006 3 CO 12 ² MI 0.24 -9.00 0.25 1.10 GRDS 1 Episode Day 3. 2006 5 CO 12 ² MI 0.137 3.00 0.357 1.51 GRDS 1 Episode Day 3. 2006 7 CO 12 ² MI 1.17 1.6.30 GRDS 1 Episode Day 3. 2006 10 CO 12 ² MI 0.55 -9.00 0.75 2.00 GRDS 1 Episode Day 3. 2006 11 CO 12 ² MI 0.75 -9.00 0.75 2.40 GRDS 1 Episode Day 3. 2006 14 CO 12 ² MI 0.75 -9.00 0.75 2.40 GRDS 1 E	GRDS	1	Episode Day 1,	2006	23	CO	(PPM)	0.51	-9.00	0.51	3.00
GRNS 1 Episode Day 3, 2006 1 CO (PMI) 0.24 -9.00 0.24 0.70 GRNS 1 Episode Day 3, 2006 2 CO (PMI) 0.24 -9.00 0.24 0.70 GRNS 1 Episode Day 3, 2006 4 CC (PMI) 0.25 -9.00 0.25 1.10 GRNS 1 Episode Day 3, 2006 6 CC (PMI) 0.77 -9.00 0.55 1.60 GRNS 1 Episode Day 2, 2006 9 CC (PMI) 0.77 -9.00 0.55 1.6.60 GRNS 1 Episode Day 2, 2006 12 CC (PMI) 0.78 -9.00 0.55 6.1.60 GRNS 1 Episode Day 2, 2006 12 CC (PMI) 0.76 -9.00 0.55 6.1.60 GRNS 1 Episode Day 2, 2006 13 CC (PMI) 0.75 -9.00 0.75 2.40 GRNS 1	GRDS	1	Episode Day 2,	2006	0	CO	(PPM)	0.27	-9.00	0.27	0.80
GRDS 1 pjsacd pysacl 2006 2 CC PPHN 0.24 -0.00 0.24 0.70 GRDS 1 byjsacd pysacl 2006 5 CC PPHN 0.34 -9.00 0.24 0.70 GRDS 1 byjsacd pysacl 2006 6 CC PPHN 0.32 -9.00 0.33 1.17 GRDS 1 byjsacd Day 2.006 7 CC PPNN 0.177 -9.00 0.117 16.30 GRDS 1 byjsacd Day 2.006 10 CC PPNN 0.73 -9.00 0.73 2.00 GRDS 1 byjsacd Day 2.006 13 CC PPNN 0.73 -9.00 0.73 3.50 GRDS 1 byjsacd Day 2.006 13 CC PPNN 0.53 -9.00 0.73 3.50 GRDS 1 byjsacd	GRDS	1	Episode Day 2,	2006	1	CO	(PPM)	0.24	-9.00	0.24	0.50
GEDS 1 Episode Day 2, 2006 3 CC (PPN) 0.24 -0.0 0.24 0.24 0.90 GEDS 1 Episode Day 2, 2006 4 CO (PPN) 0.157 -9.00 0.257 1.10 GEDS 1 Episode Day 2, 2006 7 CO (PPN) 0.157 -9.00 0.157 1.6.30 GEDS 1 Episode Day 2, 2006 7 CO (PPN) 0.155 -9.00 0.558 16.60 GEDS 1 Episode Day 2, 2006 12 CO (PPN) 0.73 -9.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00 0.558 -5.00	GRDS	1	Episode Day 2,	2006	2	CO	(PPM)	0.24	-9.00	0.24	0.70
GRDS 1 Brisded Day 2, 2006 4 CO (PPH) 0,25 -0.00 0,25 1,10 GRDS 1 Brisded Day 2, 2006 5 CO (PPH) 1,17 -0.00 1,57 1,50 GRDS 1 Brisded Day 2, 2006 8 CO (PPH) 1,17 -0.00 1,57 1,50 GRDS 1 Brisded Day 2, 2006 8 CO (PPH) 0,58 -0.00 0,58 6.10 GRDS 1 Brisded Day 2, 2006 11 CO (PPH) 0,56 -9.00 0.78 2.10 GRDS 1 Brisded Day 2, 2006 13 CO (PPH) 0.63 -9.00 0.79 2.40 GRDS 1 Brisded Day 2, 2006 15 CO (PPH) 0.63 -9.00 0.63 14.00 GRDS 1 Brisded Day 2, 2006 15 CO (PPH) 0.63 </td <td>GRDS</td> <td>1</td> <td>Episode Day 2,</td> <td>2006</td> <td>3</td> <td>CO</td> <td>(PPM)</td> <td>0.24</td> <td>-9.00</td> <td>0.24</td> <td>0.90</td>	GRDS	1	Episode Day 2,	2006	3	CO	(PPM)	0.24	-9.00	0.24	0.90
GRDS 1 Spinode Day 2, 2006 5 CC (PPM) 0.30 -0.00 0.30 1.50 GRDS 1 Spinode Day 2, 2006 7 CC (PPM) 1.17 -9.00 0.57 5.30 GRDS 1 Spinode Day 2, 2006 9 CC (PPM) 1.17 -9.00 0.57 2.30 GRDS 1 Spinode Day 2, 2006 10 CC (PPM) 0.75 -9.00 0.75 2.00 GRDS 1 Spinode Day 2, 2006 13 CC (PPM) 0.73 -9.00 0.73 1.80 GRDS 1 Spinode Day 2, 2006 13 CC (PPM) 0.74 -9.00 0.75 2.40 GRDS 1 Spinode Day 2, 2006 15 CC (PPM) 0.74 -9.00 0.75 3.50 GRDS 1 Spinode Day 2, 2006 15 CC (PPM) 0.74 -9.00 0.75 3.50 GRDS 1	GRDS	1	Episode Day 2,	2006	4	CO	(PPM)	0.25	-9.00	0.25	1.10
GRDS 1 Episode Day 2, 2006 6 CC (PMH) 1.57 -9.00 0.57 5.30 GRDS 1 Episode Day 2, 2006 7 CC (PMH) 0.53 -9.00 0.55 16.30 GRDS 1 Episode Day 2, 2006 0 CC (PMH) 0.53 -9.00 0.55 16.60 GRDS 1 Episode Day 2, 2006 12 CC (PMH) 0.53 -9.00 0.73 2.00 GRDS 1 Episode Day 2, 2006 12 CC (PMH) 0.73 -9.00 0.73 2.00 GRDS 1 Episode Day 2, 2006 13 CO (PMH) 0.75 -9.00 0.75 2.00 GRDS 1 Episode Day 2, 2006 15 CO (PMH) 0.91 -9.00 0.153 3.50 GRDS 1 Episode Day 2, 2006 16 CC (PMH) 0.43 -9.00 0.43 1.00 GRDS 1	GRDS	1	Episode Day 2,	2006	5	CO	(PPM)	0.30	-9.00	0.30	1.50
GRDS 1 Episode Day 2, 2006 7 CC (PPM) 1.17 -9.00 1.17 16.30 GRDS 1 Bpisode Day 2, 2006 9 CC (PPM) 0.75 -9.00 0.55 6.10 GRDS 1 Bpisode Day 2, 2006 11 CC (PPM) 0.73 -9.00 0.73 1.80 GRDS 1 Bpisode Day 2, 2006 13 CC (PPM) 0.62 -9.00 0.73 1.80 GRDS 1 Bpisode Day 2, 2006 13 CC (PPM) 0.62 -9.00 0.73 2.40 GRDS 1 Bpisode Day 2, 2006 14 CC (PPM) 0.83 -9.00 0.73 2.40 GRDS 1 Bpisode Day 2, 2006 14 CC (PPM) 0.83 -9.00 0.63 13.20 GRDS 1 Bpisode Day 2, 2006 23 CC (PPM) 0.43 -9.00 0.64 1.100 GRDS 1	GRDS	1	Episode Day 2,	2006	6	CO	(PPM)	0.57	-9.00	0.57	5.30
GRDS 1 picede by 2 2006 9 CO (PMI) 0.55 -9.00 0.55 16.60 GRDS 1 picede by 2 2006 10 CCO (PMI) 0.75 -9.00 0.75 2.00 GRDS 1 picede by 2 2.006 12 CCO (PMI) 0.75 -9.00 0.75 2.00 GRDS 1 ppicede Day 2 2.006 13 CCO (PMI) 0.56 -9.00 0.75 2.00 GRDS 1 ppicede Day 2 2.006 15 CCO (PMI) 1.55 -9.00 0.63 13.20 GRDS 1 ppicede Day 2 2.006 15 CCO (PMI) 0.63 -9.00 0.63 13.20 GRDS 1 ppicede Day 2 2.006 12 CCO (PMI) 0.63 -9.00 0.63 13.20 GRDS 1	GRDS	1	Episode Day 2,	2006	7	CO	(PPM)	1.17	-9.00	1.17	16.30
GRDS 1 Disolde Day 2 2006 9 CO (PPM) 0.58 -9.00 0.58 6.10 GRDS 1 Bpiacde Day 2 2006 11 CO (PPM) 0.73 -9.00 0.73 1.80 GRDS 1 Bpiacde Day 2 2006 11 CO (PPM) 0.75 -9.00 0.73 1.80 GRDS 1 Bpiacde Day 2 2006 13 CO (PPM) 0.75 -9.00 0.73 2.40 GRDS 1 Bpiacde Day 2 2006 15 CO (PPM) 1.55 -9.00 1.55 .50 GRDS 1 Bpiacde Day 2 2006 13 CO (PPM) 0.63 -9.00 0.63 14.00 GRDS 1 Bpiacde Day 2 2006 21 CO (PPM) 0.40 -7.30 GRDS 1 Bpiacde Day 3 2006 21 CO (PPM) 0.41 -9.00 0.41	GRDS	1	Episode Day 2,	2006	8	CO	(PPM)	0.55	-9.00	0.55	16.60
GRDS 1 piacde by 2.006 1.0 CO (PPM) 0.75 -9.00 0.75 2.00 GRDS 1 Bpiacde by 2.2006 1.2 CO (PPM) 0.62 1.80 GRDS 1 Bpiacde by 2.2006 1.3 CO (PPM) 1.55 -9.00 0.62 1.80 GRDS 1 Bpiacde by 2.2006 1.6 CO (PPM) 1.59 -9.00 1.59 3.50 GRDS 1 Bpiacde by 2.2006 1.6 CO (PPM) 0.63 -9.00 0.63 1.4.00 GRDS 1 Bpiacde by 2.2006 2.2 CO (PPM) 0.64 -9.00 0.63 1.4.00 GRDS 1 Bpiacde by 2.2006 2.2 CO (PPM) 0.41 -9.00 0.27 2.30 GRDS 1 Bpiacde by 2.2006	GRDS	1	Episode Day 2,	2006	9	CO	(PPM)	0.58	-9.00	0.58	6.10
GRDS 1 Fpieode Day 2 006 11 CO (PMH) 0.73 -9.00 0.73 1.80 GRDS 1 Bpieode Day 2.006 13 CO (PMH) 0.52 -9.00 0.56 -9.00 0.56 -9.00 0.55 3.60 GRDS 1 Bpieode Day 2.006 13 CO (PMH) 0.56 -9.00 0.56 -9.00 0.56 3.60 GRDS 1 Bpieode Day 2.006 17 CO (PMH) 0.63 -9.00 0.63 13.20 GRDS 1 Bpieode Day 2.2006 23 CO (PMH) 0.61 -9.00 0.63 14.00 GRDS 1 Bpieode Day 2.2006 23 CO (PMH) 0.40 -7.30 0.42 1.00 0.33 -9.00 0.27 2.30 1.00 0.02 1.00 0.02 1.00 0	GRDS	1	Episode Day 2,	2006	10	CO	(PPM)	0.75	-9.00	0.75	2.00
CRDS 1 Episode Day 2, 2006 12 CC (PPM) 0.65 -9.00 0.62 1.80 GRDS 1 Episode Day 2, 2006 14 CC (PPM) 0.75 -9.00 0.75 2.40 GRDS 1 Episode Day 2, 2006 15 CC (PPM) 1.55 -9.00 0.75 2.40 GRDS 1 Episode Day 2, 2006 17 CC (PPM) 0.63 -9.00 0.63 13.20 GRDS 1 Episode Day 2, 2006 19 CC (PPM) 0.63 -9.00 0.63 14.00 GRDS 1 Episode Day 2, 2006 22 CC (PPM) 0.49 -9.00 0.43 1.00 GRDS 1 Episode Day 3, 2006 2 CC (PPM) 0.24 -9.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00	GRDS	1	Episode Day 2.	2006	11	CO	(PPM)	0.73	-9.00	0.73	1.80
CREDS 1 Depinede Day 2, 2006 13 CO [PPM) 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.55 3.50 GRDS 1 Episode Day 2, 2006 15 CO (PPM) 1.55 -9.00 1.55 3.50 GRDS 1 Episode Day 2, 2006 16 CO (PPM) 0.83 -9.00 0.63 11.60 GRDS 1 Episode Day 2, 2006 200 CO (PPM) 0.63 -9.00 0.63 11.60 GRDS 1 Episode Day 2, 2006 22 CO (PPM) 0.40 -9.00 0.41 7.30 GRDS 1 Episode Day 2, 2006 22 CO (PPM) 0.31 -9.00 0.24 -0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24	GRDS	1	Episode Day 2.	2006	12	CO	(PPM)	0.62	-9.00	0.62	1.80
GRDS 1 Episode Day 2, 2006 14 CO (PPM) 0.79 -9.00 0.79 2.40 GRDS 1 Episode Day 2, 2006 16 CC (PPM) 1.55 -9.00 1.55 3.50 GRDS 1 Episode Day 2, 2006 17 CO (PPM) 0.63 -9.00 0.63 11.20 GRDS 1 Episode Day 2, 2006 200 CO (PPM) 0.63 -9.00 0.63 11.20 GRDS 1 Episode Day 2, 2006 21 CO (PPM) 0.49 -9.00 0.43 1.40 60 GRDS 1 Episode Day 2, 2006 22 CO (PPM) 0.24 -9.00 0.26 1.00 0.27 2.30 GRDS 1 Episode Day 3, 2006 CO (PPM) 0.24 -9.00 0.24 0.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 CO (PPM) 0.24 -9.00 0.24 1	GRDS	1	Episode Day 2,	2006	13	CO	(PPM)	0.56	-9.00	0.56	-9.00
CRDS 1 Episode Day 2, 2006 15 CO (PPM) 1.55 -9.00 1.55 3.50 GRDS 1 Episode Day 2, 2006 17 CC (PPM) 0.63 -9.00 0.63 13.20 GRDS 1 Episode Day 2, 2006 19 CC (PPM) 0.63 -9.00 0.63 13.20 GRDS 1 Episode Day 2, 2006 20 CC (PPM) 0.63 -9.00 0.63 14.00 GRDS 1 Episode Day 2, 2006 22 CC (PPM) 0.40 -9.00 0.77 2.30 GRDS 1 Episode Day 3, 2006 2 CC (PPM) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 2 CC (PPM) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 4 CC (PPM) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 4 CC (PPM) 0.24 -9.00 <td< td=""><td>GRDS</td><td>1</td><td>Episode Day 2</td><td>2006</td><td>14</td><td>CO</td><td>(PPM)</td><td>0 79</td><td>-9 00</td><td>0 79</td><td>2 40</td></td<>	GRDS	1	Episode Day 2	2006	14	CO	(PPM)	0 79	-9 00	0 79	2 40
CRHDS 1 Hpisade Day 2, 2006 16 CO (PPH) 1.59 -5.00 1.59 4.70 GRDS 1 Hpisade Day 2, 2006 18 CO (PPH) 0.63 -9.00 0.63 14.00 GRDS 1 Hpisade Day 2, 2006 20 CO (PPH) 0.63 -9.00 0.63 14.00 GRDS 1 Hpisade Day 2, 2006 22 CO (PPH) 0.63 -9.00 0.40 10.60 GRDS 1 Hpisade Day 2, 2006 22 CO (PPH) 0.24 -9.00 0.27 2.30 GRDS 1 Kpisade Day 3, 2006 2 CO (PPH) 0.24 -9.00 0.24 0.00 GRDS 1 Kpisade Day 3, 2006 2 CO (PPH) 0.24 -9.00 0.24 0.00 0.026 0.00 0.026	GRDS	1	Episode Day 2,	2006	15	CO	(PPM)	1 55	-9.00	1 55	3 50
CREDS 1 Episode Day 2, 2006 17 CC (PPH) 0.83 -9.00 0.63 10.00 GRDS 1 Episode Day 2, 2006 19 CC (PPH) 0.63 -9.00 0.63 14.00 GRDS 1 Episode Day 2, 2006 20 CC (PPH) 0.63 -9.00 0.49 1.60 GRDS 1 Episode Day 2, 2006 21 CC (PPH) 0.64 -9.00 0.49 1.60 GRDS 1 Episode Day 2, 2006 22 CC (PPH) 0.24 -9.00 0.24 1.333 GRDS 1 Episode Day 3, 2006 2 CC (PPH) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 2 CC (PPH) 0.25 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 5 CC (PPH) 0.24 -9.00 0.24 1.00 GRDS 1	GRDS	1	Episode Day 2,	2006	16	CO	(PPM)	1 59	-9.00	1 59	4 70
certs 1 Episode 12, 2006 18 CO (PPN) 0.63 -9.00 0.63 13, 20 GRDS 1 Episode Day 2, 2006 20 CO (PPN) 0.63 -9.00 0.63 14.00 GRDS 1 Episode Day 2, 2006 22 CO (PPN) 0.40 -9.00 0.63 14.00 GRDS 1 Episode Day 2, 2006 22 CO (PPN) 0.31 -9.00 0.31 3.30 GRDS 1 Episode Day 2, 2006 22 CO (PPN) 0.24 -9.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 2 CO (PPN) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 2 CO (PPN) 0.24 -9.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 7 CO (PPN) 0.25	GRDG	1	Episode Day 2,	2006	17	C0	(PDM)	0 82	_9 00	0 83	10 00
CREDS 1 Episode Day 2, 2006 19 CO (PPM) 0.63 -9.00 0.63 14.00 GEDS I Episode Day 2, 2006 21 CO (PPM) 0.49 -9.00 0.49 1.60 GEDS I Episode Day 2, 2006 21 CO (PPM) 0.41 -9.00 0.31 3.30 GRDS I Episode Day 2, 2006 22 CO (PPM) 0.26 -9.00 0.27 2.30 GRDS I Episode Day 3, 2006 1 CO (PPM) 0.24 -9.00 0.24 0.00 GRDS I Episode Day 3, 2006 2 CO (PPM) 0.24 -9.00 0.24 0.00 GRDS I Episode Day 3, 2006 CO (PPM) 0.24 -9.00 0.24 0.00 GRDS I Episode Day 3, 2006 CO (PPM) 0.43 -9.00 0.43 2.00 GRDS I Episode Day 3, 2006 CO (PPM) 0.43 -9.00 0.43 2.00	GRDS	1	Episode Day 2, Episode Day 2	2006	18	CO	(DDM)	0.03	-9.00	0.03	13 20
CEDS 1 Episode Day 2, 2006 20 CO (PPP) 0.49 -5.00 0.49 10.60 GEDS 1 Episode Day 2, 2006 21 CC (PPM) 0.40 -9.00 0.31 3.30 GEDS 1 Episode Day 3, 2006 22 CC (PPM) 0.27 -9.00 0.26 1.00 GEDS 1 Episode Day 3, 2006 2 CC (PPM) 0.24 -9.00 0.24 0.00 GEDS 1 Episode Day 3, 2006 2 CC (PPM) 0.24 -9.00 0.24 0.00 GEDS 1 Episode Day 3, 2006 3 CC (PPM) 0.24 -9.00 0.24 0.00 GEDS 1 Episode Day 3, 2006 7 CC (PPM) 0.24 -9.00 0.24 0.00 GEDS 1 Episode Day 3, 2006 10 CC (PPM) 0.32 -9.00 0.32 1.00 GEDS	GRDS	1	Episode Day 2, Episode Day 2	2006	19	CO	(DDM)	0.03	-9.00	0.03	14 00
CREDS 1 Episode 21 CO (PEW) -0.4 -9.00 -1.40 -7.30 GRDS 1 Episode Day 2, 2006 22 CO<(PEW)	CPDS	1	Episode Day 2,	2000	20	C0	(DDM)	0.05	-9.00	0.05	10 60
acdbs 1 Episode Day 2, 2006 22 CO (PPM) 0.31 -9.00 0.31 -3.30 GRDS 1 Episode Day 3, 2006 0 CO (PPM) 0.26 -9.00 0.26 1.00 GRDS 1 Episode Day 3, 2006 2 CO (PPM) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 2 CO (PPM) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 4 CO (PPM) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 6 CO (PPM) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 7 CO (PPM) 1.043 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 10 CO (PPM) 0.32 -9.00 0.33 1.00 GRDS	GRDS	1	Episode Day 2, Episode Day 2	2000	20	C0	(PPM)	0.40	-9.00	0.40	7 30
GEDE 1 Episode Day 2, 2006 2.3 CO (FPM) 0.27 -9.00 0.27 2.30 GEDE 1 Episode Day 3, 2006 1 CO (FPM) 0.26 -9.00 0.24 0.00 GRDE 1 Episode Day 3, 2006 2 CO (FPM) 0.24 -9.00 0.24 0.00 GRDE 1 Episode Day 3, 2006 2 CO (FPM) 0.24 -9.00 0.25 0.00 GRDS 1 Episode Day 3, 2006 5 CO (FPM) 0.24 -9.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 6 CO (FPM) 0.45 -9.00 0.55 8.00 GRDS 1 Episode Day 3, 2006 10 CO (FPM) 0.32 -9.00 0.43 4.00 GRDS 1 Episode Day 3, 2006 11 CO (FPM) 0.32 -9.00 -3.00 1.00 GRDS 1	GRDS	1	Episode Day 2, Episode Day 2	2000	21	C0	(PPM)	0.40	-9.00	0.40	3 30
GRDS 1 Episode Day 5, 2006 20 CC0 FFWI 0.66 -900 0.24 1.00 GRDS 1 Episode Day 3, 2006 2 CC0 (FFWI) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 2 CC0 (FPWI) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 4 CC0 (FPWI) 0.26 -9.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 5 CC0 (FPWI) 0.24 -9.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 5 CO (FPWI) 0.23 -9.00 0.43 2.00 GRDS 1 Episode Day 3, 2006 11 CC (FPWI) 0.32 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 12 CC (FPWI) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 </td <td>CBDS</td> <td>1</td> <td>Episode Day 2, Epigodo Day 2</td> <td>2000</td> <td>22</td> <td>C0 C0</td> <td>(PPM)</td> <td>0.31</td> <td>-9.00</td> <td>0.31</td> <td>2.20</td>	CBDS	1	Episode Day 2, Epigodo Day 2	2000	22	C0 C0	(PPM)	0.31	-9.00	0.31	2.20
GRDS 1 Episode Day 3, 2006 1 CC0 (FFM) 0.24 -0.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 2 CO (FFM) 0.24 -9.00 0.24 0.00 GRDS 1 Episode Day 3, 2006 3 CO (FPM) 0.24 -9.00 0.25 0.00 GRDS 1 Episode Day 3, 2006 5 CO (FPM) 0.24 -9.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 6 CO (PPM) 0.43 -9.00 0.55 8.00 GRDS 1 Episode Day 3, 2006 9 CO (PPM) 0.32 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 11 CO (PPM) 0.32 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 13 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00<	GRDS	1	Episode Day 2,	2006	23	00	(PPM)	0.27	-9.00	0.27	2.30
GRDS 1 Disold Day 1 CCO (PFM) 0.24 -3.00 0.24 0.00 GRDS 1 Bpinode Day 3 2006 3 CCO (PFM) 0.25 -9.00 0.25 0.00 GRDS 1 Bpinode Day 3 2006 3 CCO (PFM) 0.24 -9.00 0.24 0.00 GRDS 1 Bpinode Day 3 2006 6 CCO (PPM) 0.43 -9.00 0.43 2.00 GRDS 1 Epinode Day 3 2006 7 CCO (PPM) 0.44 -9.00 0.43 2.00 GRDS 1 Epinode Day 3 2006 10 CCO (PPM) 0.43 -9.00 0.38 1.00 GRDS 1 Epinode Day 3 2006 12 CCO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	GRDS	1	Episode Day 3,	2006	0	00	(PPM)	0.20	-9.00	0.20	1.00
GRDS 1 Epicode Day 3, 2006 2 CC (PPM) 0.22 -9.00 0.24 0.00 GRDS 1 Epicode Day 3, 2006 4 CC (PPM) 0.22 -9.00 0.24 0.00 GRDS 1 Epicode Day 3, 2006 6 CC (PPM) 0.24 -9.00 0.24 0.00 GRDS 1 Epicode Day 3, 2006 6 CC (PPM) 0.45 -9.00 0.43 2.00 GRDS 1 Epicode Day 3, 2006 9 CC (PPM) 0.43 -9.00 0.43 4.00 GRDS 1 Epicode Day 3, 2006 10 CC (PPM) 0.43 -9.00 0.32 1.00 GRDS 1 Epicode Day 3, 2006 11 CC (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9	GRDS	1	Episode Day 3,	2006	1	00	(PPM)	0.24	-9.00	0.24	0.00
GRDS 1 Episode Day 3, 2006 3 CO (P2P) 0.26 -9.00 0.25 0.00 GRDS 1 Episode Day 3, 2006 5 CO (P2P) 0.26 -9.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 5 CO (P2P) 0.24 -9.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 7 CO (P2P) 0.55 -9.00 0.55 8.00 GRDS 1 Episode Day 3, 2006 1 CO (P2P) 0.55 -9.00 0.49 4.00 GRDS 1 Episode Day 3, 2006 11 CO (P2P) 0.22 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 13 CO (P2P) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 1.00 GRDS 1 Episode Day 3, 2006 15 CO (P2P) -9.00 -9.00 -9.00 -9.0	GRDS	1	Episode Day 3,	2006	2	00	(PPM)	0.24	-9.00	0.24	0.00
GRDS 1 Episode Bay 3, 2006 4 CO (PPM) 0.24 -5.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 5 CO (PPM) 0.43 -5.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 6 CO (PPM) 0.43 -5.00 0.24 1.00 GRDS 1 Episode Day 3, 2006 8 CO (PPM) 0.43 -5.00 0.43 4.00 GRDS 1 Episode Day 3, 2006 10 CO (PPM) 0.32 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 12 CO (PPM) 0.32 -9.00 -9.00 1.00 GRDS 1 Episode Day 3, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 GRDS 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9.00 1.00 GRDS Episode	GRDS	1	Episode Day 3,	2006	3	00	(PPM)	0.25	-9.00	0.25	0.00
GRDS 1 Episode Day 3, 2006 5 CO (PPR) 0.43 -5.00 0.43 2.00 GRDS 1 Episode Day 3, 2006 7 CO (PPR) 0.43 -5.00 0.43 2.00 GRDS 1 Episode Day 3, 2006 9 CO (PPR) 0.45 -5.00 0.45 8.00 GRDS 1 Episode Day 3, 2006 9 CO (PPR) 0.43 -5.00 0.45 8.00 GRDS 1 Episode Day 3, 2006 11 CO (PPR) 0.43 -5.00 -5.00 .1.00 GRDS 1 Episode Day 3, 2006 11 CO (PPR) -5.00 -5.00 -5.00 2.00 1.00 GRDS 1 Episode Day 3, 2006 15 CO (PPR) -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 <t< td=""><td>GRDS</td><td>1</td><td>Episode Day 3,</td><td>2006</td><td>4</td><td>00</td><td>(PPM)</td><td>0.20</td><td>-9.00</td><td>0.26</td><td>0.00</td></t<>	GRDS	1	Episode Day 3,	2006	4	00	(PPM)	0.20	-9.00	0.26	0.00
GRDS 1 Episode Day 3, 2006 6 CO (PPM) 1.04 -9.00 1.04 9.00 GRDS 1 Episode Day 3, 2006 8 CO (PPM) 0.155 -9.00 0.155 8.00 GRDS 1 Episode Day 3, 2006 9 CO (PPM) 0.49 -9.00 0.43 1.00 GRDS 1 Episode Day 3, 2006 10 CO (PPM) 0.32 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 12 CO (PPM) 0.32 -9.00	GRDS	1	Episode Day 3,	2006	5	00	(PPM)	0.24	-9.00	0.24	1.00
GRDS 1 Episode Day 3, 2006 7 CO (PPM) 1.04 -9.00 0.45 8.00 GRDS 1 Episode Day 3, 2006 9 CO (PPM) 0.45 -9.00 0.43 4.00 GRDS 1 Episode Day 3, 2006 10 CO (PPM) 0.32 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 12 CO (PPM) 0.38 -9.00	GRDS	1	Episode Day 3,	2006	6	CO	(PPM)	0.43	-9.00	0.43	2.00
GRDS 1 Episode Day 3, 2006 8 CO (PPM) 0.49 -9.00 0.45 8.00 GRDS 1 Episode Day 3, 2006 10 CCO (PPM) 0.49 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 12 CCO (PPM) 0.32 -9.00 -9.0	GRDS	Ţ	Episode Day 3,	2006	7	CO	(PPM)	1.04	-9.00	1.04	9.00
GRDS 1 Episode Day 3, 2006 9 CO (PPM) 0.49 -9.00 0.49 4.00 GRDS 1 Episode Day 3, 2006 11 CO<(PPM)	GRDS	Ţ	Episode Day 3,	2006	8	CO	(PPM)	0.55	-9.00	0.55	8.00
GRDS 1 Episode Day 3, 2006 10 CO (PPM) 0.32 -9.00 0.32 -9.00 0.32 1.00 GRDS 1 Episode Day 3, 2006 12 CO<(PPM)	GRDS	1	Episode Day 3,	2006	9	CO	(PPM)	0.49	-9.00	0.49	4.00
GRDS 1 Episode Day 3, 2006 11 CO CPM 0.38 -9.00 0.38 1.00 GRDS 1 Episode Day 3, 2006 13 CO (PPM) -9.00 -9.00 -9.00 2.00 GRDS 1 Episode Day 3, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 GRDS 1 Episode Day 3, 2006 15 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	GRDS	Ţ	Episode Day 3,	2006	10	CO	(PPM)	0.32	-9.00	0.32	1.00
GRDS 1 Episode Day 3, 2006 12 CO<(PPM)	GRDS	Ţ	Episode Day 3,	2006	11	CO	(PPM)	0.38	-9.00	0.38	1.00
GRDS 1 Episode Day 3, 2006 13 CO<(PPM)	GRDS	Ţ	Episode Day 3,	2006	12	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS 1 Episode Day 3, 2006 14 CO (PPM) -9.00 -9.00 -9.00 -9.00 1.00 GRDS 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 17 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 23 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.70 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 20	GRDS	T	Episode Day 3,	2006	13	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS 1 Episode Day 3, 2006 15 CO<(PPM)	GRDS	1	Episode Day 3,	2006	14	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 7.00 GRDS 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 1, 2006 23 CO (PPM) -9.00 -9.00 -9.00 2.70 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 3 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 5 <td>GRDS</td> <td>1</td> <td>Episode Day 3,</td> <td>2006</td> <td>15</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>1.00</td>	GRDS	1	Episode Day 3,	2006	15	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS 1 Episode Day 3, 2006 17 CO (PPM) -9.00 -9.00 -9.00 6.00 GRDS 1 Episode Day 3, 2006 19 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 7.00 GRDS 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 1, 2006 22 CO (PPM) -9.00 -9.00 -9.00 2.00 2.70 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 3 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.	GRDS	1	Episode Day 3,	2006	16	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 9.00 GRDS 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 1, 2006 23 CO (PPM) -9.00 -9.00 -9.00 4.00 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 2.00 2.70 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.00 2.50 ARV 1 Episode Day 1, 2006 4 CO (PPM) -9.00 -9.00 1.00 1.60 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 </td <td>GRDS</td> <td>1</td> <td>Episode Day 3,</td> <td>2006</td> <td>17</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>6.00</td>	GRDS	1	Episode Day 3,	2006	17	CO	(PPM)	-9.00	-9.00	-9.00	6.00
GRDS 1 Episode Day 3, 2006 19 CO (PPM) -9.00 -9.00 -9.00 9.00 GRDS 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 7.00 GRDS 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 1, 2006 23 CO (PPM) -9.00 -9.00 -9.00 2.70 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 3 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 7 CO (PPM) -9.00 -9.00 1.00 <tr< td=""><td>GRDS</td><td>1</td><td>Episode Day 3,</td><td>2006</td><td>18</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>4.00</td></tr<>	GRDS	1	Episode Day 3,	2006	18	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 9.00 7.00 GRDS 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 3, 2006 23 CO (PPM) -9.00 -9.00 -9.00 4.00 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 2.70 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 3.30 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 4 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 7 CO (PPM) -9.00 <td>GRDS</td> <td>1</td> <td>Episode Day 3,</td> <td>2006</td> <td>19</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>4.00</td>	GRDS	1	Episode Day 3,	2006	19	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 7.00 GRDS 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 1, 2006 0 CO (PPM) -9.00 -9.00 -9.00 2.00 2.70 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 3 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 4 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 6 CO (PPM) -9.00 -9.00 1.00 1.60 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00	GRDS	1	Episode Day 3,	2006	20	CO	(PPM)	-9.00	-9.00	-9.00	9.00
GRDS 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 4.00 GRDS 1 Episode Day 1, 2006 23 CO (PPM) -9.00 -9.00 -9.00 4.00 ARV 1 Episode Day 1, 2006 0 CO (PPM) -9.00 -9.00 -9.00 2.70 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 3.30 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 3 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 6 CO (PPM) -9.00 -9.00 2.00 1.60 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 2.00	GRDS	1	Episode Day 3,	2006	21	CO	(PPM)	-9.00	-9.00	-9.00	7.00
GRDS 1 Episode Day 3, 2006 23 CO (PPM) -9.00 -9.00 -9.00 4.00 ARV 1 Episode Day 1, 2006 0 CO (PPM) -9.00 -9.00 -9.00 3.30 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 4 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 6 CO (PPM) -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 7 CO (PPM) -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 1.60 ARV	GRDS	1	Episode Day 3,	2006	22	CO	(PPM)	-9.00	-9.00	-9.00	4.00
ARV 1 Episode Day 1, 2006 0 CO (PPM) -9.00 -9.00 -9.00 2.70 ARV 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 3.30 ARV 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 3 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 6 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 7 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 1.00	GRDS	1	Episode Day 3,	2006	23	CO	(PPM)	-9.00	-9.00	-9.00	4.00
ARV 1 Episode Day 1, 2006 1 CO<(PPM)	ARV	1	Episode Day 1,	2006	0	CO	(PPM)	-9.00	-9.00	-9.00	2.70
ARV1Episode Day 1, 20062CO(PPM)-9.00-9.00-9.002.50ARV1Episode Day 1, 20063CO(PPM)-9.00-9.00-9.000.90ARV1Episode Day 1, 20064CO(PPM)-9.00-9.00-9.000.90ARV1Episode Day 1, 20065CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 20066CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 20066CO(PPM)-9.00-9.00-9.002.50ARV1Episode Day 1, 20067CO(PPM)-9.00-9.00-9.002.50ARV1Episode Day 1, 20068CO(PPM)-9.00-9.00-9.002.50ARV1Episode Day 1, 200610CO(PPM)-9.00-9.00-9.002.00ARV1Episode Day 1, 200611CO(PPM)-9.00-9.00-9.001.70ARV1Episode Day 1, 200612CO(PPM)-9.00-9.00-9.001.50ARV1Episode Day 1, 200613CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 200615CO(PPM)-9.00-9.00-9.001.30ARV1Episode Day 1, 200616CO(PPM)-9	ARV	1	Episode Day 1,	2006	1	CO	(PPM)	-9.00	-9.00	-9.00	3.30
ARV 1 Episode Day 1, 2006 3 CO (PPM) -9.00 -9.00 -9.00 0.90 ARV 1 Episode Day 1, 2006 4 CO (PPM) -9.00 -9.00 -9.00 0.90 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 6 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 6 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 8 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 -9.00 1.200 ARV 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.00 1.90 1.50 ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 1.00	ARV	1	Episode Day 1,	2006	2	CO	(PPM)	-9.00	-9.00	-9.00	2.50
ARV 1 Episode Day 1, 2006 4 CO (PPM) -9.00 -9.00 -9.00 0.90 ARV 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 6 CO (PPM) -9.00 -9.00 -9.00 1.60 ARV 1 Episode Day 1, 2006 7 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 8 CO (PPM) -9.00 -9.00 -9.00 2.50 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 -9.00 2.00 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 -9.00 1.200 ARV 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.00 1.90 1.50 ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 1.00	ARV	1	Episode Day 1,	2006	3	CO	(PPM)	-9.00	-9.00	-9.00	1.60
ARV1Episode Day 1, 20065CO(PPM)-9.00-9.00-9.00-9.001.00ARV1Episode Day 1, 20066CO(PPM)-9.00-9.00-9.001.60ARV1Episode Day 1, 20067CO(PPM)-9.00-9.00-9.002.50ARV1Episode Day 1, 20068CO(PPM)-9.00-9.00-9.002.50ARV1Episode Day 1, 20069CO(PPM)-9.00-9.00-9.002.00ARV1Episode Day 1, 200610CO(PPM)-9.00-9.00-9.001.70ARV1Episode Day 1, 200611CO(PPM)-9.00-9.00-9.001.50ARV1Episode Day 1, 200612CO(PPM)-9.00-9.00-9.001.60ARV1Episode Day 1, 200613CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 200615CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 200616CO(PPM)-9.00-9.00-9.001.20ARV1Episode Day 1, 200616CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 200616CO(PPM)-9.00-9.00-9.003.80ARV1Episode Day 1, 200618CO <td< td=""><td>ARV</td><td>1</td><td>Episode Day 1,</td><td>2006</td><td>4</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>0.90</td></td<>	ARV	1	Episode Day 1,	2006	4	CO	(PPM)	-9.00	-9.00	-9.00	0.90
ARV1Episode Day 1, 20066CO(PPM)-9.00-9.00-9.00-9.001.60ARV1Episode Day 1, 20067CO(PPM)-9.00-9.00-9.002.50ARV1Episode Day 1, 20068CO(PPM)-9.00-9.00-9.002.50ARV1Episode Day 1, 20068CO(PPM)-9.00-9.00-9.002.00ARV1Episode Day 1, 200610CO(PPM)-9.00-9.00-9.001.70ARV1Episode Day 1, 200611CO(PPM)-9.00-9.00-9.001.50ARV1Episode Day 1, 200612CO(PPM)-9.00-9.00-9.001.50ARV1Episode Day 1, 200613CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 200615CO(PPM)-9.00-9.00-9.001.30ARV1Episode Day 1, 200616CO(PPM)-9.00-9.00-9.001.30ARV1Episode Day 1, 200616CO(PPM)-9.00-9.00-9.003.80ARV1Episode Day 1, 200618CO(PPM)-9.00-9.00-9.003.70ARV1Episode Day 1, 200618CO(PPM)-9.00-9.00-9.003.70ARV1Episode Day 1, 200618CO <t< td=""><td>ARV</td><td>1</td><td>Episode Day 1,</td><td>2006</td><td>5</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>1.00</td></t<>	ARV	1	Episode Day 1,	2006	5	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV1Episode Day 1, 20067CO(PPM)-9.00-9.00-9.00-9.002.50ARV1Episode Day 1, 20068CO(PPM)-9.00-9.00-9.004.20ARV1Episode Day 1, 20069CO(PPM)-9.00-9.00-9.002.00ARV1Episode Day 1, 200610CO(PPM)-9.00-9.00-9.001.70ARV1Episode Day 1, 200611CO(PPM)-9.00-9.00-9.001.90ARV1Episode Day 1, 200612CO(PPM)-9.00-9.00-9.001.50ARV1Episode Day 1, 200613CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 200614CO(PPM)-9.00-9.00-9.001.00ARV1Episode Day 1, 200615CO(PPM)-9.00-9.00-9.001.30ARV1Episode Day 1, 200616CO(PPM)-9.00-9.00-9.002.20ARV1Episode Day 1, 200617CO(PPM)-9.00-9.00-9.003.80ARV1Episode Day 1, 200618CO(PPM)-9.00-9.00-9.003.70ARV1Episode Day 1, 200619CO(PPM)-9.00-9.00-9.003.90ARV1Episode Day 1, 200620CO<	ARV	1	Episode Day 1,	2006	6	CO	(PPM)	-9.00	-9.00	-9.00	1.60
ARV 1 Episode Day 1, 2006 8 CO (PPM) -9.00 -9.00 -9.00 2.00 ARV 1 Episode Day 1, 2006 9 CO (PPM) -9.00 -9.00 -9.00 2.00 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 -9.00 1.70 ARV 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.00 -9.00 1.90 ARV 1 Episode Day 1, 2006 12 CO (PPM) -9.00 -9.00 -9.00 1.90 ARV 1 Episode Day 1, 2006 12 CO (PPM) -9.00 -9.00 -9.00 1.50 ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 15 CO (PPM) -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 2.20 ARV	ARV	1	Episode Day 1,	2006	7	CO	(PPM)	-9.00	-9.00	-9.00	2.50
ARV 1 Episode Day 1, 2006 9 CO (PPM) -9.00 -9.00 -9.00 2.00 ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 -9.00 1.70 ARV 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.00 -9.00 1.70 ARV 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.00 -9.00 1.90 ARV 1 Episode Day 1, 2006 12 CO (PPM) -9.00 -9.00 -9.00 1.50 ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 15 CO (PPM) -9.00 -9.00 -9.00 1.20 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00<	ARV	1	Episode Day 1,	2006	8	CO	(PPM)	-9.00	-9.00	-9.00	4.20
ARV 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 -9.00 1.70 ARV 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.00 -9.00 1.90 ARV 1 Episode Day 1, 2006 12 CO (PPM) -9.00 -9.00 -9.00 1.50 ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 -9.00 1.50 ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 1.30 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 2.20 ARV 1 Episode Day 1, 2006 17 CO (PPM) -9.00 -9.00 3.80 ARV 1	ARV	1	Episode Day 1,	2006	9	CO	(PPM)	-9.00	-9.00	-9.00	2.00
ARV 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.00 -9.00 1.90 ARV 1 Episode Day 1, 2006 12 CO (PPM) -9.00 -9.00 -9.00 1.50 ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 15 CO (PPM) -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 2.20 ARV 1 Episode Day 1, 2006 17 CO (PPM) -9.00 -9.00 3.80 ARV 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 <td>ARV</td> <td>1</td> <td>Episode Day 1,</td> <td>2006</td> <td>10</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>1.70</td>	ARV	1	Episode Day 1,	2006	10	CO	(PPM)	-9.00	-9.00	-9.00	1.70
ARV 1 Episode Day 1, 2006 12 CO (PPM) -9.00 -9.00 -9.00 1.50 ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 15 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00 2.20 ARV 1 Episode Day 1, 2006 17 CO (PPM) -9.00 -9.00 -9.00 3.80 ARV 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20	ARV	1	Episode Day 1.	2006	11	CO	(PPM)	-9.00	-9.00	-9.00	1.90
ARV 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 15 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 15 CO (PPM) -9.00 -9.00 -9.00 1.30 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00 2.20 ARV 1 Episode Day 1, 2006 17 CO (PPM) -9.00 -9.00 -9.00 3.80 ARV 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 4.50 ARV 1 Episode Day 1, 2006 21 CO (PPM) <td>ARV</td> <td>1</td> <td>Episode Day 1.</td> <td>2006</td> <td>12</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>1.50</td>	ARV	1	Episode Day 1.	2006	12	CO	(PPM)	-9.00	-9.00	-9.00	1.50
ARV 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -9.00 -9.00 1.00 ARV 1 Episode Day 1, 2006 15 CO (PPM) -9.00 -9.00 -9.00 1.30 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00 2.20 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00 3.80 ARV 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 4.50 ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 6.50	ARV	1	Episode Day 1.	2006	13	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV 1 Episode Day 1, 2006 15 CO (PPM) -9.00 -9.00 -9.00 1.30 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00 2.20 ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00 2.20 ARV 1 Episode Day 1, 2006 17 CO (PPM) -9.00 -9.00 -9.00 3.80 ARV 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.50 ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 6 50 ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 6 50	ARV	1	Episode Dav 1.	2006	14	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00 2.20 ARV 1 Episode Day 1, 2006 17 CO (PPM) -9.00 -9.00 -9.00 3.80 ARV 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.50 ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 6.50	ARV	1	Episode Dav 1.	2006	15	CO	(PPM)	-9.00	-9.00	-9.00	1.30
ARV 1 Episode Day 1, 2006 17 CO (PPM) -9.00 -9.00 -9.00 3.80 ARV 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.50 ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 6.50	ARV	1	Episode Dav 1.	2006	16	CO	(PPM)	-9.00	-9.00	-9.00	2.20
ARV 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 3.70 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.50 ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 6.50	ARV	1	Episode Dav 1	2006	17	CO	(PPM)	-9.00	-9.00	-9.00	3.80
ARV 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 3.90 ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.50 ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 6.50	ARV	1	Episode Day 1	2006	18	CO	(PPM)	-9.00	-9.00	-9.00	3.70
ARV 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 4.50 ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 6.50	ARV	1	Episode Day 1	2006	19	co	(PPM)	-9.00	-9.00	-9.00	3.90
ARV 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 650	ΔR <i>M</i>	1	Episode Day 1,	2006	20	C0	(PDM)	_9 00	_9 00	_9 00	4 50
	ARV	1	Episode Day 1,	2006	20	CO	(PPM)	-9.00	-9.00	-9.00	6.50

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			Higl	n: 2006	mob=844	.7tpd	1;1.5;8	80;I/M	240 w/newest	4myr exempt	;	
CTTE AND	1	ייי א רו				TTD	DOT	ד דדידי א אדידי				1988 OBCEDVED
SILE AVG	тор	DAIE				HK	POLI	LUIANI	(IIAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
1 Lite	100								(0111)	(enilisque,	(0111) 01110)	
ARV	1	Episode I	Day 1,	2006		22	CO	(PPM)	2.71	-9.00	2.71	5.40
ARV	1	Episode I	Day 1,	2006		23	CO	(PPM)	2.43	-9.00	2.43	2.40
ARV	1	Episode I	Day 2,	2006		0	CO	(PPM)	1.20	-9.00	1.20	1.70
ARV	1	Episode I	Day 2,	2006		Ţ	CO	(PPM)	0.69	-9.00	0.69	1.30
ARV	1	Episode I	Day 2,	2006		2	00	(PPM)	0.91	-9.00	0.91	1.50
ARV	1	Episode I	Day 2, Day 2	2006		4	CO	(PPM) (DDM)	0.02	-9.00	0.02	1 20
ARV	1	Episode I	Day 2, Day 2	2000		5	CO	(PPM)	0.37	-9.00	0.37	1 80
ARV	1	Episode I	Dav 2.	2006		6	CO	(PPM)	0.45	-9.00	0.45	3.80
ARV	1	Episode I	Day 2,	2006		7	CO	(PPM)	0.81	-9.00	0.81	9.60
ARV	1	Episode I	Day 2,	2006		8	CO	(PPM)	0.66	-9.00	0.66	11.00
ARV	1	Episode I	Day 2,	2006		9	CO	(PPM)	0.77	-9.00	0.77	6.60
ARV	1	Episode I	Day 2,	2006		10	CO	(PPM)	0.77	-9.00	0.77	4.40
ARV	1	Episode I	Day 2,	2006		11	CO	(PPM)	0.83	-9.00	0.83	2.20
ARV	1	Episode I	Day 2,	2006		12	00	(PPM)	0.96	-9.00	0.96	1.70
ARV	1	Episode I	Day 2, Day 2	2006		14	CO	(PPM) (DDM)	1.04	-9.00	1 20	1.00
ARV	1	Episode I	Day 2, Day 2.	2000		15	CO	(PPM)	1.54	-9.00	1.54	2.60
ARV	1	Episode I	Dav 2,	2006		16	CO	(PPM)	3.03	-9.00	3.03	5.20
ARV	1	Episode I	Day 2,	2006		17	CO	(PPM)	2.33	-9.00	2.33	6.30
ARV	1	Episode I	Day 2,	2006		18	CO	(PPM)	1.03	-9.00	1.03	6.20
ARV	1	Episode I	Day 2,	2006		19	CO	(PPM)	0.57	-9.00	0.57	6.00
ARV	1	Episode I	Day 2,	2006		20	CO	(PPM)	0.47	-9.00	0.47	5.10
ARV	1	Episode I	Day 2,	2006		21	CO	(PPM)	0.48	-9.00	0.48	4.10
ARV	1	Episode l	Day 2,	2006		22	CO	(PPM)	0.45	-9.00	0.45	3.20
ARV	1	Episode I	Day 2,	2006		23 0	CO	(PPM)	0.39	-9.00	0.39	2.30
ARV	1	Episode I	Day 3, Day 3	2000		1	CO	(PPM)	0.34	-9.00	0.34	1 20
ARV	1	Episode I	Dav 3.	2006		2	CO	(PPM)	0.31	-9.00	0.31	1.10
ARV	1	Episode I	Day 3,	2006		3	CO	(PPM)	0.28	-9.00	0.28	0.90
ARV	1	Episode I	Day 3,	2006		4	CO	(PPM)	0.25	-9.00	0.25	0.60
ARV	1	Episode I	Day 3,	2006		5	CO	(PPM)	0.28	-9.00	0.28	1.10
ARV	1	Episode I	Day 3,	2006		6	CO	(PPM)	0.58	-9.00	0.58	2.90
ARV	1	Episode I	Day 3,	2006		7	CO	(PPM)	1.39	-9.00	1.39	8.20
ARV	1	Episode I	Day 3,	2006		8	CO	(PPM)	0.77	-9.00	0.77	7.30
ARV	1	Episode I	Day 3, Day 3	2006		10	CO	(PPM) (DDM)	0.75	-9.00	0.75	4.50
ARV	1	Episode I	Day 3, Day 3	2000		11	CO	(PPM)	0.75	-9.00	0.75	1 00
ARV	1	Episode I	Day 3, Dav 3,	2006		12	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode I	Day 3,	2006		13	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode I	Day 3,	2006		14	CO	(PPM)	-9.00	-9.00	-9.00	0.90
ARV	1	Episode I	Day 3,	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode I	Day 3,	2006		16	CO	(PPM)	-9.00	-9.00	-9.00	2.40
ARV	1	Episode I	Day 3,	2006		17	CO	(PPM)	-9.00	-9.00	-9.00	5.50
ARV	1	Episode I	Day 3,	2006		10	CO	(PPM)	-9.00	-9.00	-9.00	5.20
ARV	1	Episode I	Day 3, Day 3	2000		20	CO	(PPM)	-9.00	-9.00	-9.00	3 90
ARV	1	Episode I	Dav 3.	2006		21	CO	(PPM)	-9.00	-9.00	-9.00	4.00
ARV	1	Episode I	Day 3,	2006		22	CO	(PPM)	-9.00	-9.00	-9.00	4.30
ARV	1	Episode I	Day 3,	2006		23	CO	(PPM)	-9.00	-9.00	-9.00	2.00
HLD	1	Episode I	Day 1,	2006		0	CO	(PPM)	-9.00	-9.00	-9.00	0.60
HLD	1	Episode I	Day 1,	2006		1	CO	(PPM)	-9.00	-9.00	-9.00	0.60
HLD	1	Episode I	Day I,	2006		2	CO	(PPM)	-9.00	-9.00	-9.00	0.50
нцр	⊥ 1	Episode I	Dav 1	2000 2006		د 4	C0 C0	(PPM)	-9.00 _9.00	-9.00	-9.00 _9.00	0.50
л.пн	1	Episode	Dav 1	2000		5	C0 C0	(PDM)	-9.00	-9.00	-9.00	1 20
HLD	1	Episode I	Day 1.	2006		6	CO	(PPM)	-9.00	-9.00	-9.00	1.50
HLD	1	Episode I	Day 1,	2006		7	CO	(PPM)	-9.00	-9.00	-9.00	0.70
HLD	1	Episode I	Day 1,	2006		8	CO	(PPM)	-9.00	-9.00	-9.00	0.30
HLD	1	Episode I	Day 1,	2006		9	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode I	Day 1,	2006		10	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode I	Day 1,	2006		11	CO	(PPM)	-9.00	-9.00	-9.00	0.10
HLD	1	Episode I	Day 1,	2006		12 12	CO	(PPM)	-9.00	-9.00	-9.00	0.00
ит.р	1 1	Episode I	Dav 1	2000		14	C0 C0	(PPM)	-9.00 _0 00	-9.00	-9.00	0.00
HI'D	1	Episode I	Day 1, Dav 1	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	0.10
HLD	1	Episode I	Day 1,	2006		16	CO	(PPM)	-9.00	-9.00	-9.00	0.50
HLD	1	Episode I	Day 1,	2006		17	CO	(PPM)	-9.00	-9.00	-9.00	0.40
HLD	1	Episode I	Day 1,	2006		18	CO	(PPM)	-9.00	-9.00	-9.00	0.40
HLD	1	Episode I	Day 1,	2006		19	CO	(PPM)	-9.00	-9.00	-9.00	0.30
HLD	1	Episode I	Day 1,	2006		20	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode I	Day 1,	2006		21	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode I	∪ay ⊥, Davi 1	2006		22	CO	(PPM)	0.25	-9.00	0.25	0.30
НГ.П	⊥ 1	Episode I	Day 1, Dav 2	2006		∠3 ()	CO	(PPM)	0.24	-9.00	0.24	0.20

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

STIE AVID PERLOD DATE: Description HE POLLUTING PRECAUDIC PERDON PRECAUDIC PERDON PRECAUDIC PERDON PRECA			High: 200)6 mob=844.7tp	d;1.5;	80;I/M	240 w/newest	4myr exempt	;	1.0.0.0
Bit // FEBLOD Int // F		שייי גי		CIT	DOT	ד דדידי א אדידי			2006	1988 ODCEDVED
LLL LLL <thll< th=""> <thll< th=""> <thll< th=""></thll<></thll<></thll<>	SILE AVG			HR	POL	LUIANI	PREDICIED (IIAM)	(CALSOHC)	(IIAM+CAL3)	OBSERVED
HED 1 Delade Bay 2006 1 CO PPMI 0.22 -0.00 0.22 0.10 HLD 1 Belands Day 2.006 2 CO PPMI 0.22 -0.00 0.12 0.10 HLD 1 Belands Day 2.006 4 CO PPMI 0.22 -0.00 0.12 0.10 HLD 1 Belands Day 2.006 6 CO PPMI 0.23 -0.00 0.12 0.10 HLD 1 Belands Day 2.006 6 CO PPMI 0.23 -0.00 0.27 0.00 HLD 1 Belands Day 2.006 12 CO PPMI 0.24 -0.00 0.42 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0	I BRI	00					(0111)	(CADSQUE)	(OANI CALD)	
HED 1 Deliands Day 2 2006 2 CC (PPN) 0.21 -0.00 0.21 0.10 HED 1 Deliands Day 2 2006 4 CO (PPN) 0.23 -0.00 0.23 0.00 HLD 1 Reliands Day 2 2006 4 CO (PPN) 0.23 -0.00 0.23 0.01 HLD 1 Reliands Day 2 2006 4 CO (PPN) 0.23 -0.00 0.23 0.01 HLD 1 Reliands Day 2 2006 9 CO (PPN) 0.23 -0.00 0.23 0.01 HLD 1 Reliands Day 2 2006 12 CO (PPN) 0.23 -0.00 0.23 0.00 HLD 1 Reliands Day 2 2006 12 CO (PPN) 0.24 -0.00 0.23 0.00 HLD 1 Reliands	HLD	1 Episo	de Day 2, 2006	1	CO	(PPM)	0.22	-9.00	0.22	0.20
HLD 1 Disorde Day 2, 2006 3 CC (PPM) 0.21 -9.00 0.21 0.00 0.23 0.11 HLD 1 Epicade Day 2, 2006 0 CC (PPM) 0.23 -9.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.24 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 <td>HLD</td> <td>1 Episo</td> <td>de Day 2, 2006</td> <td>2</td> <td>CO</td> <td>(PPM)</td> <td>0.21</td> <td>-9.00</td> <td>0.21</td> <td>0.10</td>	HLD	1 Episo	de Day 2, 2006	2	CO	(PPM)	0.21	-9.00	0.21	0.10
HLD 1 Epichode by 2 2006 4 CO IPMI 0.22 -9.00 0.22 0.10 HLD 1 Epichode Bay 2 2006 5 CO IPMI 0.23 -9.00 0.23 0.10 HLD 1 Epicode Bay 2 2006 7 CO IPMI 0.23 -9.00 0.23 0.10 HLD 1 Epicode Bay 2 2006 11 CO IPMI 0.23 -9.00 0.24 0.00 HLD 1 Epicode Bay 2 2006 11 CO IPMI 0.24 -9.00 0.24 0.00 HLD 1 Epicode Bay 2 2006 15 CO IPMI 0.25 -9.00 2.25 0.00 2.25 0.00 2.25 0.00 2.25 0.00 2.25 0.00 2.25 0.00 2.25 0.00 2.25 0.00 2.25 0.00 2.25	HLD	1 Episo	de Day 2, 2006	3	CO	(PPM)	0.21	-9.00	0.21	0.20
HLD 1 Related Day 3 -9.00 0.23 -9.00 0.23 0.10 HLD 1 Related Day 3 Day 3 <thday 3<="" th=""> <thday 3<="" th=""></thday></thday>	HLD	1 Episo	de Day 2, 2006	4	CO	(PPM)	0.22	-9.00	0.22	0.10
HLD 1 Epicode Bay J. 2000 6 CO (DPN) 0.28	HLD	1 Episo	de Day 2, 2006	5	CO	(PPM)	0.23	-9.00	0.23	0.10
HLD 1 Deleteds Day 1 0 0.39 -0.30 0.39 0.10 HLD 1 Deleteds Day 2 2006 9 C 1998 0.13 -9.00 0.23 -9.00 0.23 0.00 HLD 1 Deleteds Day 2 2006 10 CC PPN1 0.23 -9.00 0.23 0.00 HLD 1 Deleteds Day 2 2006 11 CC PPN1 0.47 -9.00 0.23 0.00 HLD 1 Deleteds Day 2 2006 14 CC PPN1 0.47 -9.00 1.05 -0.00 0.47 0.00 0.47 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.105 0.00 0.00 0.00 0.00 0.00	HLD	1 Episo	de Day 2, 2006	6	CO	(PPM)	0.28	-9.00	0.28	0.10
HLD 1 Distance Distance Distance Distance Distance Distance Distance Distance HLD 1 Distance	HLD	l Episo	de Day 2, 2006	7	CO	(PPM)	0.39	-9.00	0.39	0.10
Hild 1 Bylande Bylande Structure Structure <thstructure< th=""></thstructure<>	HLD	l Episo	de Day 2, 2006	8	CO	(PPM)	0.27	-9.00	0.27	0.00
mild 1 Defined Day 2 2006 11 CO Period 0 0.24 -0 0 0.44 0.00 HLD 1 Rpinod Day 2 2006 12 CO Period 0.47 -0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.47 0.00 0.46 0.00 0.46 0.00 0.46 0.00 0.46 0.00 0.46 0.00 0.46 0.00 0.46 0.00 0.46 0.00	HLD	1 Episo	de Day 2, 2006	9	00	(PPM)	0.23	-9.00	0.23	0.00
HLD 1 Spisode 12 COC PENN 0 44	СПЛ	1 Episo	de Day 2, 2006	10	CO	(PPM)	0.23	-9.00	0.23	0.00
HLD 1 DF1sedd Day 2, 2005 13 CCO (PWR) 0.47 -9.00 0.47 0.00 HLD 1 Fp1sedd Day 2, 2005 15 CCO (PWR) 1.55 -9.00 1.65 0.00 1.65 0.00 1.65 0.00 1.65 0.00 1.65 0.00 1.65 0.00 1.65 0.00 1.65 0.00 1.65 0.00 1.65 0.00 1.66 0.00 1.66 0.00 1.66 0.00 1.66 0.00 1.66 0.00 1.66 0.00 1.66 0.00 1.66 0.00 0.33 0.00 0.33 0.01 0.00 0.33 0.01 0.00 0.33 0.01 0.02 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.22 0.00 0.22	НГО	1 Episo	de Day 2, 2000	12	CO	(DDM)	0.24	-9.00	0.24	0.00
HLD 1 Episode Day 2, 2006 14 CO (PPM) 0.62 9.00 0.62 0.00 HLD 1 Episode Day 2, 2006 15 CO (PPM) 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.05 -9.00 1.03 -9.00 1.03 4.40 HLD 1 Episode Day 2, 2006 2.00 CO (PPM) 0.38 -9.00 0.38 0.50 HLD 1 Episode Day 2, 2006 2.00 CO (PPM) 0.28 -9.00 0.28 0.30 0.26 0.33 0.50 HLD 1 Episode Day 3, 2006 2 CO (PPM) 0.24 -9.00 0.24 0.30 0.22 0.50 HLD 1 Episode Day 3, 2006 2 CO (PPM) 0.224 -9.00	HLD	1 Epise	de Day 2, 2000	13	CO	(PPM)	0.47	-9.00	0.47	0.00
HLD 1 Episode Day 2, 2006 15 CO (PPM) 1.05 -9.00 1.05 0.70 HLD 1 Episode Day 2, 2006 17 CO (PPM) 3.18 -9.00 2.55 4.00 HLD 1 Episode Day 2, 2006 13 CO (PPM) 3.18 -9.00 1.18 4.40 HLD 1 Episode Day 2, 2006 13 CO (PPM) 0.30 -9.00 0.33 0.50 HLD 1 Episode Day 2, 2006 22 CO (PPM) 0.24 -9.00 0.28 0.30 0.26 0.30 HLD 1 Episode Day 3, 2006 2 CO (PPM) 0.24 -9.00 0.22 0.30 HLD 1 Episode Day 3, 2006 2 CO (PPM) 0.22 -9.00 0.22 0.50 HLD 1 Episode Day 3, 2006 3 CO (PPM) 0.22 -9.00 0.22 0.20 0.00 <td>HLD</td> <td>1 Episo</td> <td>de Day 2, 2006</td> <td>14</td> <td>CO</td> <td>(PPM)</td> <td>0.62</td> <td>-9.00</td> <td>0.62</td> <td>0.00</td>	HLD	1 Episo	de Day 2, 2006	14	CO	(PPM)	0.62	-9.00	0.62	0.00
HLD 1 Episode Day 2, 2006 16 CO (PPM) 2.55 4.00 HLD 1 Episode Day 2, 2006 16 CC (PPM) 1.16 4.40 HLD 1 Episode Day 2, 2006 16 CC (PPM) 1.16 4.40 HLD 1 Episode Day 2, 2006 20 CC (PPM) 0.28 -9.00 0.28 0.30 HLD I Episode Day 2, 2006 23 CC (PPM) 0.24 -9.00 0.24 0.40 HLD I Episode Day 3, 2006 12 CC (PPM) 0.24 -9.00 0.24 0.40 HLD I Episode Day 3, 2006 12 CC (PPM) 0.24 -9.00 0.22 0.40 HLD I Episode Day 3, 2006 3 CC (PPM) 0.21 -9.00 0.22 0.00 2.22 0.50 HLD Episode Day 3, 2006 6 CC (PPM) 0.31	HLD	1 Episo	de Day 2, 2006	15	CO	(PPM)	1.05	-9.00	1.05	0.70
HLD 1 Epicade bay 2, 2006 17 CO (PMM) 3.18 -9.00 3.18 4.40 HLD 1 Bpicode Day 2, 2006 13 CO (PMM) 0.38 -9.00 1.66 1.60 HLD 1 Bpicode Day 2, 2006 21 CO (PMM) 0.29 -9.00 0.28 0.30 HLD 1 Bpicode Day 2, 2006 22 CO (PMM) 0.24 -9.00 0.26 0.30 HLD 1 Bpicode Day 2, 2006 22 CO (PMM) 0.24 -9.00 0.24 0.40 HLD 1 Bpicode Day 3, 2006 2 CO (PMM) 0.22 -9.00 0.22 0.50 HLD 1 Bpicode Day 3, 2006 5 CO (PMM) 0.24 -9.00 0.22 0.40 HLD 1 Bpicode Day 3, 2006 5 CO (PMM) 0.24 0.30 1.30 HLD 1 Bpicode Day 3, 2006	HLD	1 Episo	de Day 2, 2006	16	CO	(PPM)	2.55	-9.00	2.55	4.00
HLD 1 Episode Day 2, 2006 18 CCO (PPM) 1.06 -9.00 1.08 0.70 HLD 1 Episode Day 2, 2006 20 CCO (PPM) 0.38 -9.00 0.38 0.70 HLD 1 Episode Day 2, 2006 22 CCO (PPM) 0.26 -9.00 0.26 0.00 0.24 0.01 0.24 0.01 0.24 0.01 0.24 0.01 0.24 0.01 0.24 0.01 0.24 0.01 0.24 0.01 0.24 0.01 0.24 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.22 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <	HLD	1 Episo	de Day 2, 2006	17	CO	(PPM)	3.18	-9.00	3.18	4.40
HLD 1 Epiade Day 2, 2006 19 CO (PPM) 0.38 -9.00 0.38 0.70 HLD 1 Epiade Day 2, 2006 20 CO (PPM) 0.23 -9.00 0.38 0.75 HLD 1 Epiade Day 2, 2006 20 CO (PPM) 0.24 -9.00 0.24 0.0 0.44 0.40 HLD 1 Epiade Day 3, 2006 200 C.24 -9.00 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.22 0.0 0.31 0.0 0.31 0.0 0.31 0.0 0.31 0.0 0.31 0.0 0.31 0.0 0.31 0.0 0.31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	HLD	1 Episo	de Day 2, 2006	18	CO	(PPM)	1.06	-9.00	1.06	1.60
HLD 1 Bpisode Day 2, 2006 20 CC (PPM) 0.30 -9.00 0.30 0.50 HLD 1 Bpisode Day 2, 2006 21 CC (PPM) 0.28 -9.00 0.23 0.30 HLD 1 Bpisode Day 3, 2006 20 CC (PPM) 0.24 -9.00 0.24 0.40 HLD 1 Bpisode Day 3, 2006 2 CC (PPM) 0.22 -9.00 0.22 0.50 HLD 1 Bpisode Day 3, 2006 5 CC (PPM) 0.22 -9.00 0.22 0.50 HLD 1 Episode Day 3, 2006 5 CC (PPM) 0.22 -9.00 0.22 2.00 0.31 1.00 HLD 1 Episode Day 3, 2006 7 CC (PPM) 0.24 -9.00 0.22 2.00 HLD 1 Episode Day 3, 2006 12 CC (PPM) 0.46 -9.00 0.22 2.00 0.13	HLD	1 Episo	ode Day 2, 2006	19	CO	(PPM)	0.38	-9.00	0.38	0.70
HLD 1 Epicode Bay 2, 2006 21 CCO DPMI 0.26 -9.00 0.26 0.30 HLD 1 Epicode Bay 3, 2006 23 CCO (PPM) 0.24 -9.00 0.25 0.30 HLD 1 Epicode Bay 3, 2006 20 CCO (PPM) 0.24 -9.00 0.22 0.50 HLD 1 Epicode Day 3, 2006 2006 20 (PPM) 0.22 -9.00 0.22 0.50 HLD 1 Epicode Day 3, 2006 5 CCO (PPM) 0.22 -9.00 0.22 0.60 0.31 HLD Epicode Day 3, 2006 6 CCO (PPM) 0.21 -9.00 0.24 -0.0 0.72 1.20 HLD Epicode Day 3, 2006 7 CO (PPM) 0.46 -9.00 0.46 0.00 -9.00 0.46 0.00 HLD Epicode Day 3, 2006 13 CCO (PPM) 0.46 -9.00 0.46	HLD	1 Episo	de Day 2, 2006	20	CO	(PPM)	0.30	-9.00	0.30	0.50
HLD 1 Bpleded Bplededd Bplededd Bplede	HLD	1 Episo	de Day 2, 2006	21	CO	(PPM)	0.29	-9.00	0.29	0.30
HLD 1 Bplsade Jay 2, June Ja Lo D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>	HLD	l Episo	de Day 2, 2006	22	CO	(PPM)	0.26	-9.00	0.26	0.30
HED 1 Bylinde 100 10 100 10 100 10 100 10 100 10 100 10 100	HLD	1 Episo	de Day 2, 2006	23	00	(PPM)	0.24	-9.00	0.24	0.40
HLD 1 Epicode 2 CO (EPM) 0.22 -9.00 0.22 0.50 HLD 1 Epicode Pay 3, 2006 3 CO (EPM) 0.22 -9.00 0.22 0.40 HLD 1 Epicode Pay 3, 2006 6 CO (EPM) 0.24 -9.00 0.22 0.40 HLD 1 Epicode Pay 3, 2006 6 CO (PPM) 0.31 -9.00 0.22 2.00 HLD 1 Epicode Pay 3, 2006 7 CO (PPM) 0.68 -9.00 0.72 2.00 HLD 1 Epicode Pay 3, 2006 10 CO (PPM) 0.68 -9.00 0.68 0.00 HLD 1 Epicode Pay 3, 2006 11 CO (PPM) 0.68 -9.00 -3.00 0.00 0.00 HLD 1 Epicode Pay 3, 2006 14 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.	ЦП	1 Episo	$\frac{1}{2}$	0	CO	(PPM)	0.25	-9.00	0.25	0.40
HLD 1 Episode Day 3, 2006 3 CO (FPM) 0.22 -9.00 0.22 0.40 HLD 1 Episode Day 3, 2006 5 CO (FPM) 0.22 -9.00 0.24 0.33 HLD 1 Episode Day 3, 2006 6 CO (FPM) 0.31 -9.00 0.24 0.33 HLD 1 Episode Day 3, 2006 7 CO (FPM) 0.71 -9.00 0.91 1.90 HLD 1 Episode Day 3, 2006 8 CO (FPM) 0.72 -9.00 0.91 1.90 HLD 1 Episode Day 3, 2006 12 CO (FPM) 0.46 9.00 -64 9.00 -9.00 <td>HLD</td> <td>1 Episo</td> <td>de Day 3, 2000</td> <td>2</td> <td>CO</td> <td>(DDM)</td> <td>0.24</td> <td>-9.00</td> <td>0.24</td> <td>0.40</td>	HLD	1 Episo	de Day 3, 2000	2	CO	(DDM)	0.24	-9.00	0.24	0.40
HLD 1 Epicode Day 3, 2006 4 CO (PPM) 0.22 -9.00 0.22 0.40 HLD 1 Epicode Day 3, 2006 5 CO (PPM) 0.31 -9.00 0.24 0.33 0.30 HLD 1 Epicode Day 3, 2006 6 CO (PPM) 0.91 -9.00 0.72 2.000 HLD 1 Epicode Day 3, 2006 9 CO (PPM) 0.68 -9.00 0.72 2.000 HLD 1 Epicode Day 3, 2006 10 CO (PPM) 0.68 -9.00 0.46 0.00 HLD 1 Epicode Day 3, 2006 11 CO (PPM) 0.48 -9.00 -3.00 0.00 0.00 HLD 1 Epicode Day 3, 2006 12 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 </td <td>HLD</td> <td>1 Episo</td> <td>de Day 3, 2000</td> <td>3</td> <td>CO</td> <td>(PPM)</td> <td>0.22</td> <td>-9.00</td> <td>0.22</td> <td>0.50</td>	HLD	1 Episo	de Day 3, 2000	3	CO	(PPM)	0.22	-9.00	0.22	0.50
HLD 1 Episode Day 3, 2006 5 CO (PPM) 0.24 -9.00 0.24 0.30 HLD 1 Episode Day 3, 2006 7 CO (PPM) 0.91 -9.00 0.21 1.90 HLD 1 Episode Day 3, 2006 9 CO (PPM) 0.72 -9.00 0.72 2.00 HLD 1 Episode Day 3, 2006 9 CO (PPM) 0.68 -9.00 0.64 0.00 HLD 1 Episode Day 3, 2006 11 CO (PPM) 0.38 -9.00 -9.00 0.00 HLD 1 Episode Day 3, 2006 13 CO (PPM) -9.00 -9.00 -9.00 0.00 0.00 HLD 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -0.0 0.00 HLD 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00	HLD	1 Episo	de Day 3, 2006	4	CO	(PPM)	0.22	-9.00	0.22	0.40
HLD 1 Episode Day 3, 2006 6 CO (PPM) 0.31 -9.00 0.31 0.30 HLD 1 Episode Day 3, 2006 8 CO (PPM) 0.72 -9.00 0.72 2.00 HLD 1 Episode Day 3, 2006 9 CO (PPM) 0.68 -9.00 0.72 2.00 HLD 1 Episode Day 3, 2006 10 CO (PPM) 0.46 -9.00 0.46 0.00 HLD 1 Episode Day 3, 2006 12 CO (PPM) 0.38 -9.00 -9.00 -9.00 0.00 HLD 1 Episode Day 3, 2006 13 CO (PPM) -9.00 -9.00 -9.00 0.00 0.00 HLD 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9.00 0.00 0.00 HLD 1 Episode Day 3, 2006 10 CO (PPM) -9.00 -9.00 -9.00 0.00	HLD	1 Episo	de Day 3, 2006	5	CO	(PPM)	0.24	-9.00	0.24	0.30
HLD 1 Episode Day 3, 2006 7 CO (PPM) 0.91 -9.00 0.91 1.90 HLD 1 Episode Day 3, 2006 9 CO (PPM) 0.68 -9.00 0.66 1.10 HLD 1 Episode Day 3, 2006 11 CO (PPM) 0.46 -9.00 0.66 1.00 HLD 1 Episode Day 3, 2006 11 CO (PPM) 0.38 -9.00 -9.00 0.00 0.00 HLD 1 Episode Day 3, 2006 13 CO (PPM) -9.00 -9.00 -9.00 0.00 -9.00 0.00 0.00 HLD 1 Episode Day 3, 2006 15 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -0.00 0.70 HLD 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 -0.00 0.20 HLD 1 Episode Day 3, 2006 2	HLD	1 Episo	de Day 3, 2006	6	CO	(PPM)	0.31	-9.00	0.31	0.30
HLD 1 Epicode Day 3, 2006 8 CO (PPM) 0.72 -9.00 0.72 2.00 HLD 1 Epicode Day 3, 2006 10 CO (PPM) 0.46 -9.00 0.46 0.00 HLD 1 Epicode Day 3, 2006 11 CO (PPM) 0.38 -9.00 <td>HLD</td> <td>1 Episo</td> <td>de Day 3, 2006</td> <td>7</td> <td>CO</td> <td>(PPM)</td> <td>0.91</td> <td>-9.00</td> <td>0.91</td> <td>1.90</td>	HLD	1 Episo	de Day 3, 2006	7	CO	(PPM)	0.91	-9.00	0.91	1.90
HLD 1 Epicode Day 3, 2006 9 CO (PPM) 0.46 -9.00 0.68 1.10 HLD 1 Epicode Day 3, 2006 11 CO (PPM) 0.46 -9.00 0.38 0.00 HLD 1 Epicode Day 3, 2006 11 CO (PPM) -9.00 -9.00 -9.00 0.00 HLD 1 Epicode Day 3, 2006 13 CO (PPM) -9.00 -9.00 -9.00 0.00 HLD 1 Epicode Day 3, 2006 15 CO (PPM) -9.00	HLD	1 Episo	de Day 3, 2006	8	CO	(PPM)	0.72	-9.00	0.72	2.00
HLD 1 Episode Day 3, 2006 10 CCO (PPM) 0.46 -9.00 0.46 0.00 HLD 1 Episode Day 3, 2006 11 CO (PPM) -9.00 -9.00 -9.00 0.00 HLD 1 Episode Day 3, 2006 11 CO (PPM) -9.00 -9.00 -9.00 0.00 HLD 1 Episode Day 3, 2006 14 CO (PPM) -9.00 -9.00 -9.00 0.00 0.00 HLD 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9.00 0.00 0.00 0.00 HLD 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9.00 0.00	HLD	1 Episo	de Day 3, 2006	9	CO	(PPM)	0.68	-9.00	0.68	1.10
HLD 1 Epicode Day 3, 2006 11 CO (PPM) 0.38 -9.00 -9.00 0.00 HLD 1 Epicode Day 3, 2006 12 CO (PPM) -9.00 -9.00 -9.00 0.00 HLD 1 Epicode Day 3, 2006 13 CO (PPM) -9.00 -9.00 -9.00 0.00 HLD 1 Epicode Day 3, 2006 15 CO (PPM) -9.00 -9.00 -9.00 0.00 0.00 HLD 1 Epicode Day 3, 2006 17 CO (PPM) -9.00 -9.00 -9.00 0.00 0.070 HLD 1 Epicode Day 3, 2006 19 CO (PPM) -9.00 -9.00 -9.00 0.00 0.00 0.020 HLD Epicode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 -8.00 -8.00 0.030 HLD Epicode Day 3, 2006 21 CO (PPM) -9.00 -9.00	HLD	1 Episo	de Day 3, 2006	10	CO	(PPM)	0.46	-9.00	0.46	0.00
HLD 1 Episode Day 3, 2006 12 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 0.00 HLD 1 Episode Day 3, 2006 14 CO (PPM) -9.00	HLD	1 Episo	de Day 3, 2006	11	CO	(PPM)	0.38	-9.00	0.38	0.00
HLD 1 Episode Day 3, 2006 13 CO (PPM) -9.00 -9.00 -9.00 -9.00 0.00 HLD 1 Episode Day 3, 2006 15 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 0.00 HLD 1 Episode Day 3, 2006 17 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 0.00 HLD 1 Episode Day 3, 2006 19 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 0.20 HLD 1 Episode Day 3, 2006 21 CO (PPM) -9.00 <	HLD	1 Episo	de Day 3, 2006	12	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD 1 Episode Day 3, 2006 14 CO CE F3.00 F3.00 <thf< td=""><td>СПЛ</td><td>1 Episo</td><td>de Day 3, 2006</td><td>13</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>0.00</td></thf<>	СПЛ	1 Episo	de Day 3, 2006	13	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9.00 0.70 HLD 1 Episode Day 3, 2006 17 CO (PPM) -9.00 -9.00 -9.00 0.70 HLD 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 0.20 HLD 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 0.20 HLD 1 Episode Day 3, 2006 21 CO<(PPM)	НГО	1 Episo	de Day 3, 2000	15	CO	(DDM)	-9.00	-9.00	-9.00	0.00
HLD I Episode Day 3, 2006 I7 CO (PPM) -9.00 -9.00 -9.00 -9.00 0.20 HLD I Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9.00 0.20 HLD I Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 0.20 HLD I Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 0.80 HLD I Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 .030 HLD I Episode Day 1, 2006 2 CO (PPM) -9.00	HLD	1 Epise	de Day 3, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	0.70
HLD 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9.00 -9.00 0.20 HLD 1 Episode Day 3, 2006 19 CO (PPM) -9.00 -9.00 -9.00 0.20 HLD 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 0.30 HLD 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 0.30 HLD 1 Episode Day 3, 2006 23 CO<(PPM)	HLD	1 Episo	de Day 3, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	0.70
HLD 1 Episode Day 3, 2006 19 CO (PPM) -9.00 -9.00 -9.00 -9.00 0.20 HLD 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 0.30 HLD 1 Episode Day 3, 2006 22 CO (PPM) -9.00 -9.00 -9.00 0.40 HLD 1 Episode Day 3, 2006 23 CO (PPM) -9.00 -9.00 -9.00 1.80 AUR 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.	HLD	1 Episo	de Day 3, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 0.80 HLD 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 0.30 HLD 1 Episode Day 3, 2006 23 CO (PPM) -9.00 <td< td=""><td>HLD</td><td>1 Episo</td><td>de Day 3, 2006</td><td>19</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>0.20</td></td<>	HLD	1 Episo	de Day 3, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD 1 Episode Day 3, 2006 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 0.00 0.00 HLD 1 Episode Day 3, 2006 23 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 1.80 AUR 1 Episode Day 1, 2006 0 CO (PPM) -9.00 -	HLD	1 Episo	de Day 3, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	0.80
HLD 1 Episode Day 3, 2006 22 CO<(PPM)	HLD	1 Episo	de Day 3, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	0.30
HLD 1 Episode Day 3, 2006 23 CO (PPM) -9.00	HLD	1 Episo	de Day 3, 2006	22	CO	(PPM)	-9.00	-9.00	-9.00	0.40
AUR 1 Episode Day 1, 2006 0 CO (PPM) -9.00 <t< td=""><td>HLD</td><td>l Episo</td><td>de Day 3, 2006</td><td>23</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>1.80</td></t<>	HLD	l Episo	de Day 3, 2006	23	CO	(PPM)	-9.00	-9.00	-9.00	1.80
AUR 1 Episode Day 1, 2006 1 CO (PPM) -9.00 <t< td=""><td>AUR</td><td>1 Episo</td><td>de Day 1, 2006</td><td>0</td><td>CO</td><td>(PPM) (DDM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	AUR	1 Episo	de Day 1, 2006	0	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 4 CO (PPM) -9.00 -	AUR	1 Episo	de Day 1, 2000	2	CO	(DDM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 4 CO (PN) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 6 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 7 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 8 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.	AUR	1 Episo	de Day 1, 2000	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 5 CO (PPM) -9.00 -9.0	AUR	1 Episo	de Day 1, 2006	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 6 CO<(PPM)	AUR	1 Episo	de Day 1, 2006	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 7 CO (PPM) -9.00 <t< td=""><td>AUR</td><td>1 Episo</td><td>de Day 1, 2006</td><td>6</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	AUR	1 Episo	de Day 1, 2006	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR1Episode Day 1, 20068CO(PPM)-9.00-9.00-9.00-9.00-9.00-9.00AUR1Episode Day 1, 20069CO(PPM)-9.00-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200610CO(PPM)-9.00-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200611CO(PPM)-9.00-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200612CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200613CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200614CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200615CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200616CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200617CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200618CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200620CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200621CO(PPM)-9.00-9.00-9.00-9.00 <td< td=""><td>AUR</td><td>1 Episo</td><td>de Day 1, 2006</td><td>7</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></td<>	AUR	1 Episo	de Day 1, 2006	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR1Episode Day 1, 20069CO(PPM)-9.00-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200610CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200611CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200612CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200613CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200614CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200615CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200616CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200618CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200618CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200610CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200620CO(PPM)-9.00-9.00-9.00-9.00AUR1Episode Day 1, 200621CO(PPM)-9.00-9.00-9.00AUR1Episode Day 1, 200622CO	AUR	1 Episo	de Day 1, 2006	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 10 CO (PPM) -9.00 <	AUR	1 Episo	de Day 1, 2006	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 11 CO (PPM) -9.00 <	AUR	1 Episo	de Day 1, 2006	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 12 CO (PPM) -9.00	AUR	1 Episo	Dae Day 1, 2006	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 13 CO (FPM) -9.00	AUR	1 Episo	de Day 1, 2006	12	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 11 CO (FFM) 9.00 -9.00 <t< td=""><td>AUR</td><td>1 Episo</td><td>de Day 1, 2000</td><td>1 A</td><td>C0 C0</td><td>(DDM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	AUR	1 Episo	de Day 1, 2000	1 A	C0 C0	(DDM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 17 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 23 CO (PPM) 0.79 -9.00 0.79 -9.00 AUR 1 Episode Day 2, 2006 0 CO (PPM) 0.81 -9.00 0.70 -9.00 AUR 1 Episode Day 2, 2006 1 <td>AUR</td> <td>1 Episo</td> <td>de Dav 1. 2006</td> <td>15</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td>	AUR	1 Episo	de Dav 1. 2006	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 17 CO (PPM) -9.00 AUR 1 Episode Day 1, 2006 23 CO (PPM) 0.81 -9.00 0.81 -9.00 AUR 1 Episode Day 2, 2006 <t< td=""><td>AUR</td><td>1 Episo</td><td>de Day 1, 2006</td><td>16</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	AUR	1 Episo	de Day 1, 2006	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 18 CO (PPM) -9.00 AUR 1 Episode Day 1, 2006 22 CO (PPM) 0.81 -9.00 0.81 -9.00 AUR -9.00 AUR 1 Episode Day 2, 2006 1 CO (PPM) 0.70 -9.00 0.70 -9.00 AUR -9.00 AUR 1 Episode Day 2, 2006 1 CO (PPM) <t< td=""><td>AUR</td><td>1 Episo</td><td>de Day 1, 2006</td><td>17</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	AUR	1 Episo	de Day 1, 2006	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 22 CO (PPM) 0.79 -9.00 0.79 -9.00 AUR 1 Episode Day 1, 2006 23 CO (PPM) 0.81 -9.00 0.81 -9.00 AUR 1 Episode Day 2, 2006 0 CO (PPM) 0.70 -9.00 0.70 -9.00 AUR 1 Episode Day 2, 2006 1 CO (PPM) 0.44 -9.00 0.44 -9.00 AUR 1 Episode Day 2, 2006 2 CO (PPM) 0.34 -9.00 0.34 -9.00 AUR 1 Episode Day 2, 2006 3 CO (PPM) 0.31	AUR	1 Episo	de Day 1, 2006	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 22 CO (PPM) 0.79 -9.00 0.79 -9.00 AUR 1 Episode Day 1, 2006 23 CO (PPM) 0.81 -9.00 0.81 -9.00 AUR 1 Episode Day 2, 2006 0 CO (PPM) 0.70 -9.00 0.81 -9.00 AUR 1 Episode Day 2, 2006 0 CO (PPM) 0.74 -9.00 0.44 -9.00 AUR 1 Episode Day 2, 2006 2 CO (PPM) 0.34 -9.00 0.34 -9.00 AUR 1 Episode Day 2, 2006 3 CO (PPM) 0.31 -9.00 0.31 -9.00	AUR	1 Episo	de Day 1, 2006	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 AUR 1 Episode Day 1, 2006 22 CO (PPM) 0.79 -9.00 0.79 -9.00 AUR 1 Episode Day 1, 2006 23 CO (PPM) 0.81 -9.00 0.81 -9.00 AUR 1 Episode Day 2, 2006 0 CO (PPM) 0.70 -9.00 0.81 -9.00 AUR 1 Episode Day 2, 2006 0 CO (PPM) 0.70 -9.00 0.44 -9.00 AUR 1 Episode Day 2, 2006 2 CO (PPM) 0.34 -9.00 0.34 -9.00 AUR 1 Episode Day 2, 2006 2 CO (PPM) 0.31 -9.00 0.31 -9.00 AUR 1 Episode Day 2, 2006 3 CO (PPM) 0.31 -9.00 0.31 -9.00	AUR	1 Episo	de Day 1, 2006	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 1, 2006 22 CO (PPM) 0.79 -9.00 0.79 -9.00 AUR 1 Episode Day 1, 2006 23 CO (PPM) 0.81 -9.00 0.81 -9.00 AUR 1 Episode Day 2, 2006 0 CO (PPM) 0.70 -9.00 0.81 -9.00 AUR 1 Episode Day 2, 2006 1 CO (PPM) 0.44 -9.00 0.44 -9.00 AUR 1 Episode Day 2, 2006 2 CO (PPM) 0.34 -9.00 0.34 -9.00 AUR 1 Episode Day 2, 2006 3 CO (PPM) 0.31 -9.00 0.31 -9.00	AUR	1 Episo	de Day 1, 2006	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR I Episode Day 1, 2006 23 CO<(PPM) 0.81 -9.00 0.81 -9.00 AUR I Episode Day 2, 2006 0 CO<(PPM)	AUR	I Episo	de Day 1, 2006	22	CO	(PPM)	0.79	-9.00	0.79	-9.00
AUR 1 Episode Day 2, 2006 0 CO<(PPM) 0.70 -9.00 0.70 -9.00 AUR 1 Episode Day 2, 2006 1 CO<(PPM)	AUR	1 Episo	Dae Day 1, 2006	23	CO	(PPM)	0.81	-9.00	0.81	-9.00
AUR 1 Episode Day 2, 2005 1 CO (PPM) 0.34 -9.00 0.34 -9.00 AUR 1 Episode Day 2, 2006 2 CO (PPM) 0.34 -9.00 0.34 -9.00 AUR 1 Episode Day 2, 2006 3 CO (PPM) 0.31 -9.00 0.31 -9.00	AUK	1 Episo	Due Day 2, 2006	U 1	00	(PPM)	0.70	-9.00	0.70	-9.00
AUR 1 Episode Day 2, 2006 2 CO (PPM) 0.34 -9.00 0.34 -9.00 AUR 1 Episode Day 2, 2006 3 CO (PPM) 0.31 -9.00 0.31 -9.00	AUK	1 Episo	de Day 2, 2006	1	00	(PPM)	0.44	-9.00	0.44	-9.00 _0 00
	AUR	1 Episo	de Day 2, 2006	3	CO	(PPM)	0.31	-9.00	0.31	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			Hig	h: 2006	mob=844	.7tpd	1;1.5;	80;I/M	240 w/newest	4myr exempt	;	
CT THE	7770					TTD	DOT	ד דוידי א אוידי				1988 OBCEDVED
SILE	PERIOD	DAIL				HR	POL.	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	IBRIOD								(0111)	(enilogine)	(0111) 01110)	
AUR	1	Episode 1	Day 2,	2006		4	CO	(PPM)	0.33	-9.00	0.33	-9.00
AUR	1	Episode I	Day 2,	2006		5	CO	(PPM)	0.37	-9.00	0.37	-9.00
AUR	1	Episode I	Day 2,	2006		6	CO	(PPM)	0.55	-9.00	0.55	-9.00
AUR	1	Episode l	Day 2,	2006		.7	CO	(PPM)	1.25	-9.00	1.25	-9.00
AUR	1	Episode I	Day 2,	2006		8	00	(PPM)	0.96	-9.00	0.96	-9.00
AUR	1	Episode I	Day 2, Day 2	2006		10	CO	(PPM) (DDM)	0.66	-9.00	0.00	-9.00
AUR	1	Episode I	Day 2, Dav 2	2000		11	CO	(PPM)	0.41	-9.00	0.41	-9.00
AUR	1	Episode I	Dav 2.	2006		12	CO	(PPM)	0.46	-9.00	0.46	-9.00
AUR	1	Episode I	Day 2,	2006		13	CO	(PPM)	0.54	-9.00	0.54	-9.00
AUR	1	Episode I	Day 2,	2006		14	CO	(PPM)	0.77	-9.00	0.77	-9.00
AUR	1	Episode I	Day 2,	2006		15	CO	(PPM)	1.24	-9.00	1.24	-9.00
AUR	1	Episode I	Day 2,	2006		16	CO	(PPM)	2.44	-9.00	2.44	-9.00
AUR	1	Episode I	Day 2,	2006		17	CO	(PPM)	3.09	-9.00	3.09	-9.00
AUR	1	Episode I	Day 2,	2006		18	CO	(PPM)	3.30	-9.00	3.36	-9.00
AUR	1	Episode I	Day 2,	2006		19	CO	(PPM)	4.23	-9.00	4.23	-9.00
AUR	1	Episode I	Day 2, Dav 2	2000		20	CO	(PPM) (DDM)	1 29	-9.00	1 29	-9.00
AUR	1	Episode I	Dav 2.	2006		22	CO	(PPM)	0.95	-9.00	0.95	-9.00
AUR	1	Episode I	Dav 2,	2006		23	CO	(PPM)	0.72	-9.00	0.72	-9.00
AUR	1	Episode I	Day 3,	2006		0	CO	(PPM)	0.51	-9.00	0.51	-9.00
AUR	1	Episode I	Day 3,	2006		1	CO	(PPM)	0.38	-9.00	0.38	-9.00
AUR	1	Episode I	Day 3,	2006		2	CO	(PPM)	0.31	-9.00	0.31	-9.00
AUR	1	Episode I	Day 3,	2006		3	CO	(PPM)	0.27	-9.00	0.27	-9.00
AUR	1	Episode l	Day 3,	2006		4	CO	(PPM)	0.28	-9.00	0.28	-9.00
AUR	1	Episode l	Day 3,	2006		5	CO	(PPM)	0.31	-9.00	0.31	-9.00
AUR	1	Episode I	Day 3, Day 3	2006		0 7	CO	(PPM) (DDM)	0.48	-9.00	0.48	-9.00
AUR	1	Episode I	Day 3, Dav 3	2000		8	CO	(PPM) (DDM)	1.15	-9.00	1.15	-9.00
AUR	1	Episode I	Dav 3.	2006		9	CO	(PPM)	0.60	-9.00	0.60	-9.00
AUR	1	Episode I	Day 3,	2006		10	CO	(PPM)	0.56	-9.00	0.56	-9.00
AUR	1	Episode I	Day 3,	2006		11	CO	(PPM)	0.52	-9.00	0.52	-9.00
AUR	1	Episode I	Day 3,	2006		12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode I	Day 3,	2006		13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode I	Day 3,	2006		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode l	Day 3,	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode I	Day 3,	2006		17	00	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode I	Day 3, Day 3	2006		18	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode I	Dav 3.	2006		19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode I	Day 3,	2006		20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode 1	Day 3,	2006		21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode I	Day 3,	2006		22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode I	Day 3,	2006		23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AURS	1	Episode I	Day 1,	2006		0	CO	(PPM)	-9.00	-9.00	-9.00	0.70
AURS	1	Episode I	Day I,	2006		1	CO	(PPM)	-9.00	-9.00	-9.00	0.60
AURS	1	Episode I	Day I, Day 1	2006		2	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.50
AURS	1	Episode I	Day 1, Dav 1	2000		4	CO	(PPM)	-9.00	-9.00	-9 00	0.40
AURS	1	Episode I	Dav 1.	2006		5	CO	(PPM)	-9.00	-9.00	-9.00	0.70
AURS	1	Episode I	Day 1,	2006		6	CO	(PPM)	-9.00	-9.00	-9.00	2.50
AURS	1	Episode I	Day 1,	2006		7	CO	(PPM)	-9.00	-9.00	-9.00	2.20
AURS	1	Episode I	Day 1,	2006		8	CO	(PPM)	-9.00	-9.00	-9.00	1.40
AURS	1	Episode I	Day 1,	2006		9	CO	(PPM)	-9.00	-9.00	-9.00	1.60
AURS	1	Episode I	Day 1,	2006		10	CO	(PPM)	-9.00	-9.00	-9.00	1.40
AURS	1	Episode l	∪ay ⊥, Dav 1	2006		⊥⊥ 1 つ	00	(PPM)	-9.00	-9.00	-9.00	1.50
AURS	1	Episode I	Day 1, Day 1	2006		13	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.80
AURS	1	Episode I	Day 1, Dav 1	2000		14	CO	(PPM)	-9.00	-9.00	-9 00	0.50
AURS	1	Episode I	Dav 1.	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	0.50
AURS	1	Episode I	Day 1,	2006		16	CO	(PPM)	-9.00	-9.00	-9.00	1.20
AURS	1	Episode 1	Day 1,	2006		17	CO	(PPM)	-9.00	-9.00	-9.00	3.70
AURS	1	Episode 1	Day 1,	2006		18	CO	(PPM)	-9.00	-9.00	-9.00	1.60
AURS	1	Episode I	Day 1,	2006		19	CO	(PPM)	-9.00	-9.00	-9.00	1.30
AURS	1	Episode I	Day 1,	2006		20	CO	(PPM)	-9.00	-9.00	-9.00	0.90
AURS	1	Episode I	Day 1,	2006		21	CO	(PPM)	-9.00	-9.00	-9.00	0.80
AURS	1	Episode l	∪ay ⊥, Dav 1	2006		∠∠ วว	00	(PPM)	0.56	-9.00	0.56	T.00
AURS	⊥ 1	Episode I	∪ay ⊥, Dav ?	2000 2006		∠ 3 ∩	C0	(PPM)	U.53 N 40	-9.00 _0 nn	U.53 0 40	0.90
AURS	1	Episode I	Dav 2,	2006		1	CO	(PPM)	0.40	-9.00	0.40	0.50
AURS	1	Episode 1	Dav 2.	2006		2	CO	(PPM)	0.27	-9.00	0.27	0.30
AURS	1	Episode 1	Day 2.	2006		3	CO	(PPM)	0.26	-9.00	0.26	0.30
AURS	1	Episode I	Day 2,	2006		4	CO	(PPM)	0.28	-9.00	0.28	0.30
AURS	1	Episode I	Day 2,	2006		5	CO	(PPM)	0.33	-9.00	0.33	0.90
AURS	1	Episode I	Day 2,	2006		б	CO	(PPM)	0.54	-9.00	0.54	2.80

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High:	2006 mob=844.7tj	pd;1.5;	80;I/M	240 w/newest	4myr exempt;	0005	1.0.0.0
CT TTE	A170	שתיגנ		DOT	ד דדידי א אדידי		2006	2006	1988 ODCEDVED
SILE	AVG DFRIOD	DAIE	HK	POL	LUIANI	(IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
	IBRIOD					(0111)	(CADSQUE)	(UANI CALD)	
AURS	1	Episode Day 2, 20	06 7	CO	(PPM)	1.14	-9.00	1.14	3.90
AURS	1	Episode Day 2, 20	06 8	CO	(PPM)	0.68	-9.00	0.68	2.70
AURS	1	Episode Day 2, 20)06 9	CO	(PPM)	0.38	-9.00	0.38	2.30
AURS	1	Episode Day 2, 20	06 10	CO	(PPM)	0.31	-9.00	0.31	2.10
AURS	1	Episode Day 2, 20	06 11	CO	(PPM)	0.36	-9.00	0.36	2.70
AURS	1	Episode Day 2, 20	106 12	CO	(PPM)	0.49	-9.00	0.49	2.30
AURS	1	Episode Day 2, 20	106 14	CO	(PPM)	0.02	-9.00	0.62	2.50
AURS	1	Episode Day 2, 20	06 15	CO	(PPM)	1.36	-9.00	1.36	2.60
AURS	1	Episode Day 2, 20	16	CO	(PPM)	3.65	-9.00	3.65	5.30
AURS	1	Episode Day 2, 20	06 17	CO	(PPM)	5.89	-9.00	5.89	11.20
AURS	1	Episode Day 2, 20	006 18	CO	(PPM)	6.44	-9.00	6.44	5.60
AURS	1	Episode Day 2, 20	06 19	CO	(PPM)	3.91	-9.00	3.91	3.00
AURS	1	Episode Day 2, 20	20	CO	(PPM)	0.92	-9.00	0.92	2.20
AURS	1	Episode Day 2, 20	JU6 21	CO	(PPM)	0.62	-9.00	0.62	1.80
AURS	1	Episode Day 2, 20	106 22	CO	(PPM)	0.55	-9.00	0.55	1.70
AURS	1	Episode Day 2, 20	106 <u>2</u> 3	CO	(PPM)	0.42	-9.00	0.42	0.80
AURS	1	Episode Day 3, 20	06 1	CO	(PPM)	0.35	-9.00	0.35	0.50
AURS	1	Episode Day 3, 20	006 2	CO	(PPM)	0.27	-9.00	0.27	0.50
AURS	1	Episode Day 3, 20	06 3	CO	(PPM)	0.25	-9.00	0.25	0.50
AURS	1	Episode Day 3, 20	006 4	CO	(PPM)	0.26	-9.00	0.26	0.70
AURS	1	Episode Day 3, 20	06 5	CO	(PPM)	0.30	-9.00	0.30	1.20
AURS	1	Episode Day 3, 20	JU6 6	CO	(PPM)	0.48	-9.00	0.48	5.40
AURS	1	Episode Day 3, 20		00	(PPM)	1.10	-9.00	1.10	6.90 E 00
AURS	1	Episode Day 3, 20 Episode Day 3, 20	106 8 106 9	CO	(PPM) (DDM)	0.55	-9.00	0.55	3.00
AURS	1	Episode Day 3, 20	06 10	CO	(PPM)	0.48	-9.00	0.48	0.90
AURS	1	Episode Day 3, 20	06 11	CO	(PPM)	0.43	-9.00	0.43	0.90
AURS	1	Episode Day 3, 20	006 12	CO	(PPM)	-9.00	-9.00	-9.00	0.70
AURS	1	Episode Day 3, 20	006 13	CO	(PPM)	-9.00	-9.00	-9.00	0.80
AURS	1	Episode Day 3, 20	14	CO	(PPM)	-9.00	-9.00	-9.00	0.80
AURS	1	Episode Day 3, 20	15	CO	(PPM)	-9.00	-9.00	-9.00	0.80
AURS	1	Episode Day 3, 20	106 16	00	(PPM)	-9.00	-9.00	-9.00	1.80
AURS	1	Episode Day 3, 20 Episode Day 3, 20	106 18	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	3.40
AURS	1	Episode Day 3, 20	106 19	CO	(PPM)	-9.00	-9.00	-9.00	2.70
AURS	1	Episode Day 3, 20	20	CO	(PPM)	-9.00	-9.00	-9.00	3.00
AURS	1	Episode Day 3, 20	006 21	CO	(PPM)	-9.00	-9.00	-9.00	2.50
AURS	1	Episode Day 3, 20	06 22	CO	(PPM)	-9.00	-9.00	-9.00	1.50
AURS	1	Episode Day 3, 20	06 23	CO	(PPM)	-9.00	-9.00	-9.00	1.10
PLM	1	Episode Day 1, 20	J06 0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	106 I	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	106 2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	06 4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	06 5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	06 6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	06 7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	06 8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	JU6 9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM DLM	1	Episode Day 1, 20	106 10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PT.M	± 1	Episode Day 1, 20)06 12	CO CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	06 13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	006 14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	06 15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	06 16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	106 18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 20	106 19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 20	106 20 106 21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode Dav 1. 20	06 22	CO	(PPM)	1.11	-9.00	1.11	-9.00
PLM	1	Episode Day 1, 20	06 23	CO	(PPM)	1.16	-9.00	1.16	-9.00
PLM	1	Episode Day 2, 20	006 0	CO	(PPM)	0.88	-9.00	0.88	-9.00
PLM	1	Episode Day 2, 20	1 06	CO	(PPM)	0.50	-9.00	0.50	-9.00
PLM	1	Episode Day 2, 20	2	CO	(PPM)	0.41	-9.00	0.41	-9.00
PLM	1	Episode Day 2, 20	106 3	00	(PPM)	0.38	-9.00	0.38	-9.00
	⊥ 1	Episode Day 2, 20	100 4 106 5	00	(PPM)	0.40	-9.00 _9.00	0.40	-9.00
DT.W	1 1	Episode Day 2, 20)06 6	CO CO	(PPM)	0.43	-9.00	0.43	-9.00
PLM	1	Episode Day 2, 20	06 7	CO	(PPM)	1.71	-9.00	1.71	-9.00
PLM	1	Episode Day 2, 20	006 8	CO	(PPM)	1.15	-9.00	1.15	-9.00
PLM	1	Episode Day 2, 20	06 9	CO	(PPM)	0.87	-9.00	0.87	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			Hig	n: 2006	mob=844	.7tpd	1;1.5;	80;I/M	240 w/newest	4myr exempt	;	
o t t t t	AVC	האתב				UD	DOT	ד דדיד א אידיד		2006 DREDICTED	2006 DREDICTED	1988
SILE	PERIOD	DAIL				HK	POL.	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	1 21(202								(0111)	(on Ebgino)	(0111)01120)	
PLM	1	Episode	Day 2,	2006		10	CO	(PPM)	0.53	-9.00	0.53	-9.00
PLM	1	Episode	Day 2,	2006		11	CO	(PPM)	0.51	-9.00	0.51	-9.00
PLM	1	Episode	Day 2,	2006		12	CO	(PPM)	0.60	-9.00	0.60	-9.00
PLM	1	Episode	Day 2,	2006		14	00	(PPM)	0.67	-9.00	0.67	-9.00
	1	Episode	Day 2, Day 2	2006		14	CO	(PPM) (DDM)	0.96	-9.00	0.96	-9.00
PLM	1	Episode	Day 2, Day 2	2000		16	CO	(PPM)	3 27	-9.00	3 27	-9 00
PLM	1	Episode	Dav 2.	2006		17	CO	(PPM)	4.26	-9.00	4.26	-9.00
PLM	1	Episode	Day 2,	2006		18	CO	(PPM)	4.91	-9.00	4.91	-9.00
PLM	1	Episode	Day 2,	2006		19	CO	(PPM)	6.25	-9.00	6.25	-9.00
PLM	1	Episode	Day 2,	2006		20	CO	(PPM)	2.05	-9.00	2.05	-9.00
PLM	1	Episode	Day 2,	2006		21	CO	(PPM)	1.07	-9.00	1.07	-9.00
PLM	1	Episode	Day 2,	2006		22	CO	(PPM)	1.12	-9.00	1.12	-9.00
PLM	1	Episode	Day 2,	2006		23	CO	(PPM)	0.85	-9.00	0.85	-9.00
РЫМ	1	Episode	Day 3,	2006		1	CO	(PPM)	0.58	-9.00	0.58	-9.00
DI.M	1	Episode	Day 3, Day 3	2000		2	CO	(PPM) (DDM)	0.40	-9.00	0.48	-9.00
PLM	1	Episode	Dav 3.	2000		3	CO	(PPM)	0.31	-9.00	0.31	-9.00
PLM	1	Episode	Day 3,	2006		4	CO	(PPM)	0.31	-9.00	0.31	-9.00
PLM	1	Episode	Day 3,	2006		5	CO	(PPM)	0.37	-9.00	0.37	-9.00
PLM	1	Episode	Day 3,	2006		б	CO	(PPM)	0.57	-9.00	0.57	-9.00
PLM	1	Episode	Day 3,	2006		7	CO	(PPM)	1.60	-9.00	1.60	-9.00
PLM	1	Episode	Day 3,	2006		8	CO	(PPM)	0.98	-9.00	0.98	-9.00
PLM	1	Episode	Day 3,	2006		9	CO	(PPM)	0.77	-9.00	0.77	-9.00
PLM	1	Episode	Day 3,	2006		10	CO	(PPM)	0.72	-9.00	0.72	-9.00
PLM	1	Episode	Day 3,	2006			00	(PPM)	0.80	-9.00	0.80	-9.00
DI.M	1	Episode	Day 3, Dav 3	2000		13	CO	(DDM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Dav 3.	2000		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Dav 3.	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2006		16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2006		17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2006		18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2006		19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2006		20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2006		21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2006		22	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode	Day 3, Day 1	2006		∠3	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1, Dav 1.	2000		1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Dav 1.	2006		2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day I, Davi 1	2006		8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day I, Day 1	2006		10	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day 1, Dav 1	2000		11	CO	(DDM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1.	2006		12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2006		18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day I, Davi 1	2006		19	00	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day I, Day 1	2006		∠0 21	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day 1, Dav 1	2000		22	CO	(PPM)	0 25	-9.00	0 25	-9 00
BTN	1	Episode	Dav 1.	2006		23	CO	(PPM)	0.28	-9.00	0.28	-9.00
BTN	1	Episode	Day 2,	2006		0	CO	(PPM)	0.40	-9.00	0.40	-9.00
BTN	1	Episode	Day 2,	2006		1	CO	(PPM)	0.50	-9.00	0.50	-9.00
BTN	1	Episode	Day 2,	2006		2	CO	(PPM)	0.48	-9.00	0.48	-9.00
BTN	1	Episode	Day 2,	2006		3	CO	(PPM)	0.43	-9.00	0.43	-9.00
BTN	1	Episode	Day 2,	2006		4	CO	(PPM)	0.35	-9.00	0.35	-9.00
BTN	1	Episode	Day 2,	2006		5	CO	(PPM)	0.29	-9.00	0.29	-9.00
BIN	1	Episode	Day 2,	2006		ю 7	00	(PPM)	0.30	-9.00	0.30	-9.00
BIN	1	EDISOUS	Day 2,	2000 2006		/ Q	00	(PPM)	0.44	-9.00	0.44	-9.00
RTN	⊥ 1	Episode	Day 2, Dav 2	2006		9	CO	(PPM)	0.44	-9.00	0.44	-9.00
BTN	1	Episode	Dav 2	2006		10	CO	(PPM)	0.65	-9.00	0.65	-9.00
BTN	1	Episode	Dav 2.	2006		11	CO	(PPM)	0.05	-9.00	0.77	-9.00
BTN	1	Episode	Day 2,	2006		12^{-1}	CO	(PPM)	0.76	-9.00	0.76	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			Hig	h: 2006	mob=844	.7tpd	1;1.5;	80;I/M	240 w/newest	4myr exempt	;	
o t t t t	7170	ኮአጥም				ир	DOT	ד דדיד א אידיד		2006 בפיים ברייים	2006	1988
SILE	PERIOD	DAIE				пĸ	POL.	LUIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
									(=== ;)	(,	(,	
BTN	1	Episode I	Day 2,	2006		13	CO	(PPM)	0.73	-9.00	0.73	-9.00
BTN	1	Episode I	Day 2,	2006		14	CO	(PPM)	0.75	-9.00	0.75	-9.00
BIN	1	Episode I	ay 2,	2006		15 16	C0 C0	(PPM) (DDM)	0.82	-9.00	0.82	-9.00
BIN	1	Episode I Frigode I	ay 2,	2000		17	CO	(PPM) (DDM)	1 18	-9.00	1 18	-9.00
BTN	1	Episode I	ay 2, av 2.	2000		18	CO	(PPM)	1.10	-9.00	1.26	-9.00
BTN	1	Episode I	Day 2,	2006		19	CO	(PPM)	1.01	-9.00	1.01	-9.00
BTN	1	Episode I	Day 2,	2006		20	CO	(PPM)	0.66	-9.00	0.66	-9.00
BTN	1	Episode I	Day 2,	2006		21	CO	(PPM)	0.80	-9.00	0.80	-9.00
BTN	1	Episode I	Day 2,	2006		22	CO	(PPM)	1.38	-9.00	1.38	-9.00
BTN	1	Episode I	Day 2,	2006		23	CO	(PPM)	1.61	-9.00	1.61	-9.00
BIN	1	Episode I	Jay 3,	2006		1	CO	(PPM) (DDM)	0.98	-9.00	0.98	-9.00
BTN	1	Episode I	ay 3,	2000		2	CO	(PPM)	0.60	-9.00	0.60	-9.00
BTN	1	Episode I	Day 3,	2006		3	CO	(PPM)	0.40	-9.00	0.40	-9.00
BTN	1	Episode I	Day 3,	2006		4	CO	(PPM)	0.33	-9.00	0.33	-9.00
BTN	1	Episode I	Day 3,	2006		5	CO	(PPM)	0.31	-9.00	0.31	-9.00
BTN	1	Episode I	Day 3,	2006		6	CO	(PPM)	0.34	-9.00	0.34	-9.00
BTN	1	Episode I	Day 3,	2006		.7	CO	(PPM)	0.37	-9.00	0.37	-9.00
BIN	1	Episode I	Jay 3,	2006		8	C0 C0	(PPM)	0.33	-9.00	0.33	-9.00
BIN	1	Episode I	ay 3	2000		10	CO	(PPM)	0.30	-9.00	0.30	-9.00
BTN	1	Episode I	Dav 3 .	2006		11	CO	(PPM)	0.25	-9.00	0.25	-9.00
BTN	1	Episode I	Day 3,	2006		12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode I	Day 3,	2006		13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode I	Day 3,	2006		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode I	Day 3,	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
B.I.N	1	Episode I	Jay 3,	2006		17	00	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode I Frigode I	Jay 3, Jay 3	2006		18	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode I	Dav 3.	2006		19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode I	Day 3,	2006		20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode I	Day 3,	2006		21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode I	Day 3,	2006		22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode I	Day 3,	2006		23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day I,	2006		1	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode I Frigode I	Day 1, Day 1	2006		⊥ 2	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode I	Dav 1.	2006		3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day I,	2006		.7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode I	Jay I,	2006		8	C0 C0	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	ay 1,	2000		10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode I	Day 1,	2006		11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1	1	Episode I	Day I,	2006		15 16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1 TT 1	1	Episode I	ay 1	2006		17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
Ŭ 1	1	Episode I	Day 1.	2006		18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
 U_1	1	Episode I	Day 1,	2006		19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode I	Day 1,	2006		22	CO	(PPM)	1.11	-9.00	1.11	-9.00
	1	Episode I	Jay I,	2006		∠3 ∩	CO	(PPM) (DDM)	1.10	-9.00	1.10	-9.00
U 1	1	Episode I	Day 2.	2006		1	CO	(PPM)	0.54	-9.00	0.54	-9.00
U_1	1	Episode I	Day 2,	2006		2	CO	(PPM)	0.44	-9.00	0.44	-9.00
U_1	1	Episode I	Day 2,	2006		3	CO	(PPM)	0.42	-9.00	0.42	-9.00
U_1	1	Episode I	Day 2,	2006		4	CO	(PPM)	0.44	-9.00	0.44	-9.00
U_1	1	Episode I	Day 2,	2006		5	CO	(PPM)	0.49	-9.00	0.49	-9.00
	1	Episode I	Jay 2,	2006 2006		ю 7	00	(PPM)	0.72	-9.00	0.72	-9.00
U_1 TT 1	1	Episode I	Day 2,	2000		/ 8	CO	(PPM)	∠.∪3 1 २२	-9.00	∠.∪3 1 २२	-9.00
τ <u>1</u>	1	Episode T	Day 2.	2006		9	CO	(PPM)	0.78	-9.00	0.78	-9.00
Ŭ_1	1	Episode I	Day 2,	2006		10	CO	(PPM)	0.50	-9.00	0.50	-9.00
U_1	1	Episode I	Day 2,	2006		11	CO	(PPM)	0.57	-9.00	0.57	-9.00
U_1	1	Episode I	Day 2,	2006		12	CO	(PPM)	0.76	-9.00	0.76	-9.00
U_1	1	Episode I	Day 2,	2006		13	CO	(PPM)	0.96	-9.00	0.96	-9.00
	1	Episode I	Jay 2,	2006		⊥4 1⊑	00	(PPM)	1.51	-9.00	1.51	-9.00
U_1	1	T DDOGTAG	uy 41	2000		- J	20	(/)	2.14	- 2.00	4.11	2.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			Hig	h: 2006	mob=844.	.7tpd	1;1.5;8	30;I/M	240 w/newest	4myr exempt	;	
0.7.87	1110						DOT		2006	2006	2006	1988
SITE	AVG	DATE				HR	POL	-0.1.AN.1.	PREDICTED	(CALSOHC)	(HAM+CAL3)	OBSERVED
	IBRIOD								(044.1)	(CALISQUE)	(OANICALS)	
U_1	1	Episode	Day 2,	2006		16	CO	(PPM)	5.23	-9.00	5.23	-9.00
U_1	1	Episode	Day 2,	2006		17	CO	(PPM)	9.05	-9.00	9.05	-9.00
U_1	1	Episode	Day 2,	2006		18	CO	(PPM)	9.06	-9.00	9.06	-9.00
U_1	1	Episode	Day 2,	2006		19	CO	(PPM)	2.83	-9.00	2.83	-9.00
U_1	1	Episode	Day 2,	2006		20	CO	(PPM)	1.16	-9.00	1.16	-9.00
	1	Episode	Day 2,	2006		2⊥ 22	C0 C0	(PPM)	1.05	-9.00	1.05	-9.00
U_1 II 1	1	Episode	Day 2, Day 2	2000		22	CO	(PPM)	1.02	-9.00	1.02	-9.00
U_1	1	Episode	Day 2, Day 3.	2000		0	CO	(PPM)	0.69	-9.00	0.68	-9.00
U 1	1	Episode	Dav 3,	2006		1	CO	(PPM)	0.58	-9.00	0.58	-9.00
U_1	1	Episode	Day 3,	2006		2	CO	(PPM)	0.41	-9.00	0.41	-9.00
U_1	1	Episode	Day 3,	2006		3	CO	(PPM)	0.32	-9.00	0.32	-9.00
U_1	1	Episode	Day 3,	2006		4	CO	(PPM)	0.34	-9.00	0.34	-9.00
U_1	1	Episode	Day 3,	2006		5	CO	(PPM)	0.47	-9.00	0.47	-9.00
U_1	1	Episode	Day 3,	2006		6	CO	(PPM)	0.88	-9.00	0.88	-9.00
	1	Episode	Day 3,	2006		/	00	(PPM)	2.54	-9.00	2.54	-9.00
U_L TT 1	1	Episode	Day 3,	2006		8	CO	(PPM) (DDM)	1.01	-9.00	1.01	-9.00
U_1	1	Episode	Day 3, Day 3	2000		10	CO	(PPM) (PPM)	1.10	-9.00	0.93	-9.00
U 1	1	Episode	Dav 3.	2006		11	CO	(PPM)	0.88	-9.00	0.88	-9.00
U 1	1	Episode	Day 3,	2006		12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 3,	2006		13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 3,	2006		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 3,	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 3,	2006		16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 3,	2006		17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode	Day 3,	2006		10	00	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1 TT_1	1	Episode	Day 3,	2000		20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 3, Day 3	2000		20	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode	Day 3.	2006		22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode	Dav 3,	2006		23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day I,	2006		5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A E 7	1	Episode	Day 1,	2006		0 7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
г_А F Д	1	Episode	Day 1, Day 1	2000		8	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
F A	1	Episode	Day 1, Day 1.	2006		9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F A	1	Episode	Day 1,	2006		10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day I,	2006		15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		10 17	00	(PPM)	-9.00	-9.00	-9.00	-9.00
г_А Г Л	1	Episode	Day 1, Day 1	2006		18	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
F A	1	Episode	Day 1.	2000		19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F A	1	Episode	Day 1,	2006		20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1	Episode	Day 1,	2006		22	CO	(PPM)	1.35	-9.00	1.35	-9.00
F_A	1	Episode	Day 1,	2006		23	CO	(PPM)	0.66	-9.00	0.66	-9.00
F_A	1	Episode	Day 2,	2006		0	CO	(PPM)	0.29	-9.00	0.29	-9.00
F_A	1	Episode	Day 2,	2006		1	CO	(PPM)	0.25	-9.00	0.25	-9.00
F_A	1	Episode	Day 2,	2006		2	CO	(PPM)	0.25	-9.00	0.25	-9.00
F_A	1	Episode	Day 2,	2006		3	C0 C0	(PPM)	0.25	-9.00	0.25	-9.00
г_А F Л	1	Episode	Day 2, Day 2	2000		5	CO	(PPM)	0.20	-9.00	0.20	-9.00
F A	1	Episode	Day 2.	2006		6	CO	(PPM)	0.61	-9.00	0.61	-9.00
F A	1	Episode	Day 2.	2006		7	CO	(PPM)	1.31	-9.00	1.31	-9.00
F_A	1	Episode	Day 2,	2006		8	CO	(PPM)	0.66	-9.00	0.66	-9.00
F_A	1	Episode	Day 2,	2006		9	CO	(PPM)	0.59	-9.00	0.59	-9.00
F_A	1	Episode	Day 2,	2006		10	CO	(PPM)	0.58	-9.00	0.58	-9.00
F_A	1	Episode	Day 2,	2006		11	CO	(PPM)	0.54	-9.00	0.54	-9.00
F_A	1	Episode	Day 2,	2006		12	CO	(PPM)	0.50	-9.00	0.50	-9.00
F_A	1	Episode	Day 2,	2006		13	CO	(PPM)	0.47	-9.00	0.47	-9.00
FA	1	Episode	Day 2,	2006 200 <i>6</i>		⊥4 1⊑	00	(PPM)	U.65	-9.00	U.65 1 17	-9.00
г_А ټ ۵	1 1	Episode	Day 2, Day 2	2000		16	CO	(PPM)	1.1/ 1.70	-9.00	1.1/ 1.70	-9.00
А_7 Д Я	⊥ 1	Episode	Day 2, Day 2	2006		17	CO	(PPM)	1.70 N 98	-9.00	1.70	-9.00
F_A	1	Episode	Day 2,	2006		18	CO	(PPM)	0.75	-9.00	0.75	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.	7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt	;	
	האתב			ир	DOT	ד דדידי א אדידי	2006 בייסד בייקים	2006 ספרסד מידפים	2006 DEFIT	1988
PERIO	DAIL			пк	POL.	LUIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	-						(,	(<u>2</u>)	(,	
F_A	1 Episode	e Day 2, 2006		19	CO	(PPM)	0.78	-9.00	0.78	-9.00
F_A	l Episode	e Day 2, 2006		20	CO	(PPM)	0.68	-9.00	0.68	-9.00
F_A F A	1 Episode	2 Day 2, 2006 Day 2, 2006		∠⊥ 22	CO	(PPM) (DDM)	0.49	-9.00	0.49	-9.00
F A	1 Episode	e Day 2, 2006		23	CO	(PPM)	0.30	-9.00	0.30	-9.00
F_A	1 Episode	e Day 3, 2006		0	CO	(PPM)	0.29	-9.00	0.29	-9.00
F_A	1 Episode	e Day 3, 2006		1	CO	(PPM)	0.26	-9.00	0.26	-9.00
F_A	l Episode	e Day 3, 2006		2	CO	(PPM)	0.26	-9.00	0.26	-9.00
F_A F A	1 Episode 1 Episode	e Day 3, 2006 P Day 3, 2006		3 4	CO	(PPM) (PPM)	0.27	-9.00	0.27	-9.00
F A	1 Episode	e Day 3, 2006		5	CO	(PPM)	0.26	-9.00	0.26	-9.00
F_A	1 Episode	e Day 3, 2006		6	CO	(PPM)	0.44	-9.00	0.44	-9.00
F_A	l Episode	e Day 3, 2006		7	CO	(PPM)	1.15	-9.00	1.15	-9.00
F_A	L Episode	e Day 3, 2006		8	CO	(PPM)	0.64	-9.00	0.64	-9.00
F A	l Episode	Day 3, 2000		10	CO	(PPM)	0.30	-9.00	0.44	-9.00
F_A	1 Episode	e Day 3, 2006		11	CO	(PPM)	0.38	-9.00	0.38	-9.00
F_A	1 Episode	e Day 3, 2006		12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	l Episode	e Day 3, 2006		13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A F A	I Episode 1 Episode	e Day 3, 2006 Day 3, 2006		14 15	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
F A	l Episode	e Day 3, 2000		16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1 Episode	e Day 3, 2006		17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1 Episode	e Day 3, 2006		18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	l Episode	e Day 3, 2006		19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A F A	1 Episode 1 Episode	e Day 3, 2006 P Day 3, 2006		20 21	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
F_A	1 Episode	e Day 3, 2006		22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A	l Episode	e Day 3, 2006		23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	l Episode	e Day 1, 2006		0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	L Episode	e Day 1, 2006		1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
н_0 Н П	1 Episode 1 Episode	Day 1, 2006		∠ 3	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episode	e Day 1, 2006		4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episode	e Day 1, 2006		5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	l Episode	e Day 1, 2006		6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U u II	L Episode L Episode	e Day 1, 2006 Day 1, 2006		/ 8	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
H U	1 Episode	e Day 1, 2000		9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episode	e Day 1, 2006		10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episode	e Day 1, 2006		11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	L Episode	e Day 1, 2006		12 12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
н п	1 Episode	Day 1, 2000		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episode	e Day 1, 2006		15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episode	e Day 1, 2006		16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	l Episode	e Day 1, 2006		17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U H II	I Episode 1 Episode	e Day I, 2006 Pav 1 2006		18 19	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
H U	1 Episode	e Day 1, 2000		20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	l Episode	e Day 1, 2006		21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	l Episode	e Day 1, 2006		22	CO	(PPM)	0.60	-9.00	0.60	-9.00
H_U H_T	L Episode 1 Episode	e Day I, 2006		23	CO	(PPM) (DDM)	0.40	-9.00	0.40	-9.00
H U	1 Episode	e Day 2, 2006		1	CO	(PPM)	0.31	-9.00	0.31	-9.00
H_U	1 Episode	e Day 2, 2006		2	CO	(PPM)	0.28	-9.00	0.28	-9.00
H_U	l Episode	e Day 2, 2006		3	CO	(PPM)	0.27	-9.00	0.27	-9.00
H_U	L Episode	e Day 2, 2006		4 5	CO	(PPM)	0.29	-9.00	0.29	-9.00
н_0 н п	1 Episode 1 Episode	P Day 2, 2006		5	CO	(PPM) (PPM)	0.31	-9.00	0.31	-9.00
H_U	1 Episode	e Day 2, 2006		7	CO	(PPM)	0.80	-9.00	0.80	-9.00
H_U	1 Episode	e Day 2, 2006		8	CO	(PPM)	0.56	-9.00	0.56	-9.00
H_U	1 Episode	e Day 2, 2006		9	CO	(PPM)	0.33	-9.00	0.33	-9.00
H_U u u	L Episode	e Day 2, 2006		⊥U 11	CO	(PPM)	0.28	-9.00	0.28	-9.00
и И П	i Episode	e Day 2, 2006		12	CO	(PPM)	0.32	-9.00	0.32	-9.00
H_U	1 Episode	e Day 2, 2006		13	CO	(PPM)	0.58	-9.00	0.58	-9.00
H_U	l Episode	e Day 2, 2006		14	CO	(PPM)	1.01	-9.00	1.01	-9.00
H_U	L Episode	e Day 2, 2006		15 16	CO	(PPM)	1.87	-9.00	1.87	-9.00
л_U н п	i Epicode	- Day 2, 2000 Day 2, 2006		17	C0 C0	(PPM)	4.∠⊥ 4.47	-9.00 _9.00	4.21 4.47	-9.00
H U	1 Episode	e Day 2, 2006		18	CO	(PPM)	1.78	-9.00	1.78	-9.00
H_U	1 Episode	e Day 2, 2006		19	CO	(PPM)	0.78	-9.00	0.78	-9.00
H_U	l Episode	e Day 2, 2006		20	CO	(PPM)	0.43	-9.00	0.43	-9.00
H_U	⊥ Episode	e Day 2, 2006		21	CO	(PPM)	0.41	-9.00	0.41	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

High: 2006 mob=844.7tpd;1.5;80;I/M 240 w/newest 4myr exempt;	
	06 1988
DERIOD HR POLLUTANT PREDICTED PREDICTED PREDIC UIMM (CAL3OHC) (IIMM)	TED OBSERVED
	<u> </u>
H_U 1 Episode Day 2, 2006 22 CO (PPM) 0.41 -9.00 0	.41 -9.00
H_U 1 Episode Day 2, 2006 23 CO (PPM) 0.37 -9.00 0	.37 -9.00
H_U 1 Episode Day 3, 2006 0 CO (PPM) 0.34 -9.00 0	.34 -9.00
H_U 1 Episode Day 3, 2006 1 CO (PPM) 0.33 -9.00 0	.33 -9.00
H_U 1 Episode Day 3, 2006 2 CO (PPM) 0.27 -9.00 0	.27 -9.00
$H_{\rm U}$ 1 Episode Day 3, 2006 3 CO (PPM) 0.20 -9.00 0	26 -9.00
H II 1 Episode Day 3, 2000 4 CO (FFM) 0.20 -9.00 0	28 -9.00
H U 1 Episode Day 3, 2006 6 CO (PPM) 0.41 -9.00 0	.41 -9.00
H_U 1 Episode Day 3, 2006 7 CO (PPM) 1.12 -9.00 1	.12 -9.00
H_U 1 Episode Day 3, 2006 8 CO (PPM) 0.58 -9.00 0	.58 -9.00
H_U 1 Episode Day 3, 2006 9 CO (PPM) 0.58 -9.00 0	.58 -9.00
H_U 1 Episode Day 3, 2006 10 CO (PPM) 0.62 -9.00 0	.62 -9.00
H_U 1 Episode Day 3, 2006 11 CO (PPM) 0.62 -9.00 0	.62 -9.00
H II 1 Episode Day 3, 2006 12 CO (PPM) -9.00 -9.00 -9	-9.00
H II 1 Episode Day 3, 2006 14 CO (PPM) -9.00 -9.00 -9	.00 -9.00
H U 1 Episode Day 3, 2006 15 CO (PPM) -9.00 -9.00 -9	.00 -9.00
H_U 1 Episode Day 3, 2006 16 CO (PPM) -9.00 -9.00 -9	.00 -9.00
H_U 1 Episode Day 3, 2006 17 CO (PPM) -9.00 -9.00 -9	.00 -9.00
H_U 1 Episode Day 3, 2006 18 CO (PPM) -9.00 -9.00 -9	.00 -9.00
H_U 1 Episode Day 3, 2006 19 CO (PPM) -9.00 -9.00 -9	.00 -9.00
H_U 1 Episode Day 3, 2006 20 CO (PPM) -9.00 -9.00 -9.00 -9.00	.00 -9.00
H II 1 Episode Day 3, 2000 21 CO (PFM) -9.00 -9.00 -9	00 -9.00
H U 1 Episode Day 3, 2006 23 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 0 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 1 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 2 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 3 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day I, 2006 4 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 5 CO (PPM) -9.00	.00 -9.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 -9.00
U A 1 Episode Dav 1, 2006 8 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 9 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 10 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 11 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 12 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 13 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 14 CO (PPM) -9.00 -	-9.00
U A 1 Episode Day 1, 2006 16 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U A 1 Episode Day 1, 2006 17 CO (PEM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 18 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 19 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 20 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 21 CO (PPM) -9.00 -9.00 -9	.00 -9.00
U_A 1 Episode Day 1, 2006 22 CO (PPM) 0.29 -9.00 0	.29 -9.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 -9.00
U A 1 Episode Day 2, 2006 1 CO (PPM) 0.23 -9.00 0	.23 -9.00
U_A 1 Episode Day 2, 2006 2 CO (PPM) 0.22 -9.00 0	.22 -9.00
U_A 1 Episode Day 2, 2006 3 CO (PPM) 0.22 -9.00 0	.22 -9.00
U_A 1 Episode Day 2, 2006 4 CO (PPM) 0.23 -9.00 0	.23 -9.00
U_A 1 Episode Day 2, 2006 5 CO (PPM) 0.24 -9.00 0	.24 -9.00
U_A 1 Episode Day 2, 2006 6 CO (PPM) 0.30 -9.00 0	.30 -9.00
UA 1 Episode Day 2, 2006 7 CO (PPM) 0.45 -9.00 0	32 -9.00
U A 1 Episode Day 2, 2006 9 CO (FPM) 0.22 -9.00 0	25 -9.00
U_A 1 Episode Day 2, 2006 10 CO (PPM) 0.24 -9.00 0	.24 -9.00
U_A 1 Episode Day 2, 2006 11 CO (PPM) 0.26 -9.00 0	.26 -9.00
U_A 1 Episode Day 2, 2006 12 CO (PPM) 0.40 -9.00 0	.40 -9.00
U_A 1 Episode Day 2, 2006 13 CO (PPM) 0.47 -9.00 0	.47 -9.00
U_A I Episode Day 2, 2006 I4 CO (PPM) 0.68 -9.00 0	.08 -9.00
U_A i Episode Day 2, 2000 is CO (PPM) 1.10 -9.00 I II A 1 Episode Day 2 2006 16 CO (DDM) 2.83 -0.00 2	.10 -9.00 83 _9.00
U A 1 Episode Day 2, 2006 17 CO (PPM) 3,29 -9,00 2	.29 -9.00
U_A 1 Episode Day 2, 2006 18 CO (PPM) 1.33 -9.00 1	.33 -9.00
U_A 1 Episode Day 2, 2006 19 CO (PPM) 0.46 -9.00 0	.46 -9.00
U_A 1 Episode Day 2, 2006 20 CO (PPM) 0.32 -9.00 0	.32 -9.00
U_A 1 Episode Day 2, 2006 21 CO (PPM) 0.32 -9.00 0	.32 -9.00
U_A I Episode Day 2, 2006 22 CO (PPM) 0.29 -9.00 0	.29 -9.00
U A 1 Episode Day 2, 2006 23 CO (PPM) 0.20 -9.00 0 U A 1 Episode Day 3, 2006 0 CO (PPM) 0.27 -9.00 0	.20 -9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High:	2006 mob=844.7t	pd;1.5;	80;I/M	240 w/newest	4myr exempt	;	
	האייד	UD	DOT	ד דדידי א אדידי	2006 ספרט בספס	2006 ספרטד מידפים	2006 DEFICIED	1988
PERIOD) DATE	пк	POL	LUIANI	UAM)	(CAL3QHC)	(UAM+CAL3)	OBSERVED
U_A 1	Episode Day 3, 20	06 1	CO	(PPM)	0.26	-9.00	0.26	-9.00
	Episode Day 3, 20	06 Z	CO	(PPM) (DDM)	0.23	-9.00	0.23	-9.00
U A 1	Episode Day 3, 20	06 4	CO	(PPM)	0.22	-9.00	0.22	-9.00
U_A 1	Episode Day 3, 20	06 5	CO	(PPM)	0.25	-9.00	0.25	-9.00
U_A 1	. Episode Day 3, 20	06 6	CO	(PPM)	0.34	-9.00	0.34	-9.00
U_A 1	Episode Day 3, 20	06 7	CO	(PPM)	1.01	-9.00	1.01	-9.00
U_A 1	Episode Day 3, 20	06 8	CO	(PPM)	0.62	-9.00	0.62	-9.00
	Episode Day 3, 20	06 9 06 10	CO	(PPM) (DDM)	0.64	-9.00	0.64	-9.00
U A 1	Episode Day 3, 20	06 11	CO	(PPM)	0.30	-9.00	0.45	-9.00
U_A 1	Episode Day 3, 20	06 12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1	Episode Day 3, 20	06 13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1	Episode Day 3, 20	06 14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A I	Episode Day 3, 20	06 15 06 16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	Episode Day 3, 20	06 10	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U A 1	Episode Day 3, 20	06 18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1	Episode Day 3, 20	06 19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1	Episode Day 3, 20	06 20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1	Episode Day 3, 20	06 21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A I	Episode Day 3, 20	06 22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 D T 1	Episode Day 3, 20 Episode Day 1 20	06 23 06 0	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
PI 1	Episode Day 1, 20	06 1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	Episode Day 1, 20	06 2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	Episode Day 1, 20	06 3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	. Episode Day 1, 20	06 4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_1 1	Episode Day 1, 20	06 5 06 6	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
PI 1	Episode Day 1, 20	06 0 06 7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	Episode Day 1, 20	06 8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	Episode Day 1, 20	06 9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	. Episode Day 1, 20		CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_1 1	Episode Day 1, 20	06 II 06 12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_1 1	Episode Day 1, 20	06 13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	Episode Day 1, 20	06 14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	Episode Day 1, 20	06 15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	. Episode Day 1, 20		CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_1 1	Episode Day 1, 20	06 1/ 06 18	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
PI 1	Episode Day 1, 20	06 19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	Episode Day 1, 20	06 20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	Episode Day 1, 20	06 21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1	. Episode Day 1, 20	06 22	CO	(PPM)	0.71	-9.00	0.71	-9.00
P_1 1	Episode Day 1, 20	06 23	CO	(PPM) (DDM)	0.63	-9.00	0.63	-9.00
PI 1	Episode Day 2, 20 Episode Day 2, 20	06 0	CO	(PPM)	0.45	-9.00	0.45	-9.00
P_I 1	Episode Day 2, 20	06 2	CO	(PPM)	0.30	-9.00	0.30	-9.00
P_I 1	Episode Day 2, 20	06 3	CO	(PPM)	0.28	-9.00	0.28	-9.00
P_I 1	Episode Day 2, 20	06 4	CO	(PPM)	0.31	-9.00	0.31	-9.00
P_1 1 D T 1	Episode Day 2, 20 Episode Day 2, 20	06 5 06 6	CO	(PPM) (DDM)	0.30	-9.00	0.30	-9.00
PI 1	Episode Day 2, 20	06 7	CO	(PPM)	1.35	-9.00	1.35	-9.00
P_I 1	Episode Day 2, 20	06 8	CO	(PPM)	0.84	-9.00	0.84	-9.00
P_I 1	Episode Day 2, 20	06 9	CO	(PPM)	0.43	-9.00	0.43	-9.00
P_I 1	Episode Day 2, 20		CO	(PPM)	0.34	-9.00	0.34	-9.00
Р_1 1 рт 1	Episode Day 2, 20 Episode Day 2, 20	06 11 06 12	CO	(PPM) (DDM)	0.38	-9.00	0.38	-9.00
PI 1	Episode Day 2, 20	06 13	CO	(PPM)	0.56	-9.00	0.56	-9.00
P_I 1	. Episode Day 2, 20	06 14	CO	(PPM)	0.78	-9.00	0.78	-9.00
P_I 1	Episode Day 2, 20	06 15	CO	(PPM)	1.30	-9.00	1.30	-9.00
	Episode Day 2, 20	Ub 16	CO	(PPM)	3.15	-9.00	3.15	-9.00
Р_1 1 рт 1	Episode Day 2, 20	00 1/ 06 18	C0 C0	(PPM)	5.05 6 15	-9.00 _9.00	5.05 6 15	-9.00
P_I 1	Episode Day 2, 20	06 19	CO	(PPM)	3.11	-9.00	3.11	-9.00
P_I 1	Episode Day 2, 20	06 20	CO	(PPM)	1.04	-9.00	1.04	-9.00
P_I 1	Episode Day 2, 20	06 21	CO	(PPM)	0.70	-9.00	0.70	-9.00
P_I 1	Episode Day 2, 20	06 22	CO	(PPM)	0.68	-9.00	0.68	-9.00
	Episode Day 2, 20	υο 23 06 0	C0 C0	(PDM)	0.49 0.41	-9.00 _a no	0.49	-9.00 _9.00
P_I 1	Episode Day 3, 20	06 1	CO	(PPM)	0.36	-9.00	0.36	-9.00
P_I 1	Episode Day 3, 20	06 2	CO	(PPM)	0.28	-9.00	0.28	-9.00
P_I 1	Episode Day 3, 20	06 3	CO	(PPM)	0.26	-9.00	0.26	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

High: 2006 mob=844.7tpd;1.5;80;I/M 240 w/newest 4myr exempt;											
SITE 2	AVG PERIOD	DATE	-		HR	POL	LUTANT	2006 PREDICTED (UAM)	2006 PREDICTED (CAL3QHC)	2006 PREDICTED (UAM+CAL3)	1988 OBSERVED
ΡI	1	Episode Dav	3, 2006		4	CO	(PPM)	0.27	-9.00	0.27	-9.00
р_ I	1	Episode Day	3, 2006		5	CO	(PPM)	0.31	-9.00	0.31	-9.00
рт	1	Episode Day	3 2006		6	CO	(PPM)	0.53	-9.00	0.53	-9.00
	1	Episode Day	2006		7	CO	(DDM)	1 34	-9.00	1 34	-9 00
	1	Episode Day :	2000		, 0	C0	(IIM)	0 77	_9.00	0 77	-9.00
г 1 р т	1	Episode Day .	2000		0	C0	(PPM)	0.75	-9.00	0.77	-9.00
	1	Episode Day .	2000		10	do	(PPM)	0.75	-9.00	0.75	-9.00
P_1 D_T	1	Episode Day .	5, <u>2006</u>		11	00	(PPM)	0.04	-9.00	0.64	-9.00
P_I	1	Episode Day .	3, 2006		11	00	(PPM)	0.50	-9.00	0.50	-9.00
P_I	1	Episode Day .	3, 2006		12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_1	1	Episode Day .	3, 2006		13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day :	3, 2006		14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day 3	3, 2006		15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day 3	3, 2006		16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day 3	3, 2006		17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day 3	3, 2006		18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day 3	3, 2006		19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day 3	3, 2006		20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day 3	3, 2006		21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1	Episode Day 3	3, 2006		22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P I	1	Episode Day 3	3, 2006		23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
_							. ,				
CMP	8	Episode Day	1, 2006		0	CO	(PPM)	0.00	NA	0.00	-9.00
CMP	8	Episode Day	1, 2006		Ţ	CO	(PPM)	0.00	NA	0.00	-9.00
CMP	8	Episode Day	1, 2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
CMP	8	Episode Day 1	1, 2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
CMP	8	Episode Day 1	1, 2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
CMP	8	Episode Day 1	1, 2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
CMP	8	Episode Day 1	1, 2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
CMP	8	Episode Day 1	1, 2006		7	CO	(PPM)	-9.00	NA	-9.00	2.04
CMP	8	Episode Day 1	1, 2006		8	CO	(PPM)	-9.00	NA	-9.00	1.90
CMP	8	Episode Day 1	1, 2006		9	CO	(PPM)	-9.00	NA	-9.00	1.84
CMP	8	Episode Day 1	1, 2006		10	CO	(PPM)	-9.00	NA	-9.00	1.81
CMP	8	Episode Day 1	1, 2006		11	CO	(PPM)	-9.00	NA	-9.00	1.70
CMP	8	Episode Day 1	1, 2006		12	CO	(PPM)	-9.00	NA	-9.00	1.59
CMP	8	Episode Day 1	1, 2006		13	CO	(PPM)	-9.00	NA	-9.00	1.56
CMP	8	Episode Dav 1	1, 2006		14	CO	(PPM)	-9.00	NA	-9.00	1.57
CMP	8	Episode Day	1, 2006		15	CO	(PPM)	-9.00	NA	-9.00	1.74
CMP	8	Episode Day	1, 2006		16	CO	(PPM)	-9.00	NA	-9.00	2.36
CMP	8	Episode Dav	1, 2006		17	CO	(PPM)	-9.00	NA	-9.00	3.15
CMP	8	Episode Day	1, 2006		18	CO	(PPM)	-9.00	NA	-9.00	3.84
CMP	8	Episode Day	1, 2006		19	CO	(PPM)	-9.00	NA	-9.00	4.06
CMP	8	Episode Day	2006		20	CO	(PPM)	-9.00	NA	-9.00	3 96
CMP	8	Episode Day	2006		21	CO	(PPM)	-9.00	NA	-9.00	3 91
CMP	8	Episode Day	2006		22	CO	(PPM)	-9.00	NA	-9.00	3 84
CMD	8	Episode Day	1 2006		22	CO	(DDM)	-9.00	NΔ	-9.00	3 69
CMD	8	Episode Day (2 2006		0	CO	(DDM)	-9.00	NΔ	-9.00	3 08
CMD	8	Episode Day /	2 2006		1	CO	(DDM)	-9.00	NΔ	-9.00	2 23
CMD	8	Episode Day /	2, 2000		2	CO	(DDM)	-9.00	NA	-9.00	1 38
CMD	Q	Episode Day	2 2000		2	C0	(DDM)	1 42	NI V	1 42	T.20
CMD	8	Episode Day /	2 2006		4	CO	(DDM)	1 22	NΔ	1 22	0.75
CMD	р р	Episode Day /	2 2006		5	CO	(DDM)	1 26	NΔ	1 26	0 65
CMD	Q Q	Episode Day	2 2006		6	CO	(DDM)	1 21	NΔ	1 21	0.05
CMD	Q Q	Episode Day	2 2006		7	CO	(DDM)	1 24	NΔ	1 24	0 94
CMD	Q	Enigode Day	2, 2000		, Q	C0	(DDM)	1 20	MV NV	1 20	1 42
CMD	0	Epicodo Davi (2, 2000 2, 2000		0	C0	(PPM)	1.40 1.01	AVIA ATA	1 01	1 60
CMP	0	Episode Day /	2, 2000 2, 2000		9 10	00		1 00	INA	1 22	1.09 2 AF
CMP	0	Epicode Day	2, 2000 2, 2000		11	00		1.44	INA	1.44	2.00
CMP	ð o	Episode Day 2	2, <u>2006</u> 2, 2006		1 1 1	00		1 24	NA	1.2/	∠.0⊥ 2 11
CMP	8	Episode Day 1	4, <u>2006</u>		⊥∠ 1 2	00	(PPM)	1.34	NA	1.34	3.11
CMP	8	Episode Day	∠, ∠UU6		14	00	(PPM)	1.42	NA	1.42	3.01
CMP	8	Episode Day	∠, ∠UU6		14 15	00	(PPM)	1.54	NA	1.54	4.08
CMP	8	Episode Day	∠, ∠UU6		15 16	00	(PPM)	1.54	NA	1.54	4.44
CMP	8	Episode Day	∠, ∠UU6		10	CO	(PPM)	2.37	NA	2.37	9.39
CMP	8	Episode Day 2	2, 2006		17	CO	(PPM)	3.85	NA	3.85	15.34
CMP	8	Episode Day 2	2, 2006		18	CO	(PPM)	5.48	NA	5.48	18.73
CMP	8	Episode Day 2	2, 2006		19	CO	(PPM)	6.71	NA	6.71	18.65
CMP	8	Episode Day 2	2, 2006		20	CO	(PPM)	7.12	NA	7.12	18.41
CMP	8	Episode Day 2	2, 2006		21	CO	(PPM)	7.37	NA	7.37	18.16
CMP	8	Episode Day 2	2, 2006		22	CO	(PPM)	7.59	NA	7.59	18.08
CMP	8	Episode Day 2	2, 2006		23	CO	(PPM)	7.64	NA	7.64	17.70
CMP	8	Episode Day 3	3, 2006		0	CO	(PPM)	6.90	NA	6.90	12.64
CMP	8	Episode Day 3	3, 2006		1	CO	(PPM)	5.48	NA	5.48	6.65
CMP	8	Episode Dav	3, 2006		2	CO	(PPM)	3.85	NA	3.85	3.04
CMP	8	Episode Day	3, 2006		3	CO	(PPM)	2.55	NA	2.55	2.65
Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		H	High: 2006	mob=844.7	tpd;	1.5;	80;I/M	240 w/newest	4myr exempt;		
								2006	2006	2006	1988
SITE	AVG	DATE		F	IR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
	PERIOD							(MAU)	(CAL3QHC)	(UAM+CAL3)	
CMD	0	Enicodo Dorr	2 2006		1	00	(MUTU)	2 05	NT 7	2 05	2 5 2
CMP	0	Episode Day	2 2006		4 5	CO	(PPM)	2.05	NA NA	2.05	2.55
CMP	0	Episode Day	2 2006		5	CO	(PPM)	1.70	NA NA	1.70	2.54
CMP	0	Episode Day	2 2000		7	co	(PPM)	1 72	NA NA	1 72	2.70
CMP	0	Episode Day	3, 2006		/	00	(PPM)	1.75	NA NA	1.75	5.50
CMP	8	Episode Day	3, 2006		8	00	(PPM)	1.75	NA	1.75	4.14
CMP	8	Episode Day	3, 2006	-	9	00	(PPM)	1.85	NA	1.85	4./1
CMP	8	Episode Day	3, 2006	1	.0	00	(PPM)	2.00	NA	2.00	5.21
CMP	8	Episode Day	3, 2006	1	.1	00	(PPM)	2.11	NA	2.11	5.50
CMP	8	Episode Day	3, 2006	1	.2	CO	(PPM)	2.32	NA	2.32	5.74
CMP	8	Episode Day	3, 2006	L	.3	CO	(PPM)	2.52	NA	2.52	5.69
CMP	8	Episode Day	3, 2006	1	.4	CO	(PPM)	-9.00	NA	-9.00	5.35
CMP	8	Episode Day	3, 2006	1	.5	CO	(PPM)	-9.00	NA	-9.00	4.64
CMP	8	Episode Day	3, 2006	1	.6	CO	(PPM)	-9.00	NA	-9.00	4.56
CMP	8	Episode Day	3, 2006	1	.7	CO	(PPM)	-9.00	NA	-9.00	5.28
CMP	8	Episode Day	3, 2006	1	.8	CO	(PPM)	-9.00	NA	-9.00	5.30
CMP	8	Episode Day	3, 2006	1	.9	CO	(PPM)	-9.00	NA	-9.00	5.34
CMP	8	Episode Day	3, 2006	2	20	CO	(PPM)	-9.00	NA	-9.00	5.69
CMP	8	Episode Day	3, 2006	2	21	CO	(PPM)	-9.00	NA	-9.00	5.94
CMP	8	Episode Day	3, 2006	2	22	CO	(PPM)	-9.00	NA	-9.00	6.00
CMP	8	Episode Day	3, 2006	2	23	CO	(PPM)	-9.00	NA	-9.00	6.11
WBY	8	Episode Day	1, 2006		0	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day	1, 2006		1	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day	1, 2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day	1, 2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day	1, 2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day	1, 2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day	1, 2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day	1, 2006		7	CO	(PPM)	-9.00	NA	-9.00	2.44
WBY	8	Episode Day	1, 2006		8	CO	(PPM)	-9.00	NA	-9.00	2.14
WBY	8	Episode Day	1, 2006		9	CO	(PPM)	-9.00	NA	-9.00	1.73
WBY	8	Episode Day	1, 2006	1	0	CO	(PPM)	-9.00	NA	-9.00	1.48
WBY	8	Episode Day	1, 2006	1	.1	CO	(PPM)	-9.00	NA	-9.00	1.23
WBY	8	Episode Day	1, 2006	1	.2	CO	(PPM)	-9.00	NA	-9.00	1.16
WBY	8	Episode Day	1, 2006	1	.3	CO	(PPM)	-9.00	NA	-9.00	1.14
WBY	8	Episode Day	1, 2006	1	.4	CO	(PPM)	-9.00	NA	-9.00	1.01
WBY	8	Episode Day	1, 2006	1	.5	CO	(PPM)	-9.00	NA	-9.00	0.85
WBY	8	Episode Day	1, 2006	1	.6	CO	(PPM)	-9.00	NA	-9.00	0.75
WBY	8	Episode Day	1, 2006	1	.7	CO	(PPM)	-9.00	NA	-9.00	1.14
WBY	8	Episode Day	1, 2006	1	.8	CO	(PPM)	-9.00	NA	-9.00	1.69
WBY	8	Episode Day	1, 2006	1	.9	CO	(PPM)	-9.00	NA	-9.00	1.94
WBY	8	Episode Day	1, 2006	2	20	CO	(PPM)	-9.00	NA	-9.00	2.41
WBY	8	Episode Day	1, 2006	2	21	CO	(PPM)	-9.00	NA	-9.00	2.61
WBY	8	Episode Day	1, 2006	2	22	CO	(PPM)	-9.00	NA	-9.00	2.76
WBY	8	Episode Day	1, 2006	2	23	CO	(PPM)	-9.00	NA	-9.00	2.95
WBY	8	Episode Day	2, 2006		0	CO	(PPM)	-9.00	NA	-9.00	3.39
WBY	8	Episode Day	2, 2006		1	CO	(PPM)	-9.00	NA	-9.00	3.28
WBY	8	Episode Day	2, 2006		2	CO	(PPM)	-9.00	NA	-9.00	2.88
WBY	8	Episode Day	2, 2006		3	CO	(PPM)	1.31	NA	1.31	2.70
WBY	8	Episode Day	2, 2006		4	CO	(PPM)	1.25	NA	1.25	2.30
WBY	8	Episode Day	2, 2006		5	CO	(PPM)	1.20	NA	1.20	2.21
WBY	8	Episode Day	2, 2006		6	CO	(PPM)	1.17	NA	1.17	2.24
WBY	8	Episode Day	2, 2006		7	CO	(PPM)	1.19	NA	1.19	2.71
WBY	8	Episode Dav	2, 2006		8	CO	(PPM)	1.13	NA	1.13	3.04
WBY	8	Episode Dav	2, 2006		9	CO	(PPM)	1.07	NA	1.07	3.22
WBY	8	Episode Dav	2, 2006	1	0	CO	(PPM)	1.04	NA	1.04	3.26
WBY	8	Episode Dav	2, 2006	1	.1	CO	(PPM)	1.01	NA	1.01	3.24
WBY	8	Episode Dav	2, 2006	1	.2	CO	(PPM)	0.99	NA	0.99	3.17
WBY	8	Episode Dav	2, 2006	1	.3	CO	(PPM)	0.96	NA	0.96	3.11
WBY	8	Episode Dav	2, 2006	1	.4	CO	(PPM)	0.92	NA	0.92	3.02
WBY	8	Episode Dav	2, 2006	1	.5	CO	(PPM)	0.83	NA	0.83	2.46
WBY	8	Episode Dav	2, 2006	1	6	CO	(PPM)	0.90	NA	0.90	1.92
WBY	8	Episode Dav	2, 2006	1	.7	CO	(PPM)	1.11	NA	1.11	2.50
WBY	8	Episode Dav	2, 2006	1	.8	CO	(PPM)	1.43	NA	1.43	3.86
WBY	8	Episode Dav	2, 2006	1	.9	CO	(PPM)	1.66	NA	1.66	4.86
WBY	8	Episode Dav	2, 2006	2	20	CO	(PPM)	2.03	NA	2.03	5.71
WBY	8	Episode Dav	2, 2006	2	21	CO	(PPM)	2.58	NA	2.58	6.39
WBY	8	Episode Dav	2, 2006	2	22	CO	(PPM)	3.14	NA	3.14	7.17
WBY	8	Episode Dav	2, 2006	5	23	CO	(PPM)	3.68	NA	3.68	8.09
WBY	8	Episode Dav	3, 2006	-	0	CO	(PPM)	4.05	NA	4.05	8.94
WBY	8	Episode Dav	3, 2006		1	CO	(PPM)	4.05	NA	4.05	8.66
WBY	8	Episode Dav	3, 2006		2	CO	(PPM)	3.76	NA	3.76	7.36
WBY	8	Episode Dav	3, 2006		3	CO	(PPM)	3.52	NA	3.52	6.40
WBY	8	Episode Dav	3, 2006		4	CO	(PPM)	3.14	NA	3.14	5.64
WBY	8	Episode Dav	3, 2006		5	CO	(PPM)	2.60	NA	2.60	5.06
WBY	8	Episode Day	3, 2006		6	CO	(PPM)	2.06	NA	2.06	4.50

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		Hig	h: 2006	mob=844	.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt		1000
SITE AVG	DATE				HR	POL	τιτγανιτ	2006 PREDICTED	2006 PREDICTED	2006 PREDICTED	1988 Observed
PERIO	DD				1110	101		(UAM)	(CAL3QHC)	(UAM+CAL3)	ODDIRVED
	<u> </u>	1 2 2	0000				(5514)	1 55		1 55	2 50
WBY	8 Episo 8 Episo	de Day 3, de Day 3	2006		/ 8	CO	(PPM) (DDM)	1.55 1.12	NA NA	1.55 1.12	3.79
WBY	8 Episo	de Dav 3,	2006		9	CO	(PPM)	0.94	NA	0.94	2.46
WBY	8 Episo	de Day 3,	2006		10	CO	(PPM)	0.92	NA	0.92	2.41
WBY	8 Episo	de Day 3,	2006		11	CO	(PPM)	0.93	NA	0.93	2.26
WBY	8 Episo	de Day 3,	2006		12	CO	(PPM)	0.98	NA	0.98	2.09
WBY	8 Episo	de Day 3,	2006		13	CO	(PPM)	1.02	NA	1.02	1.89
WBY	8 Episo	de Day 3,	2006		14	CO	(PPM)	-9.00	NA	-9.00	1.53
WBY	8 Episo	de Day 3,	2006		15	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1 13
WBY	8 Episo	de Day 3.	2000		17	CO	(PPM)	-9.00	NA	-9.00	0.88
WBY	8 Episo	de Day 3,	2006		18	CO	(PPM)	-9.00	NA	-9.00	0.70
WBY	8 Episo	de Day 3,	2006		19	CO	(PPM)	-9.00	NA	-9.00	1.01
WBY	8 Episo	de Day 3,	2006		20	CO	(PPM)	-9.00	NA	-9.00	1.73
WBY	8 Episo	de Day 3,	2006		21	CO	(PPM)	-9.00	NA	-9.00	2.44
WBY	8 Episo	de Day 3,	2006		22	CO	(PPM)	-9.00	NA	-9.00	3.08
CRG	8 Episo	de Day 3,	2006		23 0	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9 00
CRG	8 Episo	de Day 1,	2006		1	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Episo	de Day 1,	2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Episo	de Day 1,	2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Episo	de Day 1,	2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Episo	de Day 1,	2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Episo	de Day I, de Day 1	2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Episo	de Day 1,	2006		2 2	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.91
CRG	8 Episo	de Day 1,	2006		9	CO	(PPM)	-9.00	NA	-9.00	2.14
CRG	8 Episo	de Day 1,	2006		10	CO	(PPM)	-9.00	NA	-9.00	1.85
CRG	8 Episo	de Day 1,	2006		11	CO	(PPM)	-9.00	NA	-9.00	1.55
CRG	8 Episo	de Day 1,	2006		12	CO	(PPM)	-9.00	NA	-9.00	1.51
CRG	8 Episo	de Day 1,	2006		13	CO	(PPM)	-9.00	NA	-9.00	1.45
CRG	8 Episo	de Day I, de Day 1	2006		14	CO	(PPM)	-9.00	NA	-9.00	1.30
CRG	8 Episo	de Day 1, de Day 1	2006		15	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1.10
CRG	8 Episo	de Dav 1.	2006		17	CO	(PPM)	-9.00	NA	-9.00	1.86
CRG	8 Episo	de Day 1,	2006		18	CO	(PPM)	-9.00	NA	-9.00	2.77
CRG	8 Episo	de Day 1,	2006		19	CO	(PPM)	-9.00	NA	-9.00	4.16
CRG	8 Episo	de Day 1,	2006		20	CO	(PPM)	-9.00	NA	-9.00	4.51
CRG	8 Episo	de Day 1,	2006		21	CO	(PPM)	-9.00	NA	-9.00	4.94
CRG	8 Episo	de Day I, de Day 1	2006		22	CO	(PPM)	-9.00	NA	-9.00	5.37
CRG	8 Episo	de Day 1,	2000		23	CO	(PPM)	-9.00	NA	-9.00	5 28
CRG	8 Episo	de Day 2,	2006		ĩ	CO	(PPM)	-9.00	NA	-9.00	5.14
CRG	8 Episo	de Day 2,	2006		2	CO	(PPM)	-9.00	NA	-9.00	4.58
CRG	8 Episo	de Day 2,	2006		3	CO	(PPM)	1.73	NA	1.73	3.54
CRG	8 Episo	de Day 2,	2006		4	CO	(PPM)	1.57	NA	1.57	3.43
CRG	8 Episo	de Day 2,	2006		5	CO	(PPM)	1.45	NA	1.45	3.34
CRG	8 Episo	de Day 2,	2006		0 7	CO	(PPM) (DDM)	1.34 1.32	NA NA	1.34 1.32	3.03
CRG	8 Episo	de Day 2,	2006		8	CO	(PPM)	1.18	NA	1.18	5.33
CRG	8 Episo	de Day 2,	2006		9	CO	(PPM)	1.01	NA	1.01	5.21
CRG	8 Episo	de Day 2,	2006		10	CO	(PPM)	0.93	NA	0.93	5.01
CRG	8 Episo	de Day 2,	2006		11	CO	(PPM)	0.93	NA	0.93	4.85
CRG	8 Episo	de Day 2,	2006		12	CO	(PPM)	0.99	NA	0.99	4.71
CRG	8 Episo	de Day 2,	2006		14	00	(PPM)	1.06 1.12	NA	1.06 1.12	4.54
CRG	8 Episo	de Day 2,	2000		15	CO	(PPM)	1 13	NA	1 13	2 85
CRG	8 Episo	de Dav 2,	2006		16	CO	(PPM)	1.49	NA	1.49	2.34
CRG	8 Episo	de Day 2,	2006		17	CO	(PPM)	2.02	NA	2.02	3.03
CRG	8 Episo	de Day 2,	2006		18	CO	(PPM)	2.60	NA	2.60	4.50
CRG	8 Episo	de Day 2,	2006		19	CO	(PPM)	3.15	NA	3.15	6.39
CRG	8 Episo	de Day 2,	2006		20	CO	(PPM)	3.57	NA	3.57	7.80
CRG	o Episo 8 Frigo	de Day 2,	2006 2006		⊿⊥ 22	C0	(PPM)	3.85 4 00	NA NA	3.85	0.52 8 01
CRG	8 Enico	de Dav 2,	2000		22	C0 C0	(PDM)	4.02	NA ND	4.02	9 91
CRG	8 Episo	de Dav 3.	2006		0	CO	(PPM)	3.76	NA	3.76	10.38
CRG	8 Episo	de Day 3,	2006		1	CO	(PPM)	3.30	NA	3.30	9.73
CRG	8 Episo	de Day 3,	2006		2	CO	(PPM)	2.76	NA	2.76	8.69
CRG	8 Episo	de Day 3,	2006		3	CO	(PPM)	2.19	NA	2.19	7.14
CRG	8 Episo	de Day 3,	2006		4	CO	(PPM)	1.71	NA	1.71	5.78
CRG	o Episo 8 Frigo	de Day 3,	2006 2006		5	00	(PDM)	1.38 1.01	NA NA	1.38 1.01	5.26
CRG	8 Episo	de Dav 3,	2006		7	CO	(PPM)	1.30	NA	1.30	4.73
CRG	8 Episo	de Day 3.	2006		8	CO	(PPM)	1.27	NA	1.27	4.10
CRG	8 Episo	de Day 3,	2006		9	CO	(PPM)	1.24	NA	1.24	4.08

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7	/tpd;1.5	;80;I/M	240 w/newest	4myr exempt	;	1000
	האתב		т		ד ד דדיד אזידי	2006 DBEDICTED		2006 בייסד בייקים	1988
PERIO	DAIL		г	ir PO		UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	_					(/	(£)	(,	
CRG	8 Episode	e Day 3, 2006	1	.0 CO	(PPM)	1.22	NA	1.22	3.59
CRG	8 Episode	e Day 3, 2006	1	.1 CO	(PPM)	1.24	NA	1.24	3.54
CRG	8 Episode 9 Episode	3 Day 3, 2006	1	.2 CO	(PPM)	1.34	NA NA	1.34	3.3/
CRG	8 Episode 8 Episode	- Day 3, 2000 - Day 3, 2006	1	.3 CO 4 CO	(PPM) (DDM)	-9 00	NΑ NΔ	-9 00	2 60
CRG	8 Episode	a Day 3, 2000	1	.5 CO	(PPM)	-9.00	NA	-9.00	1.74
CRG	8 Episode	e Day 3, 2006	1	.6 CO	(PPM)	-9.00	NA	-9.00	1.30
CRG	8 Episode	e Day 3, 2006	1	.7 CO	(PPM)	-9.00	NA	-9.00	1.71
CRG	8 Episode	e Day 3, 2006	1	.8 CO	(PPM)	-9.00	NA	-9.00	2.86
CRG	8 Episode	e Day 3, 2006	1	.9 CO	(PPM)	-9.00	NA	-9.00	4.05
CRG	8 Episode	e Day 3, 2006	2	20 CO	(PPM)	-9.00	NA	-9.00	5.23
CRG	8 Episode	2 Day 3, 2006	2	21 CO	(PPM)	-9.00	NA	-9.00	6.16 7 0E
CRG	8 Episode 8 Episode	- Day 3, 2000 - Day 3, 2006	4	2 CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	8 00
NJH	8 Episode	- Day 1, 2006	2	0 CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode	e Day 1, 2006		1 CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode	e Day 1, 2006		2 CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode	e Day 1, 2006		3 CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode	e Day 1, 2006		4 CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode	≥ Day 1, 2006		5 CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode 9 Episode	3 Day 1, 2006		6 CO	(PPM)	0.00	NA NA	0.00	-9.00
NUH	8 Episode 8 Episode	- Day 1, 2000 - Day 1, 2006		8 CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	2.08
NJH	8 Episode	e Day 1, 2006		9 CO	(PPM)	-9.00	NA	-9.00	2.13
NJH	8 Episode	e Day 1, 2006	1	.0 CO	(PPM)	-9.00	NA	-9.00	2.21
NJH	8 Episode	e Day 1, 2006	1	.1 CO	(PPM)	-9.00	NA	-9.00	2.25
NJH	8 Episode	e Day 1, 2006	1	.2 CO	(PPM)	-9.00	NA	-9.00	2.10
NJH	8 Episode	e Day 1, 2006	1	.3 CO	(PPM)	-9.00	NA	-9.00	1.98
NJH	8 Episode	e Day 1, 2006	1	.4 CO	(PPM)	-9.00	NA	-9.00	1.74
NJH	o Episode 8 Episode	- Day 1, 2006 Day 1, 2006	1	.5 CO 6 CO	(PPM) (PPM)	-9.00	NA NA	-9.00	1.49
NJH	8 Episode	- Day 1, 2000	1	7 CO	(PPM)	-9.00	NA	-9.00	2.43
NJH	8 Episode	e Day 1, 2006	1	.8 CO	(PPM)	-9.00	NA	-9.00	2.66
NJH	8 Episode	e Day 1, 2006	1	.9 CO	(PPM)	-9.00	NA	-9.00	2.85
NJH	8 Episode	e Day 1, 2006	2	20 CO	(PPM)	-9.00	NA	-9.00	3.08
NJH	8 Episode	e Day 1, 2006	2	21 CO	(PPM)	-9.00	NA	-9.00	3.28
NJH	8 Episode	e Day 1, 2006	2	2 CO	(PPM)	-9.00	NA	-9.00	3.46
NUH	8 Episode 8 Episode	3 Day 1, 2006	4		(PPM) (DDM)	-9.00	NA NA	-9.00	3.58
NJH	8 Episode	2 Day 2, 2000		1 CO	(PPM)	-9.00	NA	-9.00	2.56
NJH	8 Episode	e Day 2, 2006		2 CO	(PPM)	-9.00	NA	-9.00	2.21
NJH	8 Episode	e Day 2, 2006		3 CO	(PPM)	0.89	NA	0.89	1.96
NJH	8 Episode	e Day 2, 2006		4 CO	(PPM)	0.84	NA	0.84	1.73
NJH	8 Episode	e Day 2, 2006		5 CO	(PPM)	0.79	NA	0.79	1.60
NJH	8 Episode	≥ Day 2, 2006		6 CO	(PPM)	0.74	NA	0.74	1.71
NUH	o Episode 8 Episode	2 Day 2, 2006		7 CO	(PPM) (DDM)	0.03	NA NA	0.85	2.20
NJH	8 Episode	2 Day 2, 2000		9 CO	(PPM)	0.89	NA	0.89	2.97
NJH	8 Episode	e Day 2, 2006	1	.0 CO	(PPM)	0.91	NA	0.91	3.17
NJH	8 Episode	e Day 2, 2006	1	.1 CO	(PPM)	0.93	NA	0.93	3.29
NJH	8 Episode	e Day 2, 2006	1	.2 CO	(PPM)	0.96	NA	0.96	3.42
NJH	8 Episode	≥ Day 2, 2006	1	.3 CO	(PPM)	0.99	NA	0.99	3.56
NU H N.TH	o Episode 8 Frigodo	= Day 2, 2006 Day 2, 2006	1	.4 CO 5 CO	(PPM) (PPM)	1.04	NA NA	1.04 1.00	3.55 2 20
NJH	8 Episode	= Day 2, 2000 = Day 2, 2006	1	.6 CO	(PPM)	1.27	NA	1.27	5.03
NJH	8 Episode	e Day 2, 2006	1	.7 CO	(PPM)	1.74	NA	1.74	7.49
NJH	8 Episode	e Day 2, 2006	1	.8 CO	(PPM)	2.34	NA	2.34	9.60
NJH	8 Episode	e Day 2, 2006	1	.9 CO	(PPM)	3.09	NA	3.09	10.43
NJH	8 Episode	e Day 2, 2006	2	20 CO	(PPM)	3.36	NA	3.36	10.95
NJH	8 Episode	≥ Day 2, 2006	2	1 CO	(PPM)	3.44	NA	3.44	11 07
NUH	o Episode	= Day 2, 2000 - Day 2, 2006	2		(PPM)	3.48 2 11	NA NA	3.48 2 /1	11 10
NJH	8 Enisode	- Day 2, 2000 - Day 3, 2006	2	0 CO	(PPM)	3.41 3 NA	NΔ	3.4⊥ 3.06	8,92
NJH	8 Episode	e Day 3, 2006		1 CO	(PPM)	2.55	NA	2.55	6.21
NJH	8 Episode	e Day 3, 2006		2 CO	(PPM)	1.93	NA	1.93	3.91
NJH	8 Episode	e Day 3, 2006		3 CO	(PPM)	1.14	NA	1.14	2.94
NJH	8 Episode	e Day 3, 2006		4 CO	(PPM)	0.83	NA	0.83	2.25
NJH	8 Episode	≥ Day 3, 2006		5 CO	(PPM)	0.72	NA	0.72	1.90
NJH	o Episode 8 Frigode	3 Day 3, 2006		o CO	(PPM)	U.64 0 76	NA NA	0.64	1.75
NUTH	8 Enicode	- Day 3, 2000 - Day 3 2006		, CO 8 CO	(PPM)	0.70	NA AVI	0.70	2.22
NJH	8 Episode	E Day 3, 2006		9 CO	(PPM)	0.89	NA	0.89	3.11
NJH	8 Episode	e Day 3, 2006	1	.0 CO	(PPM)	0.94	NA	0.94	3.40
NJH	8 Episode	e Day 3, 2006	1	.1 CO	(PPM)	1.00	NA	1.00	3.46
NJH	8 Episode	e Day 3, 2006	1	<u> </u>	(PPM)	1.09	NA	1.09	3.51

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpd	l;1.5;	80;I/M	240 w/newest	4myr exempt	;	
						2006	2006	2006	1988
SITE AVG	DATE		HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PERIC	D					(UAM)	(CAL3QHC)	(UAM+CAL3)	
NUTII	9 Enicod	10 Day 2 2006	10	00	(MUU)	1 20	NT 7	1 20	2 70
NUH	8 Episod 9 Episod	le Day 3, 2006	1.5	CO	(PPM)	_9_00	NA NA	_9_00	2.19
NUH	episod Prigod	le Day 3, 2000	14	CO	(PPM)	-9.00	NA NA	-9.00	2.40
NU H N.TU	8 Episod	le Day 3, 2000	15	CO	(PPM)	-9.00	NA NA	-9.00	2.57
NUH	8 Episod	le Day 3, 2000	10	CO	(PPM)	-9.00	NA NA	-9.00	2.39
NU H N.TU	8 Episod	le Day 3, 2000	18	CO	(PPM)	-9.00	NA NA	-9.00	2.03
NU H N.TU	8 Episod	le Day 3, 2000	10	CO	(PPM)	-9.00	NA NA	-9.00	2.04
NUTI	8 Episod	le Day 3, 2000	20	CO	(PPM)	-9.00	NA NA	-9.00	4 27
NUTH	8 Episod	le Day 3, 2000	20	CO	(DDM)	-9.00	NΔ	-9.00	4 24
NJH	8 Episod	le Day 3, 2000	22	CO	(PPM)	-9 00	NA	-9.00	4 61
NTH	8 Episod	le Day 3, 2000	23	CO	(PPM)	-9.00	NA	-9.00	4 81
	8 Episod	$P_{\rm Day} = 1, 2000$	2.5	CO	(DDM)	0.00	NΔ	0.00	-9 00
TTV	8 Episod	le Day 1, 2006	1	CO	(PPM)	0.00	NA	0.00	-9.00
TTV	8 Episod	P = Day 1 2006	2	CO	(PPM)	0 00	NA	0 00	-9.00
TTV	8 Episod	le Day 1, 2006	3	CO	(PPM)	0.00	NA	0.00	-9.00
TTV	8 Episod	$P_{\rm Day} = 1, 2000$	4	CO	(PPM)	0.00	NA	0.00	-9.00
	8 Episod	le Day 1, 2000	5	CO	(PPM)	0.00	NA	0.00	-9 00
TTV	8 Episod	$P_{\rm Day} = 1, 2000$	5	CO	(PPM)	0.00	NA	0.00	-9.00
TTV	8 Episod	$P_{\rm Day} = 1, 2000$	7	CO	(PPM)	-9.00	NA	-9 00	-9.00
TTV	8 Episod	$P_{\rm Day} = 1, 2006$	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	$P_{\rm Day} = 1, 2000$	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	e Day 1, 2006	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	$P_{\rm Day} = 1, 2006$	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	$P_{\rm Day} = 1, 2000$	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	le Day 1, 2006	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	P = Day 1 2006	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	e Day 1, 2006	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8 Episod	le Day 1, 2006	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	le Day 1, 2006	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	e Day 1, 2006	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8 Episod	le Day 1, 2006	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	le Day 1, 2006	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	e Day 1, 2006	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8 Episod	le Day 1, 2006	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8 Episod	le Day 1, 2006	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8 Episod	le Day 2, 2006	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8 Episod	le Day 2, 2006	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8 Episod	le Day 2, 2006	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8 Episod	le Day 2, 2006	3	CO	(PPM)	1.40	NA	1.40	-9.00
TIV	8 Episod	le Day 2, 2006	4	CO	(PPM)	1.29	NA	1.29	-9.00
TIV	8 Episod	le Day 2, 2006	5	CO	(PPM)	1.21	NA	1.21	-9.00
TIV	8 Episod	le Day 2, 2006	6	CO	(PPM)	1.14	NA	1.14	-9.00
TIV	8 Episod	le Day 2, 2006	7	CO	(PPM)	1.25	NA	1.25	-9.00
TIV	8 Episod	le Day 2, 2006	8	CO	(PPM)	1.17	NA	1.17	-9.00
TIV	8 Episod	le Day 2, 2006	9	CO	(PPM)	1.08	NA	1.08	-9.00
TIV	8 Episod	le Day 2, 2006	10	CO	(PPM)	1.08	NA	1.08	-9.00
TIV	8 Episod	le Day 2, 2006	11	CO	(PPM)	1.14	NA	1.14	-9.00
TIV	8 Episod	le Day 2, 2006	12	CO	(PPM)	1.24	NA	1.24	-9.00
TIV	8 Episod	le Day 2, 2006	13	CO	(PPM)	1.35	NA	1.35	-9.00
TIV	8 Episod	le Day 2, 2006	14	CO	(PPM)	1.46	NA	1.46	-9.00
TIV	8 Episod	le Day 2, 2006	15	CO	(PPM)	1.48	NA	1.48	-9.00
TIV	8 Episod	le Day 2, 2006	16	CO	(PPM)	2.34	NA	2.34	-9.00
TIV	8 Episod	le Day 2, 2006	17	CO	(PPM)	3.88	NA	3.88	-9.00
TIV	8 Episod	le Day 2, 2006	18	CO	(PPM)	5.49	NA	5.49	-9.00
TIV	8 Episod	te Day 2, 2006	19	CO	(PPM)	6.39	NA	6.39	-9.00
TIV	8 Episod	le Day 2, 2006	20	CO	(PPM)	6.70	NA	6.70	-9.00
TIV	8 Episod	te Day 2, 2006	21	CO	(PPM)	6.88	NA	6.88	-9.00
TIV	8 Episod	le Day 2, 2006	22	CO	(PPM)	7.02	NA	7.02	-9.00
TIV	8 Episod	te Day 2, 2006	23	CO	(PPM)	7.01	NA	7.01	-9.00
TIV	8 Episod	le Day 3, 2006	0	CO	(PPM)	6.23	NA	6.23	-9.00
TIV	8 Episod	le Day 3, 2006	1	CO	(PPM)	4.74	NA	4.74	-9.00
TIV	8 Episod	te Day 3, 2006	2	CO	(PPM)	3.15	NA	3.15	-9.00
TIV	8 Episod	ae Day 3, 2006	3	CO	(PPM)	2.19	NA	2.19	-9.00
VIT	& Episod	ae Day 3, 2006	4	CO	(PPM)	1.77	NA	1.77	-9.00
TIV	8 Episod	te Day 3, 2006	5	CO	(PPM)	1.53	NA	1.53	-9.00
TIV	8 Episod	ae Day 3, 2006	6	CO	(PPM)	1.45	NA	1.45	-9.00
TIV	8 Episod	ae Day 3, 2006	7	CO	(PPM)	1.71	NA	1.71	-9.00
TIV	8 Episod	ae Day 3, 2006	8	CO	(PPM)	1.77	NA	1.77	-9.00
VIT	8 Episod	ae Day 3, 2006	9	CO	(PPM)	1.87	NA	1.87	-9.00
VIT	& Episor	ae Day 3, 2006	10	CO	(PPM)	1.93	NA	1.93	-9.00
VIT	8 Episod	ae Day 3, 2006		CO	(PPM)	2.00	NA	2.00	-9.00
VIT	8 Episod	ae Day 3, 2006	12	CO	(PPM)	2.20	NA	2.20	-9.00
TTV	o Episod	ae Day 3, 2006	13	CO	(PPM)	2.38	NA	2.38	-9.00
	o Episod	le Day 3, 2006	14	00	(PPM)	-9.00	NA NA	-9.00	-9.00
T T A	o Phieoc	ie Day 3, 2000	13	CU	([[[[[[[[[[[[[[[[[[[-9.00	INA	-9.00	-2.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2006 mob=844	.7tpd;	1.5;	80;I/M	240 w/newest	4myr exempt;		
CTTE	AVC	האתיב			UD	DOT	ד דדידי א אדידי		2006 DBEDICTED	2006	1988
SILE	PERIOD	DAIE			HR	POL.	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	1 21(2 0 2							(0111)	(oning file)	(01111 01120)	
TIV	8	Episode D	ay 3, 20	06	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode D	ay 3, 20	06	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode D	ay 3, 20	06	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode D	ay 3, 20)6	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode D	ay 3, 20)6	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8	Episode D	ay 3, 20	16	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
	8	Episode D	ay 3, 20		22	00	(PPM)	-9.00	NA	-9.00	-9.00
	0 8	Episode D	ay 3, 20	16	23	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
TCMP	8	Episode D	ay 1, 20 av 1, 20	16	1	CO	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
TCMP	8	Episode D	ay 1, 20	16	2	CO	(PPM)	0.00	NA	0.00	-9 00
TCMP	8	Episode D	$a_{y} = 1, 20$	16	3	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode D	av 1, 20	06	4	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	5	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	б	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20)6	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20	16	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	8	Episode D	ay 1, 20	16	14	00	(PPM)	-9.00	NA	-9.00	-9.00
	0	Episode D	ay 1, 20	16	16	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
TCMD	8	Episode D	ay 1, 20	16	17	CO	(DDM)	-9.00	NA NA	-9.00	-9.00
TCMP	8	Episode D	ay 1, 20	16	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20)6	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	av 1, 20	06	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 1, 20	06	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 2, 20	06	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 2, 20	06	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 2, 20	06	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 2, 20	06	3	CO	(PPM)	1.43	NA	1.43	-9.00
ICMP	8	Episode D	ay 2, 20	16	4	CO	(PPM)	1.33	NA	1.33	-9.00
TCMP	8	Episode D	ay 2, 20	16	5	00	(PPM)	1.20	NA	1.20	-9.00
TCMP	0 8	Episode D	ay 2, 20	16	7	CO	(PPM) (DDM)	1 34	NA NA	1 34	-9.00
TCMD	8	Episode D	ay 2, 20	16	8	CO	(DDM)	1 28	NA	1 28	-9.00
TCMP	8	Episode D	ay 2, 20	16	9	CO	(PPM)	1.20	NA	1.20	-9.00
ICMP	8	Episode D	ay 2, 20	06	10	CO	(PPM)	1.22	NA	1.22	-9.00
ICMP	8	Episode D	ay 2, 20	06	11	CO	(PPM)	1.27	NA	1.27	-9.00
ICMP	8	Episode D	ay 2, 20	06	12	CO	(PPM)	1.34	NA	1.34	-9.00
ICMP	8	Episode D	ay 2, 20	06	13	CO	(PPM)	1.42	NA	1.42	-9.00
ICMP	8	Episode D	ay 2, 20	06	14	CO	(PPM)	1.54	NA	1.74	-9.00
ICMP	8	Episode D	ay 2, 20	06	15	CO	(PPM)	1.54	NA	1.92	-9.00
ICMP	8	Episode D	ay 2, 20	06	16	CO	(PPM)	2.37	NA	3.09	-9.00
ICMP	8	Episode D	ay 2, 20)6	17	CO	(PPM)	3.85	NA	4.90	-9.00
TCMP	8	Episode D	ay 2, 20	16	10	00	(PPM)	5.48	NA	0.00 7 02	-9.00
TOMP	o Q	Episode D	ay 2, 20	16	19 20	CO	(PPM)	0./1 7 10	NA NA	2 2 Q	-9.00
TCMP	о Я	Episode D	$a_{2} 2, 20$	16	21	CO	(PPM)	7.12	NΔ	8 64	-9.00
ICMP	8	Episode D	$a_{y} 2, 20$)6	22	CO	(PPM)	7.59	NA	8.71	-9.00
ICMP	8	Episode D	ay 2, 20	06	23	CO	(PPM)	7.64	NA	8.61	-9.00
ICMP	8	Episode D	ay 3, 20	06	0	CO	(PPM)	6.90	NA	7.52	-9.00
ICMP	8	Episode D	ay 3, 20	06	1	CO	(PPM)	5.48	NA	5.77	-9.00
ICMP	8	Episode D	ay 3, 20	06	2	CO	(PPM)	3.85	NA	4.01	-9.00
ICMP	8	Episode D	ay 3, 20	06	3	CO	(PPM)	2.55	NA	2.66	-9.00
ICMP	8	Episode D	ay 3, 20	06	4	CO	(PPM)	2.05	NA	2.12	-9.00
ICMP	8	Episode D	ay 3, 20	16	5	CO	(PPM)	1.76	NA	1.84	-9.00
ICMP	8	Episode D	ay 3, 20	10	6	CO	(PPM)	1.58	NA	1.60	-9.00
TCMP	8	rbisode D	ay 3, 20		/	00		1.13	NA	1.75	-9.00
TCMP	8 0	Episode D	ay 3, 20		Ø	00	(PPM)	1./5 1 05	NA NA	1./5 1 0F	-9.00
TCMP	0 Q	Episode D	ay 3, 20	16	10	CO	(PPM)	2 00	NA NA	2 00	-9.00
TCMD	с Д	Episode D	av 3, 20	16	11	CO	(PDM)	2.00	NΔ	2.00	-9 00
ICMP	8	Episode D	av 3.20	06	12	CO	(PPM)	2.32	NA	2.32	-9.00
ICMP	8	Episode D	ay 3, 20	06	13	CO	(PPM)	2.52	NA	2.52	-9.00
ICMP	8	Episode D	ay 3, 20	06	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 3, 20	06	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 3, 20	06	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 3, 20	06	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode D	ay 3, 20	06	18	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt	;	
						2006	2006	2006	1988
SITE	AVG	DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
	PERIOD					(MAU)	(CAL3QHC)	(UAM+CAL3)	
TOMD	0	Enicodo Davido 2006	10	00	(MUU (0.00	NT 7	0.00	0.00
	0	Episode Day 3, 2006	19	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
TCMP	8	Episode Day 3, 2006	20	00	(PPM)	-9.00	NA NA	-9.00	-9.00
I CMP	0	Episode Day 3, 2006	21	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
ICMP	0	Episode Day 3, 2006	22	00	(PPM)	-9.00	INA	-9.00	-9.00
TCMP	8	Episode Day 3, 2006	23	00	(PPM)	-9.00	NA	-9.00	-9.00
ENG	8	Episode Day 1, 2006	0	00	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2006	1	00	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2006	2	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2006	3	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2006	4	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2006	5	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2006	6	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2006	/	CO	(PPM)	-9.00	NA	-9.00	1.50
ENG	8	Episode Day 1, 2006	8	CO	(PPM)	-9.00	NA	-9.00	1.54
ENG	8	Episode Day 1, 2006	9	CO	(PPM)	-9.00	NA	-9.00	1.54
ENG	8	Episode Day 1, 2006	10	CO	(PPM)	-9.00	NA	-9.00	1.46
ENG	8	Episode Day 1, 2006	11	CO	(PPM)	-9.00	NA	-9.00	1.32
ENG	8	Episode Day 1, 2006	12	CO	(PPM)	-9.00	NA	-9.00	1.19
ENG	8	Episode Day 1, 2006	13	CO	(PPM)	-9.00	NA	-9.00	1.05
ENG	8	Episode Day 1, 2006	14	CO	(PPM)	-9.00	NA	-9.00	0.90
ENG	8	Episode Day 1, 2006	15	CO	(PPM)	-9.00	NA	-9.00	0.76
ENG	8	Episode Day 1, 2006	16	CO	(PPM)	-9.00	NA	-9.00	0.79
ENG	8	Episode Day 1, 2006	17	CO	(PPM)	-9.00	NA	-9.00	1.21
ENG	8	Episode Day 1, 2006	18	CO	(PPM)	-9.00	NA	-9.00	1.42
ENG	8	Episode Day 1, 2006	19	CO	(PPM)	-9.00	NA	-9.00	1.52
ENG	8	Episode Day 1, 2006	20	CO	(PPM)	-9.00	NA	-9.00	1.60
ENG	8	Episode Day 1, 2006	21	CO	(PPM)	-9.00	NA	-9.00	1.67
ENG	8	Episode Day 1, 2006	22	CO	(PPM)	-9.00	NA	-9.00	1.80
ENG	8	Episode Day 1, 2006	23	CO	(PPM)	-9.00	NA	-9.00	1.86
ENG	8	Episode Day 2, 2006	0	CO	(PPM)	-9.00	NA	-9.00	1.76
ENG	8	Episode Day 2, 2006	1	CO	(PPM)	-9.00	NA	-9.00	1.30
ENG	8	Episode Day 2, 2006	2	CO	(PPM)	-9.00	NA	-9.00	1.06
ENG	8	Episode Day 2, 2006	3	CO	(PPM)	0.41	NA	0.41	0.96
ENG	8	Episode Day 2, 2006	4	CO	(PPM)	0.39	NA	0.39	0.88
ENG	8	Episode Day 2, 2006	5	CO	(PPM)	0.38	NA	0.38	0.88
ENG	8	Episode Day 2, 2006	6	CO	(PPM)	0.35	NA	0.35	0.96
ENG	8	Episode Day 2, 2006	7	CO	(PPM)	0.42	NA	0.42	1.40
ENG	8	Episode Day 2, 2006	8	CO	(PPM)	0.45	NA	0.45	1.82
ENG	8	Episode Day 2, 2006	9	CO	(PPM)	0.46	NA	0.46	1.89
ENG	8	Episode Day 2, 2006	10	CO	(PPM)	0.46	NA	0.46	1.91
ENG	8	Episode Day 2, 2006	11	CO	(PPM)	0.47	NA	0.47	1.94
ENG	8	Episode Day 2, 2006	12	CO	(PPM)	0.50	NA	0.50	1.97
ENG	8	Episode Day 2, 2006	13	CO	(PPM)	0.54	NA	0.54	1.96
ENG	8	Episode Day 2, 2006	14	CO	(PPM)	0.59	NA	0.59	1.85
ENG	8	Episode Day 2, 2006	15	CO	(PPM)	0.65	NA	0.65	1.63
ENG	8	Episode Day 2, 2006	16	CO	(PPM)	1.06	NA	1.06	1.89
ENG	8	Episode Day 2, 2006	17	CO	(PPM)	1.49	NA	1.49	2.91
ENG	8	Episode Day 2, 2006	18	CO	(PPM)	1.63	NA	1.63	3.22
ENG	8	Episode Day 2, 2006	19	CO	(PPM)	1.67	NA	1.67	3.38
ENG	8	Episode Day 2, 2006	20	CO	(PPM)	1.66	NA	1.66	3.47
ENG	8	Episode Day 2, 2006	21	CO	(PPM)	1.64	NA	1.64	3.56
ENG	8	Episode Day 2, 2006	22	CO	(PPM)	1.59	NA	1.59	3.66
ENG	8	Episode Day 2, 2006	23	CO	(PPM)	1.45	NA	1.45	3.50
ENG	8	Episode Day 3, 2006	0	CO	(PPM)	1.01	NA	1.01	2.91
ENG	8	Episode Day 3, 2006	1	CO	(PPM)	0.58	NA	0.58	1.86
ENG	8	Episode Day 3, 2006	2	CO	(PPM)	0.44	NA	0.44	1.54
ENG	8	Episode Day 3, 2006	3	CO	(PPM)	0.38	NA	0.38	1.36
ENG	8	Episode Day 3, 2006	4	CO	(PPM)	0.36	NA	0.36	1.22
ENG	8	Episode Day 3, 2006	5	CO	(PPM)	0.34	NA	0.34	1.09
ENG	8	Episode Day 3, 2006	6	CO	(PPM)	0.33	NA	0.33	1.02
ENG	8	Episode Day 3, 2006	7	CO	(PPM)	0.44	NA	0.44	1.26
ENG	8	Episode Day 3, 2006	8	CO	(PPM)	0.47	NA	0.47	1.23
ENG	8	Episode Day 3, 2006	9	CO	(PPM)	0.50	NA	0.50	1.49
ENG	8	Episode Day 3, 2006	10	CO	(PPM)	0.54	NA	0.54	1.69
ENG	8	Episode Day 3, 2006	11	CO	(PPM)	0.60	NA	0.60	1.70
ENG	8	Episode Day 3, 2006	12	CO	(PPM)	0.64	NA	0.64	1.71
ENG	8	Episode Day 3, 2006	13	CO	(PPM)	0.70	NA	0.70	1.70
ENG	8	Episode Day 3, 2006	14	CO	(PPM)	-9.00	NA	-9.00	1.53
ENG	8	Episode Day 3, 2006	15	CO	(PPM)	-9.00	NA	-9.00	1.11
ENG	8	Episode Day 3, 2006	16	CO	(PPM)	-9.00	NA	-9.00	1.17
ENG	8	Episode Day 3, 2006	17	CO	(PPM)	-9.00	NA	-9.00	1.30
ENG	8	Episode Day 3, 2006	18	CO	(PPM)	-9.00	NA	-9.00	1.59
ENG	8	Episode Day 3, 2006	19	CO	(PPM)	-9.00	NA	-9.00	1.89
ENG	8	Episode Day 3, 2006	20	CO	(PPM)	-9.00	NA	-9.00	2.07
ENG	8	Episode Day 3, 2006	21	CO	(PPM)	-9.00	NA	-9.00	2.17

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			Higł	n: 2006	mob=844	.7tpd	1;1.5;	80;I/M	240 w/newest	4myr exempt	;	1000
SITE AVG		DATE				HR	POL	UTANT	2006 PREDICTED	2006 PREDICTED	2006 PREDICTED	1988 OBSERVED
PER	IOD	DITTE				1110	101		(UAM)	(CAL3QHC)	(UAM+CAL3)	ODOLICVED
				0000		0.0	~~	(5514)	0.00			0.04
ENG	8	Episode I Episode I	Day 3, Day 3	2006		22	C0	(PPM) (DDM)	-9.00	NA NA	-9.00	2.24
BOU	8	Episode I	Day 3, Dav 1,	2006		0	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode I	Day 1,	2006		ĩ	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode I	Day 1,	2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode I	Day 1,	2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode I	Day 1,	2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode I	Day 1,	2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode I	Day 1,	2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode I	Day 1,	2006		7	CO	(PPM)	-9.00	NA	-9.00	0.68
BOU	8	Episode I	Day 1,	2006		8	CO	(PPM)	-9.00	NA	-9.00	0.85
BOU	8	Episode I	Day I,	2006		10	00	(PPM)	-9.00	NA	-9.00	1.19
BOU	0	Episode I	Day I, Day 1	2000		11	CO	(PPM)	-9.00	NA NA	-9.00	1 42
BOU	8	Episode I Episode I	Day 1, Dav 1	2000		12	CO	(DDM)	-9.00	NΑ NΔ	-9.00	1 39
BOU	8	Episode I	Dav 1.	2000		13	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode I	Dav 1,	2006		14	CO	(PPM)	-9.00	NA	-9.00	1.34
BOU	8	Episode I	Day 1,	2006		15	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode I	Day 1,	2006		16	CO	(PPM)	-9.00	NA	-9.00	1.28
BOU	8	Episode I	Day 1,	2006		17	CO	(PPM)	-9.00	NA	-9.00	0.99
BOU	8	Episode I	Day 1,	2006		18	CO	(PPM)	-9.00	NA	-9.00	0.83
BOU	8	Episode I	Day 1,	2006		19	CO	(PPM)	-9.00	NA	-9.00	0.70
BOU	8	Episode I	Day 1,	2006		20	CO	(PPM)	-9.00	NA	-9.00	0.61
BOU	8	Episode I	Day I,	2006		21	00	(PPM)	-9.00	NA	-9.00	0.54
BOU	0	Episode I	Day I, Day 1	2000		22	CO	(PPM)	-9.00	NA NA	-9.00	0.40
BOU	8	Episode I	Day 1, Day 2	2000		2.5	CO	(PPM)	-9.00	NA	-9 00	0.34
BOU	8	Episode I	Dav 2.	2006		1	CO	(PPM)	-9.00	NA	-9.00	0.19
BOU	8	Episode I	Dav 2,	2006		2	CO	(PPM)	-9.00	NA	-9.00	0.16
BOU	8	Episode I	Day 2,	2006		3	CO	(PPM)	0.39	NA	0.39	0.16
BOU	8	Episode I	Day 2,	2006		4	CO	(PPM)	0.37	NA	0.37	0.20
BOU	8	Episode I	Day 2,	2006		5	CO	(PPM)	0.36	NA	0.36	0.28
BOU	8	Episode I	Day 2,	2006		6	CO	(PPM)	0.30	NA	0.30	0.40
BOU	8	Episode l	Day 2,	2006		7	CO	(PPM)	0.36	NA	0.36	0.66
BOU	8	Episode I	Day 2,	2006		8	C0 C0	(PPM)	0.38	NA NA	0.38	0.91
BOU	8	Episode I	Day 2, Dav 2	2000		10	CO	(PPM)	0.41	NA	0.41	1 76
BOU	8	Episode I	Dav 2.	2006		11	CO	(PPM)	0.52	NA	0.52	1.91
BOU	8	Episode I	Day 2,	2006		12	CO	(PPM)	0.57	NA	0.57	2.05
BOU	8	Episode I	Day 2,	2006		13	CO	(PPM)	0.60	NA	0.60	2.13
BOU	8	Episode I	Day 2,	2006		14	CO	(PPM)	0.63	NA	0.63	2.13
BOU	8	Episode I	Day 2,	2006		15	CO	(PPM)	0.71	NA	0.71	2.04
BOU	8	Episode l	Day 2,	2006		10	CO	(PPM)	0.80	NA	0.80	2.01
BOU	8	Episode I	Day 2,	2006		10	C0 C0	(PPM)	0.82	NA NA	0.82	1 42
BOU	8	Episode I Episode I	Day 2, Day 2	2000		19	CO	(DDM)	0.80	NΑ NΔ	0.80	2 07
BOU	8	Episode I	Day 2, Day 2.	2000		20	CO	(PPM)	0.75	NA	0.76	2.10
BOU	8	Episode I	Day 2,	2006		21	CO	(PPM)	0.73	NA	0.73	2.11
BOU	8	Episode I	Day 2,	2006		22	CO	(PPM)	0.67	NA	0.67	2.06
BOU	8	Episode I	Day 2,	2006		23	CO	(PPM)	0.52	NA	0.52	1.88
BOU	8	Episode I	Day 3,	2006		0	CO	(PPM)	0.41	NA	0.41	1.63
BOU	8	Episode I	Day 3,	2006		1	CO	(PPM)	0.36	NA	0.36	1.46
BOU	8	Episode I	Day 3,	2006		2	CO	(PPM)	0.32	NA	0.32	1.32
BOU	8	Episode I	Day 3,	2006		3	C0 C0	(PPM)	0.29	NA NA	0.29	0.51
BOU	0 8	Episode I Episode I	Day 3,	2000		5	CO	(PPM)	0.27	NA NA	0.27	0.32
BOU	8	Episode I	Day 3, Day 3	2000		6	CO	(PPM)	0.25	NA	0.25	0.21
BOU	8	Episode I	Dav 3.	2006		7	CO	(PPM)	0.36	NA	0.36	0.66
BOU	8	Episode I	Day 3,	2006		8	CO	(PPM)	0.38	NA	0.38	0.95
BOU	8	Episode I	Day 3,	2006		9	CO	(PPM)	0.40	NA	0.40	1.31
BOU	8	Episode I	Day 3,	2006		10	CO	(PPM)	0.41	NA	0.41	1.40
BOU	8	Episode I	Day 3,	2006		11	CO	(PPM)	0.43	NA	0.43	1.51
BOU	8	Episode I	Day 3,	2006		12	CO	(PPM)	0.45	NA	0.45	1.61
BOU	8	Episode I	Day 3,	2006		13	CO	(PPM)	0.49	NA	0.49	1.72
BOU	8	Episode I	uay 3,	∠006 2006		⊥4 1 ⊑	00	(PPM)	-9.00	NA	-9.00	1.75
BOU	Ö Q	Episode I	Dav 3,	2000 2006		15 16	CO	(PPM)	-9.00	NA NA	-9.00 _9.00	1.34 1.40
ROII	0 R	Episode I	Dav 3	2006		17	CO	(PPM)	-9.00	NΔ	-9.00	1 22
BOU	8	Episode I	Dav 3.	2006		18	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode I	Day 3,	2006		19	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	- Episode I	Day 3,	2006		20	CO	(PPM)	-9.00	NA	-9.00	1.34
BOU	8	Episode I	Day 3,	2006		21	CO	(PPM)	-9.00	NA	-9.00	1.27
BOU	8	Episode I	Day 3,	2006		22	CO	(PPM)	-9.00	NA	-9.00	1.26
BOU	8	Episode I	Day 3,	2006		23	CO	(PPM)	-9.00	NA	-9.00	1.26
GRUS	0	Thread represented in	∪ay ⊥,	2000		U	CU	(= = 1 1)	0.00	INA	0.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High	: 2006	mob=844	.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt;	0005	1000
פידידים א	WC	האתב				ир	DOT	ד דדידי א אדידי		2006 תפיים בתייפת	2006 תפידים תפיקות	1988
DILL A	PERIOD	DAIE				HK	POL.	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
-	211202								(0111)	(oning file)	(0111101120)	
GRDS	8	Episode D	ay 1,	2006		1	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode D	ay 1,	2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode D	ay 1,	2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode D	ay 1,	2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode D	ay 1,	2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode D	ay 1,	2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode D	ay I,	2006		/	00	(PPM)	-9.00	NA	-9.00	2.00
GRDS	0 8	Episode D	ay 1, .	2006		o Q	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.25
GRDS	8	Episode D	ay 1, . av 1	2000		10	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.50
GRDS	8	Episode D	ay 1	2000		11	CO	(PPM)	-9 00	NA	-9 00	3 00
GRDS	8	Episode D	av 1.	2006		12	CO	(PPM)	-9.00	NA	-9.00	3,13
GRDS	8	Episode D	av 1,	2006		13	CO	(PPM)	-9.00	NA	-9.00	3.00
GRDS	8	Episode D	av 1,	2006		14	CO	(PPM)	-9.00	NA	-9.00	2.75
GRDS	8	Episode D	ay 1, 1	2006		15	CO	(PPM)	-9.00	NA	-9.00	2.50
GRDS	8	Episode D	ay 1,	2006		16	CO	(PPM)	-9.00	NA	-9.00	2.25
GRDS	8	Episode D	ay 1,	2006		17	CO	(PPM)	-9.00	NA	-9.00	2.13
GRDS	8	Episode D	ay 1,	2006		18	CO	(PPM)	-9.00	NA	-9.00	2.00
GRDS	8	Episode D	ay 1,	2006		19	CO	(PPM)	-9.00	NA	-9.00	1.88
GRDS	8	Episode D	ay 1,	2006		20	CO	(PPM)	-9.00	NA	-9.00	1.88
GRDS	8	Episode D	ay 1,	2006		21	CO	(PPM)	-9.00	NA	-9.00	2.00
GRDS	8	Episode D	ay I,	2006		22	CO	(PPM)	-9.00	NA	-9.00	2.38
GRDS	8	Episode D	ay 1,	2006		23	C0	(PPM)	-9.00	NA	-9.00	2.50
GRDS	0 8	Episode D	ay Z,	2006		1	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.35
GRDS	0 8	Episode D	ay 2,	2000		2	CO	(DDM)	-9.00	NA NA	-9.00	1 87
GRDS	8	Episode D	ay 2,	2006		3	CO	(PPM)	0.46	NA	0.46	1.74
GRDS	8	Episode D	av 2	2006		4	CO	(PPM)	0.43	NA	0.43	1.62
GRDS	8	Episode D	av 2	2006		5	CO	(PPM)	0.42	NA	0.42	1.56
GRDS	8	Episode D	ay 2,	2006		6	CO	(PPM)	0.33	NA	0.33	1.72
GRDS	8	Episode D	ay 2,	2006		7	CO	(PPM)	0.41	NA	0.41	3.39
GRDS	8	Episode D	ay 2,	2006		8	CO	(PPM)	0.44	NA	0.44	5.36
GRDS	8	Episode D	ay 2,	2006		9	CO	(PPM)	0.49	NA	0.49	6.06
GRDS	8	Episode D	ay 2,	2006		10	CO	(PPM)	0.55	NA	0.55	6.22
GRDS	8	Episode D	ay 2,	2006		11	CO	(PPM)	0.61	NA	0.61	6.34
GRDS	8	Episode D	ay 2,	2006		12	CO	(PPM)	0.66	NA	0.66	6.42
GRDS	8	Episode D	ay 2,	2006		13	CO	(PPM)	0.69	NA	0.69	7.13
GRDS	8	Episode D	ay 2,	2006		14	CO	(PPM)	0.72	NA	0.72	6.71
GRDS	8	Episode D	ay z,	2006		15	CO	(PPM)	0.77	NA NA	0.77	4.89
GRDS	o g	Episode D	ay 2, .	2000		17	CO	(PPM)	0.90	NA NA	0.90	3.19
GRDS	8	Episode D	ay 2,	2000		18	CO	(PPM)	0.95	NA	0.95	5 34
GRDS	8	Episode D	av 2	2006		19	CO	(PPM)	0.90	NA	0.90	7.09
GRDS	8	Episode D	av 2	2006		20	CO	(PPM)	0.88	NA	0.88	8.34
GRDS	8	Episode D	ay 2,	2006		21	CO	(PPM)	0.86	NA	0.86	8.21
GRDS	8	Episode D	ay 2,	2006		22	CO	(PPM)	0.80	NA	0.80	8.32
GRDS	8	Episode D	ay 2,	2006		23	CO	(PPM)	0.64	NA	0.64	8.18
GRDS	8	Episode D	ay 3,	2006		0	CO	(PPM)	0.48	NA	0.48	7.71
GRDS	8	Episode D	ay 3,	2006		1	CO	(PPM)	0.40	NA	0.40	6.46
GRDS	8	Episode D	ay 3,	2006		2	CO	(PPM)	0.36	NA	0.36	4.81
GRDS	8	Episode D	ay 3,	2006		3	CO	(PPM)	0.31	NA	0.31	3.06
GRDS	8	rbiacde D	ay 3,	2000 2006		4 F	00	(PPM)	0.28	NA NA	0.28	1./4
GRDS	0 8	Episode D	ay 3, .	2006		5	CO	(PPM) (DDM)	0.20	NA NA	0.20	0.95
GRDS	8	Episode D	av 3	2006		7	CO	(PPM)	0.27	NA	0.37	1.62
GRDS	8	Episode D	av 3.	2006		8	CO	(PPM)	0.41	NA	0.41	2.50
GRDS	8	Episode D	av 3	2006		9	CO	(PPM)	0.44	NA	0.44	3.00
GRDS	8	Episode D	ay 3,	2006		10	CO	(PPM)	0.45	NA	0.45	3.13
GRDS	8	Episode D	ay 3,	2006		11	CO	(PPM)	0.46	NA	0.46	3.25
GRDS	8	Episode D	ay 3,	2006		12	CO	(PPM)	0.49	NA	0.49	3.38
GRDS	8	Episode D	ay 3,	2006		13	CO	(PPM)	0.54	NA	0.54	3.50
GRDS	8	Episode D	ay 3,	2006		14	CO	(PPM)	-9.00	NA	-9.00	3.38
GRDS	8	Episode D	ay 3,	2006		15	CO	(PPM)	-9.00	NA	-9.00	2.38
GRDS	8	Episode D	yay 3,	∠UU6		10	CO	(PPM)	-9.00	NA	-9.00	1.88
GRDS	8	Episode D	ay 3,	2006		17 10	CO	(PPM)	-9.00	NA	-9.00	2.13
GRDS	8	Episode D	ay 3,	∠000 2006		10 10	00	(PPM)	-9.00	NA NA	-9.00	2.50
GRDS	o Q	Episode D	ay 2, .	2000		⊥⊅ 20	CO	(PPM)	-9.00	INA MA	-9.00	4.00 3 QQ
GRDS	0 Q	Episode D	av 2	2006		21	CO	(DDM)	-9.00	ND ND	_9.00	4 50
GRDS	8	Episode D	av 3	2006		22	CO	(PPM)	-9.00	NA	-9.00	4.88
GRDS	8	Episode D	av 3.	2006		23	CO	(PPM)	-9.00	NA	-9.00	5.25
ARV	8	Episode D	ay 1.	2006		0	CO	(PPM)	0.00	NA	0.00	-9.00
ARV	8	Episode D	ay 1,	2006		1	CO	(PPM)	0.00	NA	0.00	-9.00
ARV	8	Episode D	ay 1,	2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
ARV	8	Episode D	ay 1,	2006		3	CO	(PPM)	0.00	NA	0.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		H	ligh: 2006	mob=844.	7tpd;	1.5;	80;I/M	240 w/newest	4myr exempt	;	
CTTF	AVC				UD	DOT	ד דדידי א אדידי	2006	2006 הפיים בייים	2006 DREDICTED	1988
SILE	PERIOD	DAIL			пĸ	POL.	LUIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
								(=== ;)	(<u>2</u> ,	(,	
ARV	8	Episode Day	1, 2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
ARV	8	Episode Day	1, 2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
ARV	8	Episode Day	1, 2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
ARV	8	Episode Day	1, 2006		/	00	(PPM)	-9.00	NA	-9.00	2.01
ARV	8	Episode Day	1, 2006		8	CO	(PPM)	-9.00	NA NA	-9.00	2.20
ARV ARV	8	Episode Day	1 2006		10	CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	2.04
ARV	8	Episode Day	1 2006		11	CO	(DDM)	-9.00	NΔ	-9.00	1 98
ARV	8	Episode Day	1, 2006		12	CO	(PPM)	-9.00	NA	-9.00	2.05
ARV	8	Episode Day	1, 2006		13	CO	(PPM)	-9.00	NA	-9.00	2.05
ARV	8	Episode Day	1, 2006		14	CO	(PPM)	-9.00	NA	-9.00	1.98
ARV	8	Episode Day	1, 2006		15	CO	(PPM)	-9.00	NA	-9.00	1.83
ARV	8	Episode Day	1, 2006		16	CO	(PPM)	-9.00	NA	-9.00	1.58
ARV	8	Episode Day	1, 2006		17	CO	(PPM)	-9.00	NA	-9.00	1.80
ARV	8	Episode Day	1, 2006		18	CO	(PPM)	-9.00	NA	-9.00	2.05
ARV	8	Episode Day	1, 2006		19	CO	(PPM)	-9.00	NA	-9.00	2.30
ARV	8	Episode Day	1, 2006		20	00	(PPM)	-9.00	NA	-9.00	2.68
ARV ADV	0 8	Episode Day	1 2006		22	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	3.30
ARV	8	Episode Day	1 2006		22	CO	(DDM)	-9.00	NΔ	-9.00	4 05
ARV	8	Episode Day	2, 2006		0	CO	(PPM)	-9.00	NA	-9.00	3.99
ARV	8	Episode Day	2, 2006		1	CO	(PPM)	-9.00	NA	-9.00	3.68
ARV	8	Episode Day	2, 2006		2	CO	(PPM)	-9.00	NA	-9.00	3.40
ARV	8	Episode Day	2, 2006		3	CO	(PPM)	1.43	NA	1.43	3.09
ARV	8	Episode Day	2, 2006		4	CO	(PPM)	1.28	NA	1.28	2.68
ARV	8	Episode Day	2, 2006		5	CO	(PPM)	1.16	NA	1.16	2.09
ARV	8	Episode Day	2, 2006		6	CO	(PPM)	0.88	NA	0.88	1.89
ARV	8	Episode Day	2, 2006		/	00	(PPM)	0.68	NA	0.68	2.79
ARV ARV	0 8	Episode Day	2, 2006		0 9	CO	(PPM) (DDM)	0.61	NA NA	0.61	5.95 4 61
ARV	8	Episode Day	2, 2006		10	CO	(PPM)	0.60	NA	0.60	4.98
ARV	8	Episode Day	2, 2006		11	CO	(PPM)	0.63	NA	0.63	5.08
ARV	8	Episode Day	2, 2006		12	CO	(PPM)	0.70	NA	0.70	5.14
ARV	8	Episode Day	2, 2006		13	CO	(PPM)	0.79	NA	0.79	5.11
ARV	8	Episode Day	2, 2006		14	CO	(PPM)	0.88	NA	0.88	4.85
ARV	8	Episode Day	2, 2006		15	CO	(PPM)	0.97	NA	0.97	3.98
ARV	8	Episode Day	2, 2006		10	00	(PPM)	1.2/	NA	1.2/	3.25
ARV ARV	0 8	Episode Day	2, 2006		18	CO	(PPM) (DDM)	1 50	NA NA	1.40	3.44
ARV	8	Episode Day	2, 2006		19	CO	(PPM)	1.46	NA	1.46	3.91
ARV	8	Episode Day	2, 2006		20	CO	(PPM)	1.40	NA	1.40	4.34
ARV	8	Episode Day	2, 2006		21	CO	(PPM)	1.33	NA	1.33	4.65
ARV	8	Episode Day	2, 2006		22	CO	(PPM)	1.24	NA	1.24	4.84
ARV	8	Episode Day	2, 2006		23	CO	(PPM)	1.09	NA	1.09	4.80
ARV	8	Episode Day	3, 2006		0	CO	(PPM)	0.76	NA	0.76	4.34
ARV	8	Episode Day	3, 2006		1	00	(PPM)	0.51	NA	0.51	3.70
ARV ARV	0 8	Episode Day	3, 2006		2	CO	(PPM) (DDM)	0.42	NA NA	0.42	2 43
ARV	8	Episode Day	3, 2006		4	CO	(PPM)	0.35	NA	0.35	1.86
ARV	8	Episode Day	3, 2006		5	CO	(PPM)	0.33	NA	0.33	1.49
ARV	8	Episode Day	3, 2006		6	CO	(PPM)	0.34	NA	0.34	1.45
ARV	8	Episode Day	3, 2006		7	CO	(PPM)	0.47	NA	0.47	2.19
ARV	8	Episode Day	3, 2006		8	CO	(PPM)	0.52	NA	0.52	2.91
ARV	8	Episode Day	3, 2006		9	CO	(PPM)	0.58	NA	0.58	3.33
ARV	8	Episode Day	3, 2006		10	CO	(PPM)	0.63	NA	0.63	3.64
ARV ADV	0 8	Episode Day	3, 2000		12	CO	(PPM) (DDM)	0.09	NA NA	0.09	3.00
ARV	8	Episode Day	3, 2006		13	CO	(PPM)	0.83	NA	0.83	3.70
ARV	8	Episode Day	3, 2006		14	CO	(PPM)	-9.00	NA	-9.00	3.41
ARV	8	Episode Day	3, 2006		15	CO	(PPM)	-9.00	NA	-9.00	2.39
ARV	8	Episode Day	3, 2006		16	CO	(PPM)	-9.00	NA	-9.00	1.69
ARV	8	Episode Day	3, 2006		17	CO	(PPM)	-9.00	NA	-9.00	1.83
ARV	8	Episode Day	3, 2006		18	CO	(PPM)	-9.00	NA	-9.00	2.25
ARV	8	Episode Day	3, 2006		19	CO	(PPM)	-9.00	NA	-9.00	2.72
ARV	8	Episode Day	3, 2006		∠U 21	00	(PPM)	-9.00	NA	-9.00	3.09
ARV	8	Episode Day	3, 2006 3 2006		⊿⊥ 22	00	(PPM)	-9.00	NA NA	-9.00 _0 00	3.40 2 20
ARV	o R	Episode Day	3, 2006		23	CO	(PPM)	-9.00	NΑ	-9.00	4 01
HLD	8	Episode Dav	1, 2006		0	CO	(PPM)	0.00	NA	0.00	-9.00
HLD	8	Episode Day	1, 2006		1	CO	(PPM)	0.00	NA	0.00	-9.00
HLD	8	Episode Day	1, 2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
HLD	8	Episode Day	1, 2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
HLD	8	Episode Day	1, 2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
HLD	8	Episode Day	1, 2006		5	C0	(PPM)	0.00	NA	0.00	-9.00
пцл	d	Episoue Ddy	I, 2000		0	CU	(= = 1]	0.00	INA	0.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High	: 2006 mob=844	.7tpd;	1.5;8	30;I/M	240 w/newest	4myr exempt;	0005	1000
SITE AVG	DATE			HR	POLI	LUTANT	2006 PREDICTED	2006 PREDICTED	2006 PREDICTED	1988 OBSERVED
PERIC	DD					-	(UAM)	(CAL3QHC)	(UAM+CAL3)	
HLD	8 Frig	de Dav 1 (2006	7	CO	(DDM)	-9.00	N۵	-9.00	0.75
HLD	8 Episo	ode Day 1, 2	2006	8	CO	(PPM)	-9.00	NA	-9.00	0.71
HLD	8 Episo	ode Day 1, 2	2006	9	CO	(PPM)	-9.00	NA	-9.00	0.66
HLD	8 Episo	ode Day 1, 2	2006	10	CO	(PPM)	-9.00	NA	-9.00	0.62
HLD	8 Episo	ode Day 1, 2	2006	11	CO	(PPM)	-9.00	NA	-9.00	0.57
HLD	8 Episo	ode Day 1, 2	2006	12	CO	(PPM)	-9.00	NA	-9.00	0.52
HLD	8 Episo	ode Day I, 2	2006	13 14	00	(PPM)	-9.00	NA	-9.00	0.37
HLD	8 Episo	nde Day 1, 2	2006	15	CO	(PPM) (PPM)	-9.00	NA NA	-9.00	0.19
HLD	8 Episo	ode Day 1, 2	2006	16	CO	(PPM)	-9.00	NA	-9.00	0.14
HLD	8 Episo	ode Day 1, 2	2006	17	CO	(PPM)	-9.00	NA	-9.00	0.16
HLD	8 Episo	ode Day 1, 2	2006	18	CO	(PPM)	-9.00	NA	-9.00	0.19
HLD	8 Episo	ode Day 1, 2	2006	19	CO	(PPM)	-9.00	NA	-9.00	0.21
HLD	8 Episo	ode Day I, 2	2006	20	CO	(PPM)	-9.00	NA NA	-9.00	0.24
HLD	8 Episo	nde Day 1, 2 nde Day 1 2	2000	22	CO	(PPM)	-9.00	NA	-9.00	0.20
HLD	8 Episo	ode Day 1, 2 ode Day 1, 2	2006	23	CO	(PPM)	-9.00	NA	-9.00	0.31
HLD	8 Episo	ode Day 2, 2	2006	0	CO	(PPM)	-9.00	NA	-9.00	0.27
HLD	8 Episo	ode Day 2, 2	2006	1	CO	(PPM)	-9.00	NA	-9.00	0.25
HLD	8 Episo	ode Day 2, 2	2006	2	CO	(PPM)	-9.00	NA	-9.00	0.21
HLD	8 Episo	ode Day 2, 2	2006	3	CO	(PPM)	0.23	NA	0.23	0.20
HLD	8 Episo	Dde Day 2, 2	2006	4 5	CO	(PPM) (DDM)	0.23	NA NA	0.23	0.19
HLD	8 Episo	nde Day 2, 2	2000	6	CO	(PPM)	0.23	NA	0.23	0.15
HLD	8 Episo	ode Day 2, 2	2006	7	CO	(PPM)	0.25	NA	0.25	0.14
HLD	8 Episo	ode Day 2, 2	2006	8	CO	(PPM)	0.25	NA	0.25	0.11
HLD	8 Episo	ode Day 2, 2	2006	9	CO	(PPM)	0.26	NA	0.26	0.09
HLD	8 Episo	ode Day 2, 2	2006	10	CO	(PPM)	0.26	NA	0.26	0.07
	8 Episo	ode Day 2, 2	2006	11 12	CO	(PPM) (DDM)	0.26	NA NA	0.26	0.05
HLD	8 Episo	ode Day 2, 2 ode Day 2, 2	2000	13	CO	(PPM)	0.20	NA	0.31	0.02
HLD	8 Episo	ode Day 2, 2	2006	14	CO	(PPM)	0.36	NA	0.36	0.01
HLD	8 Episo	ode Day 2, 2	2006	15	CO	(PPM)	0.44	NA	0.44	0.09
HLD	8 Episo	ode Day 2, 2	2006	16	CO	(PPM)	0.72	NA	0.72	0.59
HLD	8 Episo	ode Day 2, 2	2006	17	CO	(PPM)	1.09	NA	1.09	1.14
	8 Episo	ode Day 2, 2	2006	18 19	CO	(PPM) (DDM)	1.20	NA NA	1.20	1.34
HLD	8 Episo	nde Day 2, 2	2000	2.0	CO	(PPM)	1.20	NA	1,20	1.49
HLD	8 Episo	ode Day 2, 2	2006	21	CO	(PPM)	1.18	NA	1.18	1.52
HLD	8 Episo	ode Day 2, 2	2006	22	CO	(PPM)	1.13	NA	1.13	1.56
HLD	8 Episo	ode Day 2, 2	2006	23	CO	(PPM)	1.03	NA	1.03	1.52
HLD	8 Episo	ode Day 3, 2	2006	0	CO	(PPM)	0.74	NA	0.74	1.07
HLD	8 Episo	Due Day 3, 2 Due Day 3 (2	2006	2	CO	(PPM) (DDM)	0.38	NA NA	0.38	0.57
HLD	8 Episo	ode Day 3, 2 ode Day 3, 2	2000	3	CO	(PPM)	0.27	NA	0.25	0.41
HLD	8 Episo	ode Day 3, 2	2006	4	CO	(PPM)	0.24	NA	0.24	0.40
HLD	8 Episo	ode Day 3, 2	2006	5	CO	(PPM)	0.24	NA	0.24	0.40
HLD	8 Episo	ode Day 3, 2	2006	6	CO	(PPM)	0.24	NA	0.24	0.40
HLD	8 Episo	ode Day 3, 2	2006	./	CO	(PPM)	0.33	NA	0.33	0.59
HLD	8 Episo	nde Day 3, 2	2006	8	CO	(PPM) (DDM)	0.38	NA NA	0.38	0.79
HLD	8 Episo	ode Day 3, 2	2006	10	CO	(PPM)	0.47	NA	0.47	0.81
HLD	8 Episo	ode Day 3, 2	2006	11	CO	(PPM)	0.49	NA	0.49	0.75
HLD	8 Episo	ode Day 3, 2	2006	12	CO	(PPM)	0.53	NA	0.53	0.70
HLD	8 Episo	ode Day 3, 2	2006	13	CO	(PPM)	0.58	NA	0.58	0.66
HLD	8 Episo	ode Day 3, 2	2006	14	CO	(PPM)	-9.00	NA NA	-9.00	0.62
HLD	8 Episo	nde Day 3, 2	2000	16	CO	(PPM)	-9.00	NA	-9.00	0.39
HLD	8 Episo	ode Dav 3, 2	2006	17	CO	(PPM)	-9.00	NA	-9.00	0.17
HLD	8 Episo	ode Day 3, 2	2006	18	CO	(PPM)	-9.00	NA	-9.00	0.20
HLD	8 Episo	ode Day 3, 2	2006	19	CO	(PPM)	-9.00	NA	-9.00	0.22
HLD	8 Episo	ode Day 3, 2	2006	20	CO	(PPM)	-9.00	NA	-9.00	0.32
нцр	o Episo	Due Day 3, 2	2006 2006	∠⊥ 22	CO CO	(PPM)	-9.00	NA NA	-9.00	U.36 0 41
HI	8 Enia	ode Dav 3. 2	2006	23	CO	(PPM)	-9.00	NA	-9.00	0.64
AUR	8 Episo	ode Day 1, 2	2006	0	CO	(PPM)	0.00	NA	0.00	-9.00
AUR	8 Episo	ode Day 1, 2	2006	1	CO	(PPM)	0.00	NA	0.00	-9.00
AUR	8 Episo	ode Day 1, 2	2006	2	CO	(PPM)	0.00	NA	0.00	-9.00
AUR	8 Episo	ode Day 1, 2	2006	3	C0	(PPM)	0.00	NA	0.00	-9.00
AUK	0 Episo	nde Dav 1 (2006	ч 5	CO	(PPM)	0.00	NA N7	0.00	-9.00
AUR	8 Episo	ode Day 1. 2	2006	6	CO	(PPM)	0.00	NA	0.00	-9.00
AUR	8 Episo	ode Day 1, 2	2006	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8 Episo	ode Day 1, 2	2006	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8 Episo	ode Day 1, 2	2006	9	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 2006	5 mob=844.7	tpd;	1.5;8	80;I/M	240 w/newest	4myr exempt;		
			-		_			2006	2006	2006	1988
SITE	AVG	DATE		H	IR	POLI	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
	PERIOD							(UAM)	(CAL3QHC)	(UAM+CAL3)	
AUR	8	Episode	Day 1, 2006	1	.0	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.1	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.2	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.3	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.4	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.5	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.6	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.7	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.8	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	1	.9	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	2	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	2	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	2	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2006	2	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 2, 2006		0	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 2, 2006		1	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 2, 2006		2	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 2, 2006		3	CO	(PPM)	0.56	NA	0.56	-9.00
AUR	8	Episode	Day 2, 2006		4	CO	(PPM)	0.53	NA	0.53	-9.00
AUR	8	Episode	Day 2, 2006		5	CO	(PPM)	0.51	NA	0.51	-9.00
AUR	8	Episode	Day 2, 2006		6	CO	(PPM)	0.48	NA	0.48	-9.00
AUR	8	Episode	Day 2, 2006		7	CO	(PPM)	0.54	NA	0.54	-9.00
AUR	8	Episode	Day 2, 2006		8	CO	(PPM)	0.57	NA	0.57	-9.00
AUR	8	Episode	Day 2, 2006		9	CO	(PPM)	0.60	NA	0.60	-9.00
AUR	8	Episode	Day 2, 2006	1	.0	CO	(PPM)	0.60	NA	0.60	-9.00
AUR	8	Episode	Day 2, 2006	1	.1	CO	(PPM)	0.62	NA	0.62	-9.00
AUR	8	Episode	Day 2, 2006	1	.2	CO	(PPM)	0.63	NA	0.63	-9.00
AUR	8	Episode	Day 2, 2006	1	.3	CO	(PPM)	0.65	NA	0.65	-9.00
AUR	8	Episode	Day 2, 2006	1	.4	CO	(PPM)	0.68	NA	0.68	-9.00
AUR	8	Episode	Day 2, 2006	1	.5	CO	(PPM)	0.68	NA	0.68	-9.00
AUR	8	Episode	Day 2, 2006	1	.6	CO	(PPM)	0.87	NA	0.87	-9.00
AUR	8	Episode	Day 2, 2006	1	.7	CO	(PPM)	1.17	NA	1.17	-9.00
AUR	8	Episode	Day 2, 2006	1	.8	CO	(PPM)	1.54	NA	1.54	-9.00
AUR	8	Episode	Day 2, 2006	1	.9	CO	(PPM)	2.02	NA	2.02	-9.00
AUR	8	Episode	Day 2, 2006	2	20	CO	(PPM)	2.47	NA	2.47	-9.00
AUR	8	Episode	Day 2, 2006	2	21	CO	(PPM)	2.56	NA	2.56	-9.00
AUR	8	Episode	Day 2, 2006	2	22	CO	(PPM)	2.59	NA	2.59	-9.00
AUR	8	Episode	Day 2, 2006	2	23	CO	(PPM)	2.52	NA	2.52	-9.00
AUR	8	Episode	Day 3, 2006		0	CO	(PPM)	2.28	NA	2.28	-9.00
AUR	8	Episode	Day 3, 2006		1	CO	(PPM)	1.94	NA	1.94	-9.00
AUR	8	Episode	Day 3, 2006		2	CO	(PPM)	1.56	NA	1.56	-9.00
AUR	8	Episode	Day 3, 2006		3	CO	(PPM)	1.07	NA	1.07	-9.00
AUR	8	Episode	Day 3, 2006		4	CO	(PPM)	0.59	NA	0.59	-9.00
AUR	8	Episode	Day 3, 2006		5	CO	(PPM)	0.47	NA	0.47	-9.00
AUR	8	Episode	Day 3, 2006		6	CO	(PPM)	0.41	NA	0.41	-9.00
AUR	8	Episode	Day 3, 2006		.7	CO	(PPM)	0.46	NA	0.46	-9.00
AUR	8	Episode	Day 3, 2006		8	CO	(PPM)	0.48	NA	0.48	-9.00
AUR	8	Episode	Day 3, 2006	-	9	CO	(PPM)	0.51	NA	0.51	-9.00
AUR	8	Episode	Day 3, 2006	1	.0	CO	(PPM)	0.54	NA	0.54	-9.00
AUR	8	Episode	Day 3, 2006	1	.1	CO	(PPM)	0.57	NA	0.57	-9.00
AUR	8	Episode	Day 3, 2006	1	.2	CO	(PPM)	0.62	NA	0.62	-9.00
AUR	8	Episode	Day 3, 2006	1	.3	CO	(PPM)	0.67	NA	0.67	-9.00
AUR	8	Episode	Day 3, 2006	1	.4	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2006	1	.5	00	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2006	1	.0	00	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2006	1	. /	00	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2006	1	.8	00	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2006	T	.9	00	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2006	2	20	00	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2006	2	10	00	(PPM)	-9.00	NA NA	-9.00	-9.00
AUR	0	Episode	Day 3, 2006	2	12	00	(PPM)	-9.00	INA NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2006	2	.3	00	(PPM)	-9.00	NA	-9.00	-9.00
AUKS	0 0	rbracqe	Day 1, 2006		1	00	(PPM)	0.00	INA ATA	0.00	-9.00
AUKS	d o	rbrande	Day 1, 2006		⊥ 2	00		0.00	INA TT	0.00	-9.00
AURS	8	rbrade	Day 1, 2006		⊿ 2	00		0.00	NA	0.00	-9.00
AURS	8	rbrade	Day 1, 2006		3	00		0.00	NA	0.00	-9.00
AUKS	ď	Threade	Day 1, 2006		-± c	00		0.00	NA NA	0.00	-9.00
AURS	8	Episode	Day 1, 2006		5	00	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode	Day 1, 2006		07	00	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode	Day 1, 2006		/	00	(PPM)	-9.00	NA	-9.00	1.00
AURS	8	Episode	Day 1, 2006		8 0	00	(PPM)	-9.00	NA	-9.00	1.09
AURS	8	Lpisode	Day 1, 2006	-	9	00	(PPM)	-9.00	NA	-9.00	⊥.∠⊥ 1 20
AURS	8	rbrade	Day 1, 2006	1	1	00	(PPM)	-9.00	NA	-9.00	1.52
AURS	8	Lpisode	Day 1, 2006	1	. ⊥	00	(PPM)	-9.00	NA	-9.00	1.40
AURS	8	rbrsoae	⊔ay I, ∠UU0	1	. 4	υU	(PFM)	-9.00	NA	-9.00	1.51

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

STIE AVI PERLOD DATE PR POLLUTIANY PREMIUND (LAM) PREMIUND (CALLEGC) DESCRIPTION (CALLEGC) DESCRIPTION (CALLEGC) <thdescription (CALLEGC</thdescription 				Higł	n: 2006	mob=844	.7tpd	l;1.5;8	80;I/M	240 w/newest	4myr exempt;	0005	1000
PERLOD IDM (CALSOLO (DAM (CALSOLO (DAM (CALSOLO ALRES 6 Painede Dyr 1, 2006 11 CO (PMN) -5.00 NA -9.00 1.11 ALRES 8 Painede Dyr 1, 2006 11 CO (PMN) -5.00 NA -9.00 1.13 ALRES 8 Dainede Dyr 1, 2006 11 CO (PMN) -5.00 NA -9.00 1.13 ALRES 8 Dainede Dyr 1, 2006 12 CO (PMN) -9.00 NA -9.00 1.34 ALRES 8 Dainede Dyr 1, 2006 22 CO (PMN) -9.00 NA -9.00 1.34 ALRES 8 Dainede Dyr 1, 2006 21 CO (PMN) -9.00 NA -9.00 1.42 ALRES 8 Dainede Dyr 2, 2006 2 CO (PMN) 0.37 NA -9.00 0.41	SITE AV	G	DATE				HR	POL	UTANT	2006 PREDICTED	2006 PREDICTED	2006 PREDICTED	1988 Observed
ARES 8 Spinorh L3 CO PM() -3.00 NA -4.00 L4.4 ARES 8 Spinorh Day 1 2005 15 CC IPM() -9.00 NA -4.00 1.11 ARES 8 Spinorh Day 1 2005 15 CC IPM() -9.00 NA -4.00 1.07 ARES 8 Spinorh Day 1 2005 110 CC IPM() -9.00 NA -4.00 1.34 ARES 8 Spinorh Day 1 2005 210 CC IPM() -9.00 NA -4.00 1.35 ARES 8 Spinorh Day 1 2005 220 CC IPM() -9.00 NA -4.00 1.42 ARES 8 Spinorh Day 2 2005 2 CC IPM() -9.00 NA -4.00 1.43 ARES 8 Spinorh Day 2 2005	PEI	RIOD	2					102		(UAM)	(CAL3QHC)	(UAM+CAL3)	0202111122
ALRS 8 Discrete Label Label <thlabel< th=""> <thlabel< th=""> <thlabel< th=""> <thlabel< td=""><td></td><td>0</td><td></td><td>. 1</td><td>0006</td><td></td><td>1.0</td><td>~~~</td><td>(5514)</td><td>0.00</td><td></td><td></td><td>1 54</td></thlabel<></thlabel<></thlabel<></thlabel<>		0		. 1	0006		1.0	~~~	(5514)	0.00			1 54
ARES B Epicade Dist CO PRR	AURS	8	Episode L Episode D	ay 1, av 1	2006		13 14	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1.54 1.31
ALRER H Fightode Day 1.2006 16 CC (PM4) -9.00 NA -9.00 1.34 ALRER B Epidode Day 1.2006 15 CC (PM4) -9.00 NA -9.00 1.34 ALRER B Epidode Day 1.2006 210 CC (PM4) -9.00 NA -9.00 1.34 ALRER B Epidode Day 1.2006 212 CC (PM4) -9.00 NA -9.00 1.34 ALRER B Epidode Day 1.2006 212 CC (PM4) -9.00 NA -9.00 NA <td>AURS</td> <td>8</td> <td>Episode D</td> <td>ay 1,</td> <td>2006</td> <td></td> <td>15</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>NA</td> <td>-9.00</td> <td>1.10</td>	AURS	8	Episode D	ay 1,	2006		15	CO	(PPM)	-9.00	NA	-9.00	1.10
AURS B Episode Day 1, 2006 17 CO (PPM) -0.00 NA -0.00 1.34 AURS B Episode Day 1, 2006 12 CO (PPM) -0.00 NA -0.00 1.34 AURS B Episode Day 1, 2006 210 CO (PPM) -0.00 NA -0.00 1.34 AURS B Episode Day 1, 2006 210 CO (PPM) -0.00 NA -0.00 1.34 AURS B Episode Day 1, 2006 221 CO (PPM) -0.00 NA -0.00 1.34 AURS B Episode Day 2, 2006 1 CC (PPM) -0.00 NA -0.00 0.81 AURS B Episode Day 2, 2006 C CC (PPM) -0.00 NA -0.00 0.81 AURS B Episode Day 2, 2006 C CC (PPM) -0.44 NA 0.44 1.24 AURS B <th< td=""><td>AURS</td><td>8</td><td>Episode D</td><td>ay 1,</td><td>2006</td><td></td><td>16</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>NA</td><td>-9.00</td><td>1.07</td></th<>	AURS	8	Episode D	ay 1,	2006		16	CO	(PPM)	-9.00	NA	-9.00	1.07
AURE 8 Epicode Day Co IPPNI -9.00 NA -9.00 IAA -9	AURS	8	Episode D	ay 1,	2006		17	CO	(PPM)	-9.00	NA	-9.00	1.34
ABER 8 Epicade Lag CO (PRN) -3.00 NA -9.00 1.34 ABER 8 Epicade Day 1.2005 22 CO (PRN) -9.00 NA -9.00 1.34 ABER 8 Epicade Day 1.2005 22 CO (PNN) -9.00 NA -9.00 1.34 ABER 8 Epicade Day 2.2005 22 CO (PNN) -9.00 NA NA <t< td=""><td>AURS</td><td>8</td><td>Episode D</td><td>ay 1,</td><td>2006</td><td></td><td>18</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>NA</td><td>-9.00</td><td>1.36</td></t<>	AURS	8	Episode D	ay 1,	2006		18	CO	(PPM)	-9.00	NA	-9.00	1.36
AURE 8 Discrete Discre <thdiscre< th=""> <thdiscrete< td="" th<=""><td>AURS</td><td>8</td><td>Episode D</td><td>ay 1,</td><td>2006</td><td></td><td>19</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>NA</td><td>-9.00</td><td>1.34</td></thdiscrete<></thdiscre<>	AURS	8	Episode D	ay 1,	2006		19	CO	(PPM)	-9.00	NA	-9.00	1.34
AURE B Distance Day 1 200 1 23 CO 1998 -9.00 1.3 34 AURE B Distant Day 1.200 CO 1.98 1.38 AURE B Distant Day 2.006 1.000 NA -9.00 1.42 AURE B Distant Day 2.006 1.000 NA -9.00 NA AURE B Distant Day 2.006 4.000 PPM -0.139 NA -0.139 NA -0.030 0.61 AURE B Distant Day 2.006 5.000 PPM 0.161 NA 0.037 0.63 AURE B Distant Day 2.2006 9.000 PPM 0.448 NA 0.448 1.451 AURE B Distant Distant Distant Distant Distant Distant AURE B Distant <th< td=""><td>AURS</td><td>8</td><td>Episode D</td><td>)ay⊥,</td><td>2006</td><td></td><td>20</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>NA</td><td>-9.00</td><td>1.35</td></th<>	AURS	8	Episode D)ay⊥,	2006		20	CO	(PPM)	-9.00	NA	-9.00	1.35
AURE B = biand Diand Diand <thdiand< th=""> Diand <thdiand< th=""> <t< td=""><td>AURS</td><td>8</td><td>Episode L</td><td>ay 1,</td><td>2006</td><td></td><td>∠⊥ 22</td><td>CO</td><td>(PPM) (DDM)</td><td>-9.00</td><td>NA NA</td><td>-9.00</td><td>1 38</td></t<></thdiand<></thdiand<>	AURS	8	Episode L	ay 1,	2006		∠⊥ 22	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1 38
AURE B pisced Day 2, 2006 1 CO (PPW) -9.00 NA -9.00 0.98 AURES B Fisced Day 2, 2006 1 CO (PPW) -9.00 NA -9.00 0.89 AURES B Fisced Day 2, 2006 1 CO (PPW) 0.10 NA -9.00 0.89 AURES B Fisced Day 2, 2006 CO (PPW) 0.43 NA 0.37 0.63 AURES B Fisced Day 2, 2006 CO (PPW) 0.44 NA 0.44 1.22 AURES B Fisced Day 2, 2006 10 CO (PPW) 0.44 NA 0.44 1.22 AURES B Fisced Day 2, 2006 10 CO (PPW) 0.44 NA 0.45 1.26 AURES B Fisced Day 2, 2006 12 CO (PPW) 0.46 NA 0.65 <td< td=""><td>AURS</td><td>8</td><td>Episode D</td><td>ay 1</td><td>2000</td><td></td><td>23</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>NA</td><td>-9.00</td><td>1.42</td></td<>	AURS	8	Episode D	ay 1	2000		23	CO	(PPM)	-9.00	NA	-9.00	1.42
AURS 8 Dpinode Day 2, 2006 1 CO (PM) -9.00 NA -9.00 0.81 AURS 8 Dpinode Day 2, 2006 3 CC (PM) 0.37 NA 0.61 AURS 8 Dpinode Day 2, 2006 5 CC (PM) 0.37 NA 0.37 0.63 AURS 8 Dpinode Day 2, 2006 6 CC (PM) 0.36 NA 0.36 0.81 AURS 8 Dpinode Day 2, 2006 7 CC (PM) 0.44 NA 0.43 1.469 AURS 8 Dpinode Day 2, 2006 100 CC (PM) 0.49 NA 0.42 1.469 AURS 8 Dpinode Day 2, 2006 13 CC (PM) 0.50 NA 0.51 2.21 AURS 8 Dpinode Day 2, 2006 13 CC (PM) 0.50 NA 0.51 2.20 AURS 8 Dpinode Day 2, 2006 15 CC (PM) 0.50 NA 0.50 2.30 AURS	AURS	8	Episode D	Day 2,	2006		0	CO	(PPM)	-9.00	NA	-9.00	1.38
AURS B blacde bay 2, 2006 2 CC0 PFM1 -9.00 NA -9.00 0.81 AURS B bplacde bay 2, 2006 4 CC0 (PPM1) 0.37 NA 0.37 0.63 AURS B bplacde bay 2, 2006 5 CC0 (PPM1) 0.36 NA 0.37 0.63 AURS B bplacde bay 2, 2006 7 CC0 (PPM1) 0.44 NA 0.44 1.23 AURS B bplacde bay 2, 2006 7 CO (PPM1) 0.44 NA 0.44 1.23 AURS B bplacde bay 2, 2006 10 CC0 (PPM1) 0.44 NA 0.44 1.23 AURS B bplacde bay 2, 2006 13 CC0 (PPM1) 0.50 NA 0.53 2.21 AURS B bplacde bay 2, 2006 13 CC0 (PPM1) 0.66 NA 1.60 2.20	AURS	8	Episode D	Day 2,	2006		1	CO	(PPM)	-9.00	NA	-9.00	0.98
ANRS 8 Bpinode Day 2, 2006 3 CD PPM) 0.39 NA 0.49 0.64 AURS 8 Bpinode Day 2, 2006 5 CD (PPM) 0.44 NA 0.37 NA 0.43 0.63 AURS 8 Bpinode Day 2, 2006 7 CD (PPM) 0.44 NA 0.44 1.43 AURS 8 Bpinode Day 2, 2006 9 CD (PPM) 0.44 NA 0.44 1.46 AURS 8 Bpinode Day 2, 2006 10 CD (PPM) 0.45 NA 0.42 1.46 AURS 8 Bpinode Day 2, 2006 12 CD (PPM) 0.50 NA 0.51 1.2.21 AURS 8 Bpinode Day 2, 2006 15 CD (PPM) 0.50 NA 0.53 NA 0.53 2.46 AURS 8 Bpinode Day 2, 2006 15 CD (PPM) 0.60 NA 1.63 2.36 AURS 8 Bpinode Day 2, 2006 10 CD (PPM) 2.45<	AURS	8	Episode D	Day 2,	2006		2	CO	(PPM)	-9.00	NA	-9.00	0.81
AURS B Biscol Lay 2 2006 4 Col Desc District District <thdistrid< th=""> <thdistrict< th=""> Distrid</thdistrict<></thdistrid<>	AURS	8	Episode D)ay 2,	2006		3	CO	(PPM)	0.39	NA	0.39	0.69
AURS B B Disk C C C C D B Disk D <thd< th=""> D D D</thd<>	AURS	8	Episode L	ay 2,	2006		4	00	(PPM)	0.37	NA	0.37	0.61
AURS B Disode Day 2, 2006 7 CC (PPM) 0.44 NA 0.44 1.23 AURS B Disode Day 2, 2006 9 CC (PPM) 0.48 NA 0.48 1.46 AURS B Disode Day 2, 2006 10 CC (PPM) 0.49 NA 0.48 1.46 AURS B Disode Day 2, 2006 11 CC (PPM) 0.55 NA 0.55 2.21 AURS B Disode Day 2, 2006 14 CC (PPM) 0.63 NA 0.63 2.26 AURS B Disode Day 2, 2006 15 CC (PPM) 0.63 NA 0.63 2.36 AURS B Disode Day 2, 2006 12 CC (PPM) 1.64 NA 1.65 3.80 AURS B Disode Day 2, 2006 20 CC (PPM) 2.95 NA 2.95 4.28 AURS B Disode Day 2, 2006	AURS	0 8	Episode D	ay 2,	2006		5	CO	(PPM) (PPM)	0.37	NA NA	0.37	0.85
ALRS 8 Episode Day 2, 2006 8 CC (PPM) 0.48 NA 0.48 1.46 AURS 8 Episode Day 2, 2006 10 CC (PPM) 0.49 NA 0.48 1.61 AURS 8 Episode Day 2, 2006 11 CC (PPM) 0.50 NA 0.50 2.21 AURS 8 Episode Day 2, 2006 13 CC (PPM) 0.50 NA 0.50 2.46 AURS 8 Episode Day 2, 2006 15 CC (PPM) 0.60 NA 0.63 2.36 AURS 8 Episode Day 2, 2006 15 CC (PPM) 1.60 NA 1.69 3.80 AURS 8 Episode Day 2, 2006 12 CC (PPM) 2.45 NA 2.45 4.28 AURS 8 Episode Day 2, 2006 2.2 CC (PPM) 2.95 NA 2.95 4.18 AURS 8 Episode Day 2, 2006 2.2 CC (PPM) 2.95 NA 2.95 4.	AURS	8	Episode D	ay 2,	2006		7	CO	(PPM)	0.44	NA	0.44	1.23
AURS 8 Episode Day 2, 2006 9 CO (PPM) 0.48 NA 0.48 1.91 AURS 8 Episode Day 2, 2006 11 CO (PPM) 0.50 NA 0.50 2.21 AURS 8 Episode Day 2, 2006 12 CO (PPM) 0.53 NA 0.53 2.24 AURS 8 Episode Day 2, 2006 12 CO (PPM) 0.53 NA 0.63 2.23 AURS 8 Episode Day 2, 2006 16 CO (PPM) 1.60 NA 1.69 3.80 AURS 8 Episode Day 2, 2006 18 CO (PPM) 2.90 NA 2.90 4.28 AURS 8 Episode Day 2, 2006 20 CO (PPM) 2.90 NA 2.90 4.28 AURS 8 Episode Day 2, 2006 22 CO (PPM) 2.90 NA 2.92 4.18 AURS 8 Episode Day 3,	AURS	8	Episode D	ay 2,	2006		8	CO	(PPM)	0.48	NA	0.48	1.46
AURS 8 Ppisode Day 2, 2006 10 CC0 (PPM) 0.49 NA 0.49 1.91 AURS 8 Ppisode Day 2, 2006 11 CC0 (PPM) 0.53 NA 0.50 2.21 AURS 8 Ppisode Day 2, 2006 12 CC0 (PPM) 0.63 NA 0.60 2.53 AURS 8 Ppisode Day 2, 2006 15 CC0 (PPM) 0.63 NA 0.60 2.53 AURS 8 Ppisode Day 2, 2006 17 CC0 (PPM) 1.60 NA 1.60 2.69 AURS 8 Ppisode Day 2, 2006 12 CC0 (PPM) 2.45 NA 2.45 4.24 AURS 8 Ppisode Day 2, 2006 22 CC0 (PPM) 2.45 NA 2.95 4.24 AURS 8 Ppisode Day 2, 2006 22 CC0 (PPM) 2.92 NA 2.95 4.18 AURS 8 Ppisode Day 3, 2006 CC0 (PPM) 2.92 NA 2.95 4.101	AURS	8	Episode D	ay 2,	2006		9	CO	(PPM)	0.48	NA	0.48	1.69
AURS 8 Episode Day 2, 2006 11 CO (PPM) 0.50 NA 0.50 2.21 AURS 8 Episode Day 2, 2006 12 CO (PPM) 0.53 NA 0.53 2.46 AURS 8 Episode Day 2, 2006 14 CO (PPM) 0.63 NA 0.63 2.36 AURS 8 Episode Day 2, 2006 16 CO (PPM) 0.63 NA 1.69 3.80 AURS 8 Episode Day 2, 2006 18 CO (PPM) 2.45 NA 2.45 4.24 AURS 8 Episode Day 2, 2006 20 CO (PPM) 2.45 NA 2.45 4.24 AURS 8 Episode Day 2, 2006 22 CO (PPM) 2.45 NA 2.95 NA 2.95 4.24 AURS 8 Episode Day 2, 2006 20 CO (PPM) 2.39 NA 2.95 4.24 AURS	AURS	8	Episode D	Day 2,	2006		10	CO	(PPM)	0.49	NA	0.49	1.91
AURS 8 Bplaode Lay Los Lay Lay <thlay< <="" td=""><td>AURS</td><td>8</td><td>Episode D</td><td>)ay 2,</td><td>2006</td><td></td><td>11</td><td>CO</td><td>(PPM)</td><td>0.50</td><td>NA</td><td>0.50</td><td>2.21</td></thlay<>	AURS	8	Episode D)ay 2,	2006		11	CO	(PPM)	0.50	NA	0.50	2.21
ATRS B B Divide Div Divide Div Divide Divide <thdivide< th=""> <thdivide< th=""> <thdivi< td=""><td>AURS</td><td>8</td><td>Episode D</td><td>Day 2,</td><td>2006</td><td></td><td>12</td><td>CO</td><td>(PPM)</td><td>0.53</td><td>NA</td><td>0.53</td><td>2.46</td></thdivi<></thdivide<></thdivide<>	AURS	8	Episode D	Day 2,	2006		12	CO	(PPM)	0.53	NA	0.53	2.46
AIRES Bpiande Day 2. 2006 15 CO (PPM) (.63) NA (.64) 2.36 AURS 8 Epiande Day 2. 2006 16 CO (PPM) 1.60 NA 1.60 3.80 AURS 8 Epiande Day 2. 2006 17 CO (PPM) 2.45 NA 2.45 AL AL AURS 8 Epiande Day 2. 2.006 19 CO (PPM) 2.45 NA 2.95 AL 2.45 AURS 8 Epiande Day 2. 2.006 21 CO (PPM) 2.95 NA 2.95 4.18 AURS 8 Epiande Day 3. 2006 2 CO (PPM) 1.70 NA 2.93 4.16 AURS 8 Epiande Day 3. 2006 2 CO (PPM) 1.70 NA 0.43 1.46 AURS Bpiande Day 3. 2006 3 CO (PPM) 0.47	AURS	8	Episode L	ay 2,	2000		14	CO	(PPM) (DDM)	0.50	NA NΔ	0.50	2.00
AURS 8 Epicode Day 2, 2006 16 CO CPPM 1.00 NA 1.00 2.69 AURS 8 Epicode Day 2, 2006 18 CO CPPM 2.45 NA 2.45 4.24 AURS 8 Epicode Day 2, 2006 19 CO (PPM) 2.95 NA 2.95 4.26 AURS 8 Epicode Day 2, 2006 20 CO (PPM) 2.95 NA 2.95 4.26 AURS 8 Epicode Day 2, 2006 22 CO (PPM) 2.95 NA 2.95 4.18 AURS 8 Epicode Day 3, 2006 20 CO (PPM) 2.80 NA 2.95 A 2.80 4.18 AURS 8 Epicode Day 3, 2006 20 CO (PPM) 1.97 NA 2.93 1.46 AURS 8 Epicode Day 3, 2006 CO (PPM) 0.33 NA 0.33 0.98 AURS Epicode Day 3,	AURS	8	Episode D	ay 2, av 2.	2006		15	CO	(PPM)	0.63	NA	0.63	2.36
AURS 8 Episode Day 2, 2006 17 CO CPPM 1.69 NA 1.69 3.80 AURS 8 Episode Day 2, 2006 19 CO (PPM) 2.45 NA 2.45 4.24 AURS 8 Episode Day 2, 2006 20 CO (PPM) 2.95 NA 2.95 4.26 AURS 8 Episode Day 2, 2006 21 CO (PPM) 2.95 NA 2.95 4.18 AURS 8 Episode Day 2, 2006 22 CO (PPM) 2.92 NA 2.92 4.18 AURS 8 Episode Day 3, 2006 1 CO (PPM) 1.93 NA 0.33 1.45 AURS 8 Episode Day 3, 2006 4 CO (PPM) 0.32 NA 0.33 0.93 AURS 8 Episode Day 3, 2006 4 CO (PPM) 0.42 NA 0.42 2.06 AURS 8 Episode Day 3, 200	AURS	8	Episode D	ay 2,	2006		16	CO	(PPM)	1.00	NA	1.00	2.69
AURS B Episode Day 2, 2006 18 CO CPPN 2.45 NA 2.45 4.24 AURS B Episode Day 2, 2006 19 CO (PPN) 2.95 NA 2.95 4.26 AURS B Episode Day 2, 2006 20 CO (PPN) 2.95 NA 2.95 4.18 AURS B Episode Day 2, 2006 21 CO (PPN) 2.95 NA 2.92 4.18 AURS B Episode Day 3, 2006 21 CO (PPN) 2.30 NA 2.30 4.101 AURS B Episode Day 3, 2006 1 CO (PPN) 0.47 NA 0.47 1.16 AURS B Episode Day 3, 2006 5 CO (PPN) 0.43 NA 0.35 NA 0.35 NA 0.35 AURS B Episode Day 3, 2006 7 CO (PPN) 0.42 NA 0.44 2.96	AURS	8	Episode D	Day 2,	2006		17	CO	(PPM)	1.69	NA	1.69	3.80
AURS 8 Episode Day 2, 2006 19 CO (PPM) 2.95 NA 2.90 4.26 AURS 8 Episode Day 2, 2006 21 CO (PPM) 2.95 NA 2.95 4.26 AURS 8 Episode Day 2, 2006 21 CO (PPM) 2.92 NA 2.92 4.18 AURS 8 Episode Day 3, 2006 20 CO (PPM) 2.92 NA 2.92 4.18 AURS 8 Episode Day 3, 2006 2 CO (PPM) 1.70 NA 0.47 1.16 AURS 8 Episode Day 3, 2006 2 CO (PPM) 0.47 NA 0.47 1.16 AURS 8 Episode Day 3, 2006 6 CO (PPM) 0.33 NA 0.39 0.98 AURS 8 Episode Day 3, 2006 6 CO (PPM) 0.42 NA 0.42 2.94 AURS 8 Episode Day 3, 2006 10 CO (PPM) 0.44 NA 0.52 NA 0.52 </td <td>AURS</td> <td>8</td> <td>Episode D</td> <td>)ay 2,</td> <td>2006</td> <td></td> <td>18</td> <td>CO</td> <td>(PPM)</td> <td>2.45</td> <td>NA</td> <td>2.45</td> <td>4.24</td>	AURS	8	Episode D)ay 2,	2006		18	CO	(PPM)	2.45	NA	2.45	4.24
AURS 8 Episode Day 2, 2006 20 CO (PEP) 2.95 NA 2.95 4.26 AURS 8 Episode Day 2, 2006 21 CO (PEP) 2.95 NA 2.95 4.18 AURS 8 Episode Day 2, 2006 21 CO (PEP) 2.92 NA 2.92 4.18 AURS 8 Episode Day 3, 2006 1 CO (PEP) 2.92 NA 2.93 3.45 AURS 8 Episode Day 3, 2006 1 CO (PEP) 1.73 NA 0.93 1.48 AURS 8 Episode Day 3, 2006 2 CO (PPM) 0.35 NA 0.35 0.90 AURS 8 Episode Day 3, 2006 7 CO (PPM) 0.44 NA 0.42 2.06 AURS 8 Episode Day 3, 2006 7 CO (PPM) 0.44 NA 0.42 2.99 AURS 8 Episode Day 3, 2006 11 CO (PPM) 0.42 NA 0.50 2.99 <	AURS	8	Episode D)ay 2,	2006		19	CO	(PPM)	2.90	NA	2.90	4.28
Altres Bebiesde Day 2, 2006 22 CCO (PPM) 2.92 NA 2.62 NA	AURS	8	Episode L	ay 2,	2006		20 21	CO	(PPM) (DDM)	2.95	NA NA	2.95	4.20
AURS B Episode Day 2, 2006 23 CO (PPM) 2.80 NA 2.80 4.01 AURS B Episode Day 3, 2006 1 CO (PPM) 1.70 NA 1.70 2.11 AURS B Episode Day 3, 2006 2 CO<(PPM)	AURS	8	Episode D	ay 2, av 2.	2000		22	CO	(PPM)	2.95	NA	2.92	4.18
AURS B Episode Day 3, 2006 O CO (PPM) 2.39 NA 2.39 3.45 AURS B Episode Day 3, 2006 1 CO (PPM) 0.93 NA 0.93 1.48 AURS B Episode Day 3, 2006 2 CO (PPM) 0.47 NA 0.47 1.16 AURS B Episode Day 3, 2006 4 CO (PPM) 0.39 NA 0.39 0.98 AURS B Episode Day 3, 2006 6 CO (PPM) 0.34 NA 0.34 1.36 AURS B Episode Day 3, 2006 7 CO (PPM) 0.42 NA 0.42 2.06 AURS B Episode Day 3, 2006 10 CO (PPM) 0.42 NA 0.50 2.99 AURS B Episode Day 3, 2006 12 CO (PPM) 0.50 NA 0.50 2.94 AURS B Episode Day 3, 2006<	AURS	8	Episode D	ay 2,	2006		23	CO	(PPM)	2.80	NA	2.80	4.01
AURS 8 Episode Day 3, 2006 1 CC (PPM) 1.70 NA 1.70 2.11 AURS 8 Episode Day 3, 2006 3 CO (PPM) 0.93 NA 0.93 1.48 AURS 8 Episode Day 3, 2006 5 CO (PPM) 0.35 NA 0.35 0.98 AURS 8 Episode Day 3, 2006 5 CO (PPM) 0.34 NA 0.34 1.36 AURS 8 Episode Day 3, 2006 7 CO (PPM) 0.42 NA 0.42 2.06 AURS 8 Episode Day 3, 2006 9 CO (PPM) 0.42 NA 0.44 2.59 AURS 8 Episode Day 3, 2006 10 CO (PPM) 0.50 NA 0.52 3.04 AURS 8 Episode Day 3, 2006 11 CO (PPM) 0.50 NA 0.56 3.04 AURS 8 Episode Day 3, 2006 14 CO (PPM) 0.50 NA 9.00 2.41 AURS 8 Episode Day 3, 2006 15 CO (PPM) 9.00 <td>AURS</td> <td>8</td> <td>Episode D</td> <td>)ay 3,</td> <td>2006</td> <td></td> <td>0</td> <td>CO</td> <td>(PPM)</td> <td>2.39</td> <td>NA</td> <td>2.39</td> <td>3.45</td>	AURS	8	Episode D)ay 3,	2006		0	CO	(PPM)	2.39	NA	2.39	3.45
AURS 8 Episode Day 3, 2006 2 CCO (PPM) 0.43 NA 0.93 1.48 AURS 8 Episode Day 3, 2006 4 CCO (PPM) 0.39 NA 0.37 0.98 AURS 8 Episode Day 3, 2006 5 CCO (PPM) 0.34 NA 0.35 0.90 AURS 8 Episode Day 3, 2006 6 CCO (PPM) 0.34 NA 0.34 1.36 AURS 8 Episode Day 3, 2006 7 CCO (PPM) 0.44 NA 0.42 2.06 AURS 8 Episode Day 3, 2006 9 CCO (PPM) 0.44 NA 0.44 2.94 AURS 8 Episode Day 3, 2006 10 CCO (PPM) 0.47 NA 0.52 3.04 AURS 8 Episode Day 3, 2006 12 CCO (PPM) 0.50 NA 0.52 3.04 AURS 8 Episode Day 3, 2006 14 CCO (PPM) 0.50 NA 0.50 3.200 3.04 AURS 8 Episode Day 3, 2006 14 CC	AURS	8	Episode D	Day 3,	2006		1	CO	(PPM)	1.70	NA	1.70	2.11
AURS 8 Episode Day 3, 2006 3 CO (PPM) 0.47 NA 0.47 1.16 AURS 8 Episode Day 3, 2006 5 CO<(PPM)	AURS	8	Episode D	Day 3,	2006		2	CO	(PPM)	0.93	NA	0.93	1.48
AURS 8 Episode Day 3, 2006 5 CO (EM) 0.125 NA 0.135 0.90 AURS 8 Episode Day 3, 2006 6 CO (EPM) 0.134 NA 0.34 1.36 AURS 8 Episode Day 3, 2006 7 CO (EPM) 0.42 NA 0.42 2.06 AURS 8 Episode Day 3, 2006 9 CO (EPM) 0.44 NA 0.44 2.94 AURS 8 Episode Day 3, 2006 10 CO<(PPM)	AURS	8	Episode L	ay 3,	2006		3	CO	(PPM) (DDM)	0.4/	NA NA	0.4/	1.10
AURS 8 Episode Day 3, 2006 6 CO (PPM) 0.34 NA 0.34 1.36 AURS 8 Episode Day 3, 2006 7 CO (PPM) 0.42 NA 0.42 2.06 AURS 8 Episode Day 3, 2006 9 CO (PPM) 0.44 NA 0.42 2.06 AURS 8 Episode Day 3, 2006 10 CO (PPM) 0.47 NA 0.47 2.94 AURS 8 Episode Day 3, 2006 11 CO<(PPM)	AURS	8	Episode D	ay 3,	2000		5	CO	(PPM)	0.35	NA	0.35	0.90
AURS 8 Episode Day 3, 2006 7 CO CPMM 0.42 NA 0.42 2.06 AURS 8 Episode Day 3, 2006 9 CO (PPM) 0.44 NA 0.44 2.94 AURS 8 Episode Day 3, 2006 10 CO (PPM) 0.50 NA 0.47 2.94 AURS 8 Episode Day 3, 2006 11 CO (PPM) 0.52 NA 0.52 3.04 AURS 8 Episode Day 3, 2006 12 CO (PPM) 0.60 NA 0.56 3.04 AURS 8 Episode Day 3, 2006 14 CO (PPM) -9.00 NA -9.00 2.41 AURS 8 Episode Day 3, 2006 16 CO (PPM) -9.00 NA -9.00 1.25 AURS 8 Episode Day 3, 2006 17 CO (PPM) -9.00 NA -9.00 1.26 AURS 8 Episode Day	AURS	8	Episode D	Day 3,	2006		6	CO	(PPM)	0.34	NA	0.34	1.36
AURS 8 Episode Day 3, 2006 8 CO<(PPM) 0.44 NA 0.44 2.59 AURS 8 Episode Day 3, 2006 10 CO<(PPM)	AURS	8	Episode D	Day 3,	2006		7	CO	(PPM)	0.42	NA	0.42	2.06
AURS 8 Episode Day 3, 2006 9 CO (PPM) 0.47 NA 0.47 2.94 AURS 8 Episode Day 3, 2006 10 CO (PPM) 0.52 NA 0.52 3.04 AURS 8 Episode Day 3, 2006 12 CO (PPM) 0.56 NA 0.55 3.04 AURS 8 Episode Day 3, 2006 12 CO (PPM) 0.60 NA 0.60 2.99 AURS 8 Episode Day 3, 2006 14 CO (PPM) -9.00 NA -9.00 1.65 AURS 8 Episode Day 3, 2006 15 CO (PPM) -9.00 NA -9.00 1.65 AURS 8 Episode Day 3, 2006 16 CO (PPM) -9.00 NA -9.00 1.26 AURS 8 Episode Day 3, 2006 18 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 20 CO (PPM) -9.00 NA -9.00 2.36 AURS 8 Episode Day 3, 2006 21 CO (PPM)	AURS	8	Episode D)ay 3,	2006		8	CO	(PPM)	0.44	NA	0.44	2.59
AURS 6 Episode Day 3, 2006 10 CO<(PPM) 0.50 NA 0.50 2.99 AURS 8 Episode Day 3, 2006 12 CO<(PPM)	AURS	8	Episode D	Day 3,	2006		10	CO	(PPM)	0.47	NA	0.47	2.94
AURD 6 Episode Day 3, 2000 11 CO (FPM) 0.52 NA 0.52 3.04 AURS 8 Episode Day 3, 2006 12 CO (FPM) 0.56 NA 0.56 3.04 AURS 8 Episode Day 3, 2006 13 CO (FPM) -9.00 NA -9.00 2.91 AURS 8 Episode Day 3, 2006 15 CO (FPM) -9.00 NA -9.00 1.65 AURS 8 Episode Day 3, 2006 16 CO (FPM) -9.00 NA -9.00 1.25 AURS 8 Episode Day 3, 2006 17 CO (FPM) -9.00 NA -9.00 1.26 AURS 8 Episode Day 3, 2006 12 CO (FPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 21 CO (FPM) -9.00 NA -9.00 2.36 AURS 8 Episode Day 3, 2006 22 CO (FPM) -9.00 NA -9.00	AURS	8	Episode L	ay 3,	2006		11 11	CO	(PPM) (DDM)	0.50	NA NA	0.50	2.99
AURS 8 Episode Day 3, 2006 13 CO (PPM) 0.60 NA 0.60 2.99 AURS 8 Episode Day 3, 2006 14 CO (PPM) -9.00 NA -9.00 2.41 AURS 8 Episode Day 3, 2006 15 CO (PPM) -9.00 NA -9.00 1.65 AURS 8 Episode Day 3, 2006 16 CO (PPM) -9.00 NA -9.00 1.25 AURS 8 Episode Day 3, 2006 17 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 19 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.36 AURS 8 Episode Day 1, 2006 22 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00	AURS	8	Episode D	ay 3,	2006		12^{11}	CO	(PPM)	0.52	NA	0.52	3.04
AURS 8 Episode Day 3, 2006 14 CO (PPM) -9.00 NA -9.00 2.41 AURS 8 Episode Day 3, 2006 15 CO (PPM) -9.00 NA -9.00 1.65 AURS 8 Episode Day 3, 2006 16 CO (PPM) -9.00 NA -9.00 1.25 AURS 8 Episode Day 3, 2006 17 CO (PPM) -9.00 NA -9.00 1.26 AURS 8 Episode Day 3, 2006 18 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 20 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.15 AURS 8 Episode Day 3, 2006 23 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) <td>AURS</td> <td>8</td> <td>Episode D</td> <td>Day 3,</td> <td>2006</td> <td></td> <td>13</td> <td>CO</td> <td>(PPM)</td> <td>0.60</td> <td>NA</td> <td>0.60</td> <td>2.99</td>	AURS	8	Episode D	Day 3,	2006		13	CO	(PPM)	0.60	NA	0.60	2.99
AURS 8 Episode Day 3, 2006 15 CO (PPM) -9.00 NA -9.00 1.65 AURS 8 Episode Day 3, 2006 17 CO (PPM) -9.00 NA -9.00 1.25 AURS 8 Episode Day 3, 2006 17 CO (PPM) -9.00 NA -9.00 1.26 AURS 8 Episode Day 3, 2006 18 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 20 CO (PPM) -9.00 NA -9.00 2.15 AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 23 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 <td>AURS</td> <td>8</td> <td>Episode D</td> <td>Day 3,</td> <td>2006</td> <td></td> <td>14</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>NA</td> <td>-9.00</td> <td>2.41</td>	AURS	8	Episode D	Day 3,	2006		14	CO	(PPM)	-9.00	NA	-9.00	2.41
AURS 8 Episode Day 3, 2006 16 CO (PPM) -9.00 NA -9.00 1.25 AURS 8 Episode Day 3, 2006 17 CO (PPM) -9.00 NA -9.00 1.26 AURS 8 Episode Day 3, 2006 19 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 20 CO (PPM) -9.00 NA -9.00 2.15 AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.15 AURS 8 Episode Day 3, 2006 22 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 0 CO (PPM) 0.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 1 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00	AURS	8	Episode D)ay 3,	2006		15	CO	(PPM)	-9.00	NA	-9.00	1.65
AURS 6 Episode Day 3, 2006 17 CO (PPM) -9.00 NA -9.00 1.26 AURS 8 Episode Day 3, 2006 18 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 20 CO (PPM) -9.00 NA -9.00 1.64 AURS 8 Episode Day 3, 2006 20 CO (PPM) -9.00 NA -9.00 2.15 AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.36 AURS 8 Episode Day 3, 2006 22 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 0 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Epis	AURS	8	Episode D	Day 3,	2006		10	CO	(PPM)	-9.00	NA	-9.00	1.25
AURS 8 Episode Day 3, 2006 19 CO (PPM) -9.00 NA -9.00 1.86 AURS 8 Episode Day 3, 2006 20 CO (PPM) -9.00 NA -9.00 2.15 AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.15 AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 3, 2006 23 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 0 CO (PPM) -9.00 NA -9.00 2.49 PLM 8 Episode Day 1, 2006 1 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 4 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 5 CO (PPM)	AURS	8	Episode L	ay 3,	2006		18	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1.20
AURS 8 Episode Day 3, 2006 20 CO (PPM) -9.00 NA -9.00 2.15 AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.36 AURS 8 Episode Day 3, 2006 22 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 3, 2006 23 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 0 CO (PPM) -9.00 NA -9.00 2.49 PLM 8 Episode Day 1, 2006 1 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 3 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 5 CO (PPM) 0.00 NA -9.00 -9.00	AURS	8	Episode D	ay 3	2006		19	CO	(PPM)	-9.00	NA	-9.00	1.86
AURS 8 Episode Day 3, 2006 21 CO (PPM) -9.00 NA -9.00 2.36 AURS 8 Episode Day 3, 2006 22 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 1, 2006 23 CO (PPM) -9.00 NA -9.00 2.49 PLM 8 Episode Day 1, 2006 0 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 1 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 3 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 5 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO (PPM) -9.00 NA -9.00 -9.00 <td>AURS</td> <td>8</td> <td>Episode D</td> <td>Day 3,</td> <td>2006</td> <td></td> <td>20</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>NA</td> <td>-9.00</td> <td>2.15</td>	AURS	8	Episode D	Day 3,	2006		20	CO	(PPM)	-9.00	NA	-9.00	2.15
AURS 8 Episode Day 3, 2006 22 CO (PPM) -9.00 NA -9.00 2.45 AURS 8 Episode Day 3, 2006 23 CO (PPM) -9.00 NA -9.00 2.45 PLM 8 Episode Day 1, 2006 0 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 1 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 3 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 4 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO (PPM) 0.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 7 CO (PPM) -9.00 NA -9.00 -9.00	AURS	8	Episode D)ay 3,	2006		21	CO	(PPM)	-9.00	NA	-9.00	2.36
AURS 8 Episode Day 3, 2006 23 CO (PPM) -9.00 NA -9.00 2.49 PLM 8 Episode Day 1, 2006 0 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 1 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 3 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 5 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 7 CO (PPM) -9.00 NA -9.00 -9.00	AURS	8	Episode D)ay 3,	2006		22	CO	(PPM)	-9.00	NA	-9.00	2.45
PLM 8 Episode Day 1, 2006 0 CO<(PPM)	AURS	8	Episode D	Day 3,	2006		23	CO	(PPM)	-9.00	NA	-9.00	2.49
PLM 8 Episode Day 1, 2006 1 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 2 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 3 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 4 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 5 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 7 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00	PLM	8	Episode L	ay 1,	2006		1	CO	(PPM) (DDM)	0.00	NA	0.00	-9.00
PLM 8 Episode Day 1, 2006 3 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 4 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 5 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 5 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 7 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 11 CO (PPM) -9	PLM	8	Episode D)av 1	2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
PLM 8 Episode Day 1, 2006 4 CO<(PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 5 CO<(PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO<(PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO<(PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 7 CO<(PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 8 CO<(PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO<(PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO<(PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 11 CO<(PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 12 CO<(PPM) <	PLM	8	Episode D	ay 1,	2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
PLM 8 Episode Day 1, 2006 5 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 6 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 7 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 8 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 8 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 9 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 11 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 13 CO (PPM) -9.00 NA -9.00 -9.00	PLM	8	Episode D	ay 1,	2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
PLM 8 Episode Day 1, 2006 6 CO (PPM) 0.00 NA 0.00 -9.00 PLM 8 Episode Day 1, 2006 7 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 8 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 9 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 11 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 12 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 13 CO (PPM) -9.00 NA -9.00 -9.00 <td>PLM</td> <td>8</td> <td>Episode D</td> <td>ay 1,</td> <td>2006</td> <td></td> <td>5</td> <td>CO</td> <td>(PPM)</td> <td>0.00</td> <td>NA</td> <td>0.00</td> <td>-9.00</td>	PLM	8	Episode D	ay 1,	2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
PLM 8 Episode Day 1, 2006 7 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 8 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 9 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 11 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 12 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 13 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 15 CO (PPM) <td>PLM</td> <td>8</td> <td>Episode D</td> <td>Day 1,</td> <td>2006</td> <td></td> <td>6</td> <td>CO</td> <td>(PPM)</td> <td>0.00</td> <td>NA</td> <td>0.00</td> <td>-9.00</td>	PLM	8	Episode D	Day 1,	2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
PLM 8 Episode Day 1, 2000 6 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 9 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 11 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 12 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 13 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 15 CO (PPM) -9.00 NA -9.00 -9.00	РЬМ	8	Episode D	ay 1,	∠006 2006		/ 0	00	(PPM)	-9.00	NA NA	-9.00	-9.00
PLM 8 Episode Day 1, 2006 10 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 11 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 12 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 12 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 13 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 15 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 15 CO (PPM) -9.00 NA -9.00 -9.00	PLM PT.M	8	Episode D	$ay \perp$	2006		9	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM 8 Episode Day 1, 2006 11 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 12 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 13 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 15 CO (PPM) -9.00 NA -9.00 -9.00	PLM	8	Episode D	ay 1,	2006		10	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM 8 Episode Day 1, 2006 12 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 13 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 15 CO (PPM) -9.00 NA -9.00 -9.00	PLM	8	Episode D	ay 1,	2006		11	CO	(PPM)	-9.00	NA	-9.00	-9.00
Рым 8 Episode Day 1, 2006 13 CO (РРМ) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 14 CO (РРМ) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 15 CO (РРМ) -9.00 NA -9.00 -9.00	PLM	8	Episode D	ay 1,	2006		12	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM 8 Episode Day 1, 2000 14 CO (PPM) -9.00 NA -9.00 -9.00 PLM 8 Episode Day 1, 2006 15 CO (PPM) -9.00 NA -9.00 -9.00	PLM	8	Episode D	ay 1,	2006		13 14	CO	(PPM)	-9.00	NA	-9.00	-9.00
	PLM	8 8	Episode D)ay 1,)ay 1.	2006		14 15	CO	(PPM)	-9.00	NA NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High	n: 2006	mob=844	.7tpd	l;1.5;8	80;I/M	240 w/newest	4myr exempt;		
		שיידעם				ир	DOLI	ד דדידי א אדידי	2006 DBEDICTED	2006 תפיים בתייפת	2006 תפידים תפיקות	1988
PERI	OD	DAIE				пĸ	POLI	LUIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
									(==== ,	(<u>2</u>)	(,	
PLM	8	Episode D	ay 1,	2006		16	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 1,	2006		17	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D Episodo D	ay 1,	2006		10	CO	(PPM)	-9.00	NA	-9.00	-9.00
DI.M	8	Episode D Episode D	ay 1,	2000		20	CO	(PPM) (DDM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 1	2006		21	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 1,	2006		22	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 1,	2006		23	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 2,	2006		0	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 2,	2006		1	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 2,	2006		2	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D Episodo D	ay 2,	2006		3	CO	(PPM)	0.74	NA	0.74	-9.00
DI.M	8	Episode D Episode D	ay 2,	2000		5	CO	(PPM) (DDM)	0.09	NA	0.09	-9.00
PLM	8	Episode D	av 2	2006		6	CO	(PPM)	0.60	NA	0.60	-9.00
PLM	8	Episode D	ay 2,	2006		7	CO	(PPM)	0.67	NA	0.67	-9.00
PLM	8	Episode D	ay 2,	2006		8	CO	(PPM)	0.71	NA	0.71	-9.00
PLM	8	Episode D	ay 2,	2006		9	CO	(PPM)	0.75	NA	0.75	-9.00
PLM	8	Episode D	ay 2,	2006		10	CO	(PPM)	0.77	NA	0.77	-9.00
PLM	8	Episode D	ay 2,	2006			CO	(PPM)	0.78	NA	0.78	-9.00
PLM	8	Episode D Episodo D	ay 2,	2006		12	CO	(PPM)	0.81	NA	0.81	-9.00
DI.M	8	Episode D Episode D	ay 2,	2000		14	CO	(PPM) (DDM)	0.84	NA	0.84	-9.00
PLM	8	Episode D	av 2	2006		15	CO	(PPM)	0.86	NA	0.86	-9.00
PLM	8	Episode D	ay 2,	2006		16	CO	(PPM)	1.12	NA	1.12	-9.00
PLM	8	Episode D	ay 2,	2006		17	CO	(PPM)	1.54	NA	1.54	-9.00
PLM	8	Episode D	ay 2,	2006		18	CO	(PPM)	2.09	NA	2.09	-9.00
PLM	8	Episode D	ay 2,	2006		19	CO	(PPM)	2.81	NA	2.81	-9.00
PLM	8	Episode D	ay 2,	2006		20	CO	(PPM)	2.99	NA	2.99	-9.00
PLM DI.M	8	Episode D Frigode D	ay 2,	2006		∠⊥ 22	CO	(PPM) (DDM)	3.04	NA NA	3.04	-9.00
PLM	8	Episode D	ay 2,	2006		23	CO	(PPM)	2.97	NA	2.97	-9.00
PLM	8	Episode D	ay 3,	2006		0	CO	(PPM)	2.64	NA	2.64	-9.00
PLM	8	Episode D	ay 3,	2006		1	CO	(PPM)	2.16	NA	2.16	-9.00
PLM	8	Episode D	ay 3,	2006		2	CO	(PPM)	1.60	NA	1.60	-9.00
PLM	8	Episode D	ay 3,	2006		3	CO	(PPM)	0.86	NA	0.86	-9.00
PLM	8	Episode D	ay 3,	2006		4	CO	(PPM)	0.64	NA	0.64	-9.00
PLM	8	Episode D Episodo D	ay 3,	2006		5	CO	(PPM) (DDM)	0.55	NA	0.55	-9.00
PLM PLM	8	Episode D Episode D	ay 3,	2000		7	CO	(PPM) (PPM)	0.48	NA	0.48	-9.00
PLM	8	Episode D	ay 3,	2006		8	CO	(PPM)	0.63	NA	0.63	-9.00
PLM	8	Episode D	ay 3,	2006		9	CO	(PPM)	0.66	NA	0.66	-9.00
PLM	8	Episode D	ay 3,	2006		10	CO	(PPM)	0.70	NA	0.70	-9.00
PLM	8	Episode D	ay 3,	2006		11	CO	(PPM)	0.76	NA	0.76	-9.00
PLM	8	Episode D	ay 3,	2006		12	CO	(PPM)	0.83	NA	0.83	-9.00
PLM	8	Episode D Episode D	ay 3,	2006		14	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
PLM PLM	8	Episode D Episode D	ay 3,	2000		15	CO	(PPM) (PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 3,	2006		16	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 3,	2006		17	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 3,	2006		18	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 3,	2006		19	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode D	ay 3,	2006		20	CO	(PPM)	-9.00	NA	-9.00	-9.00
РЪМ DT.M	8 8	Episode D	ay 3,	2006 2006		⊿⊥ 22	00	(PPM)	-9.00 _0 00	NA NA	-9.00 _9.00	-9.00 _9.00
PIM PT.M	8	Episode D Episode D	ay J, av 3	2006		23	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode D	av 1.	2006		0	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8	Episode D	ay 1,	2006		1	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8	Episode D	ay 1,	2006		2	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8	Episode D	ay 1,	2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
B'TN DENI	8	Episode D	ay 1,	2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
BIN	б Q	⊾pisode D Fpisodo D	ay 1,	∠006 2006		5	00	(PPM)	0.00	NA NA	0.00	-9.00
RTN	8	Episode D	ay ⊥, av 1	2006		7	CO	(PPM)	-9 00	NΑ NΔ	-9 00	-9.00
BTN	8	Episode D	ay 1	2006		8	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode D	ay 1,	2006		9	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode D	ay 1,	2006		10	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode D	ay 1,	2006		11	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode D	ay 1,	2006		12	CO	(PPM)	-9.00	NA	-9.00	-9.00
BIN	б р	Episode D	ay 1,	2006 2006		⊥3 14	00	(PPM)	-9.00	NA NA	-9.00	-9.00
BTN	8	Episode D	ay⊥, av1	2006		⊥ 1 15	CO	(PPM)	-9.00 -9.00	NΑ NΔ	-9.00	-9.00
BTN	8	Episode D	ay 1	2006		16	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode D	ay 1,	2006		17	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode D	ay 1,	2006		18	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			Higl	n: 2006	mob=844	.7tpc	1;1.5;8	80;I/M	240 w/newest	4myr exempt	0005	1000
SITE A	AVG PERIOD	DATE				HR	POLI	LUTANT	2006 PREDICTED (UAM)	2006 PREDICTED (CAL3QHC)	2006 PREDICTED (UAM+CAL3)	1988 OBSERVED
BTN	8	Episode	Day 1,	2006		19	CO	(PPM)	-9.00	NA	-9.00	-9.00
BIN	8	Episode	Day I, Day 1	2006		20	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
BIN	0 8	Episode	Day I, Dav 1	2006		∠⊥ 22	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
BTN	8	Episode	Day 1.	2006		23	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 2,	2006		0	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 2,	2006		1	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 2,	2006		2	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 2,	2006		3	CO	(PPM)	0.39	NA	0.39	-9.00
BTN	8	Episode	Day 2,	2006		4	CO	(PPM)	0.38	NA	0.38	-9.00
B.I.N	8	Episode	Day 2,	2006		5	CO	(PPM)	0.37	NA	0.37	-9.00
BIN	0 8	Episode	Day 2, Day 2	2006		7	CO	(PPM) (DDM)	0.38	NA NA	0.30	-9.00
BTN	8	Episode	Dav 2.	2006		8	CO	(PPM)	0.40	NA	0.40	-9.00
BTN	8	Episode	Day 2,	2006		9	CO	(PPM)	0.41	NA	0.41	-9.00
BTN	8	Episode	Day 2,	2006		10	CO	(PPM)	0.43	NA	0.43	-9.00
BTN	8	Episode	Day 2,	2006		11	CO	(PPM)	0.47	NA	0.47	-9.00
BTN	8	Episode	Day 2,	2006		12	CO	(PPM)	0.52	NA	0.52	-9.00
BTN	8	Episode	Day 2,	2006		13	CO	(PPM)	0.58	NA	0.58	-9.00
B.I.N	8	Episode	Day 2,	2006		14	CO	(PPM)	0.63	NA	0.63	-9.00
BIN	0 8	Episode	Day 2, Day 2	2006		16	CO	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
BTN	8	Episode	Day 2, Day 2.	2006		17	CO	(PPM)	0.84	NA	0.84	-9.00
BTN	8	Episode	Day 2,	2006		18	CO	(PPM)	0.91	NA	0.91	-9.00
BTN	8	Episode	Day 2,	2006		19	CO	(PPM)	0.94	NA	0.94	-9.00
BTN	8	Episode	Day 2,	2006		20	CO	(PPM)	0.93	NA	0.93	-9.00
BTN	8	Episode	Day 2,	2006		21	CO	(PPM)	0.94	NA	0.94	-9.00
BTN	8	Episode	Day 2,	2006		22	CO	(PPM)	1.02	NA	1.02	-9.00
B.I.N	8	Episode	Day 2,	2006		23	CO	(PPM)	1.12	NA	1.12	-9.00
BIN	0 8	Episode	Day 3, Day 3	2006		1	CO	(PPM) (DDM)	1.11	NA NA	1.11	-9.00
BTN	8	Episode	Day 3.	2006		2	CO	(PPM)	0.97	NA	0.97	-9.00
BTN	8	Episode	Day 3,	2006		3	CO	(PPM)	0.90	NA	0.90	-9.00
BTN	8	Episode	Day 3,	2006		4	CO	(PPM)	0.85	NA	0.85	-9.00
BTN	8	Episode	Day 3,	2006		5	CO	(PPM)	0.79	NA	0.79	-9.00
BTN	8	Episode	Day 3,	2006		6	CO	(PPM)	0.66	NA	0.66	-9.00
BTN	8	Episode	Day 3,	2006		.7	CO	(PPM)	0.51	NA	0.51	-9.00
BIN	8	Episode	Day 3, Day 3	2006		8	C0 C0	(PPM) (DDM)	0.43	NA NA	0.43	-9.00
BTN	8	Episode	Day 3, Dav 3.	2000		10	CO	(PPM)	0.35	NA	0.35	-9.00
BTN	8	Episode	Dav 3,	2006		11	CO	(PPM)	0.33	NA	0.33	-9.00
BTN	8	Episode	Day 3,	2006		12	CO	(PPM)	0.33	NA	0.33	-9.00
BTN	8	Episode	Day 3,	2006		13	CO	(PPM)	0.33	NA	0.33	-9.00
BTN	8	Episode	Day 3,	2006		14	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 3,	2006		15	CO	(PPM)	-9.00	NA	-9.00	-9.00
BIN	8	Episode	Day 3,	2006		17	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
BIN	8	Episode	Day 3, Day 3	2000		18	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 3, Dav 3,	2006		19	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 3,	2006		20	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 3,	2006		21	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 3,	2006		22	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode	Day 3,	2006		23	CO	(PPM)	-9.00	NA	-9.00	-9.00
	8	Episode	Day I, Day 1	2006		1	C0 C0	(PPM)	0.00	NA NA	0.00	-9.00
U_1 TT 1	8	Episode	Day 1, Dav 1	2000		2	CO	(PPM) (DDM)	0.00	NA NΔ	0.00	-9.00
U 1	8	Episode	Day 1, Dav 1,	2006		3	CO	(PPM)	0.00	NA	0.00	-9.00
Ū_1	8	Episode	Day 1,	2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode	Day 1,	2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode	Day 1,	2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode	Day 1,	2006		7	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 1,	2006		8	CO	(PPM)	-9.00	NA	-9.00	-9.00
	б Д	EDIGODE	Day 1, Day 1	2000 2006		9 10	CO	(PPM)	-9.00 _9.00	INA NA	-9.00	-9.00
т <u>1</u>	8	Episode	Dav 1	2006		11	CO	(PPM)	-9.00	NA	-9.00	-9.00
<u> </u>	8	Episode	Day 1,	2006		12	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 1,	2006		13	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 1,	2006		14	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 1,	2006		15	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 1,	2006		16	CO	(PPM)	-9.00	NA	-9.00	-9.00
	8	Episode	Day 1,	2006 2006		1°/	00	(PPM)	-9.00	NA	-9.00	-9.00
U_1 TT 1	0 8	Episode	Day 1, Dav 1	2006		19	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
Ŭ_1	8	Episode	Day 1.	2006		20	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 1,	2006		21	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 2006	mob=84	4.7tpd	1,1.5;8	80;I/M	240 w/newest	4myr exempt;		
								2006	2006	2006	1988
SITE AVG		DATE			HR	POLI	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PER	LOD							(UAM)	(CAL3QHC)	(UAM+CAL3)	
TT 1	8	Episode	Day 1, 2006		22	CO	(PPM)	-9.00	NA	-9.00	-9.00
U 1	8	Episode	Day 1, 2006		23	CO	(PPM)	-9.00	NA	-9.00	-9.00
U 1	8	Episode	Day 2, 2006		0	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 2, 2006		1	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 2, 2006		2	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 2, 2006		3	CO	(PPM)	0.75	NA	0.75	-9.00
U_1	8	Episode	Day 2, 2006		4	CO	(PPM)	0.71	NA	0.71	-9.00
U_1	8	Episode	Day 2, 2006		5	CO	(PPM)	0.68	NA	0.68	-9.00
U_1	8	Episode	Day 2, 2006		6	CO	(PPM)	0.63	NA	0.63	-9.00
U_1	8	Episode	Day 2, 2006		.7	CO	(PPM)	0.74	NA	0.74	-9.00
U_1	8	Episode	Day 2, 2006		8	CO	(PPM)	0.80	NA	0.80	-9.00
U_1	8	Episode	Day 2, 2006		10	00	(PPM)	0.83	NA	0.83	-9.00
U_1 TT 1	Q Q	Episode	Day 2, 2000		11	CO	(PPM)	0.84	NA NA	0.84	-9.00
U_1	8	Episode	Day 2, 2000 Day 2, 2006		12	CO	(PPM)	0.00	NA	0.00	-9 00
U 1	8	Episode	Day 2, 2006		13	CO	(PPM)	0.95	NA	0.95	-9.00
U 1	8	Episode	Dav 2, 2006		14	CO	(PPM)	1.05	NA	1.05	-9.00
U 1	8	Episode	Day 2, 2006		15	CO	(PPM)	1.07	NA	1.07	-9.00
U_1	8	Episode	Day 2, 2006		16	CO	(PPM)	1.56	NA	1.56	-9.00
U_1	8	Episode	Day 2, 2006		17	CO	(PPM)	2.59	NA	2.59	-9.00
U_1	8	Episode	Day 2, 2006		18	CO	(PPM)	3.66	NA	3.66	-9.00
U_1	8	Episode	Day 2, 2006		19	CO	(PPM)	3.94	NA	3.94	-9.00
U_1	8	Episode	Day 2, 2006		20	CO	(PPM)	3.99	NA	3.99	-9.00
U_1	8	Episode	Day 2, 2006		21	CO	(PPM)	4.00	NA	4.00	-9.00
U_1	8	Episode	Day 2, 2006		22	CO	(PPM)	3.94	NA	3.94	-9.00
	8	Episode	Day 2, 2006		23	CO	(PPM)	3.79	NA	3.79	-9.00
	0	Episode	Day 3, 2006		1	CO	(PPM)	3.22	INA NA	3.22	-9.00
U_1 TT 1	Q Q	Episode	Day 3, 2000		2	CO	(PPM)	1 08	NA NA	1 08	-9.00
U_1	8	Episode	Day 3, 2000		2	CO	(PPM)	0 76	NA	0 76	-9 00
U 1	8	Episode	Day 3, 2006		4	CO	(PPM)	0.66	NA	0.66	-9.00
U 1	8	Episode	Day 3, 2006		5	CO	(PPM)	0.59	NA	0.59	-9.00
Ū 1	8	Episode	Day 3, 2006		6	CO	(PPM)	0.57	NA	0.57	-9.00
U_1	8	Episode	Day 3, 2006		7	CO	(PPM)	0.78	NA	0.78	-9.00
U_1	8	Episode	Day 3, 2006		8	CO	(PPM)	0.89	NA	0.89	-9.00
U_1	8	Episode	Day 3, 2006		9	CO	(PPM)	0.96	NA	0.96	-9.00
U_1	8	Episode	Day 3, 2006		10	CO	(PPM)	1.02	NA	1.02	-9.00
U_1	8	Episode	Day 3, 2006		11	CO	(PPM)	1.09	NA	1.09	-9.00
	8	Episode	Day 3, 2006		12	CO	(PPM)	1.20	NA	1.20	-9.00
U_1 TT 1	0	Episode	Day 3, 2006		14	00	(PPM)	1.32	INA NA	1.32	-9.00
U_1 TT 1	8	Episode	Day 3, 2000		15	CO	(DDM)	-9.00	NA	-9.00	-9.00
U 1	8	Episode	Day 3, 2000		16	CO	(PPM)	-9.00	NA	-9.00	-9.00
Ū 1	8	Episode	Dav 3, 2006		17	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 3, 2006		18	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 3, 2006		19	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 3, 2006		20	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 3, 2006		21	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode	Day 3, 2006		22	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_I	8	Episode	Day 3, 2006		23	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		1	00	(PPM)	0.00	NA	0.00	-9.00
г_А Е Л	0	Episode	Day 1, 2006		2	CO	(PPM)	0.00	INA NA	0.00	-9.00
F A	8	Episode	Day 1, 2000		2	CO	(DDM)	0.00	NΔ	0.00	-9.00
F A	8	Episode	Day 1, 2006		4	CO	(PPM)	0.00	NA	0.00	-9.00
F A	8	Episode	Day 1, 2006		5	CO	(PPM)	0.00	NA	0.00	-9.00
F_A	8	Episode	Day 1, 2006		6	CO	(PPM)	0.00	NA	0.00	-9.00
F_A	8	Episode	Day 1, 2006		7	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		8	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		9	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		10	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		11	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		12	CO	(PPM)	-9.00	NA N7	-9.00	-9.00
ピ_A デープ	d o	rbrade	Day 1, 2006		1J	00	(PPM)	-9.00	NA NA	-9.00	-9.00
F_A F A	o g	Episode	Day 1, 2000 Day 1, 2006		⊥± 15	CO	(PPM)	-9.00	NA ND	-9.00	-9.00
F A	8	Episode	Day 1, 2000		16	CO	(PPM)	-9.00	NΔ	-9.00	-9.00
F A	8	Episode	Day 1, 2006		17	CO	(PPM)	-9.00	NA	-9.00	-9.00
F A	8	Episode	Day 1, 2006		18	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		19	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		20	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		21	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		22	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 1, 2006		23	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 2, 2006		0	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpc	1;1.5;	80;I/M	240 w/newest	4myr exempt;		
						2006	2006	2006	1988
SITE AVG	DATE		HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PERIC	D					(UAM)	(CALSQHC)	(UAM+CAL3)	
FA	8 Episode	e Dav 2, 2006	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8 Episode	Day 2, 2006	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8 Episode	e Day 2, 2006	3	CO	(PPM)	0.51	NA	0.51	-9.00
F_A	8 Episode	e Day 2, 2006	4	CO	(PPM)	0.47	NA	0.47	-9.00
F_A	8 Episode	e Day 2, 2006	5	CO	(PPM)	0.46	NA	0.46	-9.00
F_A	8 Episode	e Day 2, 2006	6	CO	(PPM)	0.36	NA	0.36	-9.00
F_A	8 Episode	e Day 2, 2006	7	CO	(PPM)	0.44	NA	0.44	-9.00
F_A	8 Episode	e Day 2, 2006	8	CO	(PPM)	0.49	NA	0.49	-9.00
F'_A	8 Episode	e Day 2, 2006	9	CO	(PPM)	0.53	NA	0.53	-9.00
F_A	8 Episode	e Day 2, 2006	10	CO	(PPM)	0.57	NA	0.57	-9.00
F_A	8 Episode	e Day 2, 2006	11	00	(PPM)	0.61	NA	0.61	-9.00
г_А Е Л	8 Episode	Day 2, 2000	13	CO	(PPM)	0.64	NA NA	0.64	-9.00
F D	8 Episode	Day 2, 2000	14	CO	(DDM)	0.00	NΔ	0.00	-9 00
F A	8 Episode	Day 2, 2000	15	CO	(PPM)	0.65	NA	0.65	-9.00
F A	8 Episode	e Day 2, 2006	16	CO	(PPM)	0.79	NA	0.79	-9.00
FA	8 Episode	Day 2, 2006	17	CO	(PPM)	0.83	NA	0.83	-9.00
F_A	8 Episode	Day 2, 2006	18	CO	(PPM)	0.86	NA	0.86	-9.00
F_A	8 Episode	e Day 2, 2006	19	CO	(PPM)	0.88	NA	0.88	-9.00
F_A	8 Episode	e Day 2, 2006	20	CO	(PPM)	0.91	NA	0.91	-9.00
F_A	8 Episode	e Day 2, 2006	21	CO	(PPM)	0.91	NA	0.91	-9.00
F_A	8 Episode	e Day 2, 2006	22	CO	(PPM)	0.87	NA	0.87	-9.00
F_A	8 Episode	e Day 2, 2006	23	CO	(PPM)	0.76	NA	0.76	-9.00
F_A	8 Episode	e Day 3, 2006	0	CO	(PPM)	0.58	NA	0.58	-9.00
F_A	8 Episode	e Day 3, 2006	1	CO	(PPM)	0.49	NA	0.49	-9.00
F_A	8 Episode	e Day 3, 2006	2	CO	(PPM)	0.43	NA	0.43	-9.00
F_A	8 Episode	2 Day 3, 2006	3	00	(PPM)	0.30	NA NA	0.30	-9.00
г_А Б Л	8 Episode	Day 3, 2000	4 5	CO	(PPM)	0.31	NA NA	0.31	-9.00
г_А F Д	8 Episode	Day 3, 2000	5	CO	(PPM) (DDM)	0.28	NA NA	0.28	-9.00
F A	8 Episode	Day 3, 2000	7	CO	(PPM)	0.40	NA	0.40	-9.00
F A	8 Episode	Day 3, 2006	8	CO	(PPM)	0.44	NA	0.44	-9.00
F A	8 Episode	e Day 3, 2006	9	CO	(PPM)	0.47	NA	0.47	-9.00
F_A	8 Episode	e Day 3, 2006	10	CO	(PPM)	0.47	NA	0.47	-9.00
F_A	8 Episode	e Day 3, 2006	11	CO	(PPM)	0.49	NA	0.49	-9.00
F_A	8 Episode	e Day 3, 2006	12	CO	(PPM)	0.52	NA	0.52	-9.00
F_A	8 Episode	e Day 3, 2006	13	CO	(PPM)	0.56	NA	0.56	-9.00
F_A	8 Episode	e Day 3, 2006	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8 Episode	e Day 3, 2006	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8 Episode	e Day 3, 2006	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8 Episode	e Day 3, 2006	1 / 1 9	00	(PPM)	-9.00	NA	-9.00	-9.00
г_А Е Л	8 Episode	Day 3, 2000	10	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
F D	8 Episode	Day 3, 2000	20	CO	(DDM)	-9.00	NA	-9.00	-9.00
F A	8 Episode	Day 3, 2000	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
F A	8 Episode	e Day 3, 2006	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
FA	8 Episode	Day 3, 2006	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
н_บ	8 Episode	e Day 1, 2006	0	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8 Episode	e Day 1, 2006	1	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8 Episode	e Day 1, 2006	2	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8 Episode	e Day 1, 2006	3	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8 Episode	e Day 1, 2006	4	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8 Episode	e Day 1, 2006	5	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8 Episode	e Day 1, 2006	6 7	00	(PPM)	0.00	NA	0.00	-9.00
н_0 и и	<pre>8 Episode 9 Episode</pre>	Day 1, 2000	7	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
н_0 н п	8 Episode	Day 1, 2000	9	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
н п	8 Episode	Day 1, 2000	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
н п	8 Episode	Day 1, 2006	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
H U	8 Episode	e Day 1, 2006	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
н_บ	8 Episode	e Day 1, 2006	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8 Episode	e Day 1, 2006	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8 Episode	e Day 1, 2006	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8 Episode	e Day 1, 2006	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8 Episode	e Day 1, 2006	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8 Episode	Day 1, 2006	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8 Episode	e Day I, 2006	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	o Episode	e Day 1, 2006	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_n 11 11	0 EDIROGE	Dav 1 2000	∠⊥ วว	00	(PDM)	-9.00	INA MTA	-9.00 _0 00	-9.00
л_0 ц п	8 Episode	Day 1, 2000	∠∠ วว	CO	(DDM)	-9.00	MM MM	-9.00	-9.00
н тт	8 Episode	Day 1, 2000	∠ 2 ∩	CO	(PPM)	-9.00	NΔ	-9.00	-9 00
H U	8 Episode	e Day 2, 2006	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8 Episode	Day 2, 2006	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8 Episode	Day 2, 2006	3	CO	(PPM)	0.37	NA	0.37	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2006	mob=844.7tpd	;1.5;	80;I/M	240 w/newest	4myr exempt;		
						2006	2006	2006	1988
SITE AVG	DATE		HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PERIO						(MAU)	(CAL3QHC)	(UAM+CAL3)	
U 11 U	P Enigodo D	2006	1	CO	(DDM)	0.26	NTΛ	0.26	-9.00
н п	B Episode D B Episode D	ay 2, 2000	5	CO	(DDM)	0.30	NA NA	0.30	-9.00
н п	B Episode D	ay 2, 2000	5	CO	(PPM)	0.33	NA	0.32	-9 00
н п	B Episode D	$a_{y} 2, 2000$		CO	(PPM)	0.38	NA	0.38	-9.00
н и	B Episode D	$a_{y} 2, 2006$	8	CO	(PPM)	0.40	NA	0.40	-9.00
H U	B Episode D	Day 2, 2006	9	CO	(PPM)	0.41	NA	0.41	-9.00
H_U	B Episode D	ay 2, 2006	10	CO	(PPM)	0.41	NA	0.41	-9.00
H_U a	3 Episode D	ay 2, 2006	11	CO	(PPM)	0.41	NA	0.41	-9.00
H_U a	3 Episode D	Day 2, 2006	12	CO	(PPM)	0.43	NA	0.43	-9.00
H_U	8 Episode D	Day 2, 2006	13	CO	(PPM)	0.46	NA	0.46	-9.00
H_U	8 Episode D	Day 2, 2006	14	CO	(PPM)	0.54	NA	0.54	-9.00
H_U a	B Episode D	0ay 2, 2006	15	CO	(PPM)	0.67	NA	0.67	-9.00
H_U	B Episode D	Day 2, 2006	16	CO	(PPM)	1.13	NA	1.13	-9.00
H_U	B Episode D	Day 2, 2006	17	CO	(PPM)	1.64	NA	1.64	-9.00
H_U	B Episode D	Day 2, 2006	18	CO	(PPM)	1.83	NA	1.83	-9.00
H_U	s Episode L	Day 2, 2006	19	00	(PPM)	1.89	NA	1.89	-9.00
H_U	s Episode L	Day 2, 2006	20	00	(PPM)	1.89	NA	1.89	-9.00
	S Episode L	Day 2, 2006	21	CO	(PPM)	1.0/	NA NZ	1.0/	-9.00
	B Episode D	Day 2, 2000	22	CO	(PPM) (DDM)	1 61	NA NA	1.79	-9.00
н п	8 Episode D	ay 2, 2000	23	CO	(PPM)	1 12	NA	1 12	-9 00
н п	B Episode D	$a_{y} = 3, 2000$	1	CO	(PPM)	0.61	NA	0.61	-9.00
н и	B Episode D	$a_{\rm J}$ 3, 2006	2	CO	(PPM)	0.42	NA	0.42	-9.00
H U	B Episode D	Day 3, 2006	3	CO	(PPM)	0.35	NA	0.35	-9.00
H_U 8	B Episode D	Day 3, 2006	4	CO	(PPM)	0.33	NA	0.33	-9.00
H_U a	3 Episode D	Day 3, 2006	5	CO	(PPM)	0.31	NA	0.31	-9.00
H_U a	3 Episode D	Day 3, 2006	6	CO	(PPM)	0.31	NA	0.31	-9.00
H_U	8 Episode D	0ay 3, 2006	7	CO	(PPM)	0.41	NA	0.41	-9.00
H_U	8 Episode D	0ay 3, 2006	8	CO	(PPM)	0.44	NA	0.44	-9.00
H_U	B Episode D	Day 3, 2006	9	CO	(PPM)	0.47	NA	0.47	-9.00
H_U	B Episode D	Day 3, 2006	10	CO	(PPM)	0.51	NA	0.51	-9.00
H_U	B Episode D	Day 3, 2006	11	CO	(PPM)	0.56	NA	0.56	-9.00
H_U	B Episode D	Day 3, 2006	12	CO	(PPM)	0.60	NA	0.60	-9.00
H_U	S Episode D	Day 3, 2006	13	CO	(PPM)	0.65	NA	0.65	-9.00
H_U	s Episode L	Day 3, 2006	14	00	(PPM)	-9.00	NA	-9.00	-9.00
н_0	S Episode L	Day 3, 2006	15	CO	(PPM)	-9.00	INA NA	-9.00	-9.00
U_U	S Episode L	Day 3, 2000	17	co	(PPM)	-9.00	NA NZ	-9.00	-9.00
н п	8 Episode D	ay 3, 2000	18	CO	(PPM)	-9.00	NA	-9.00	-9 00
н п	B Episode D	$a_{y} = 3, 2000$	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
н и	B Episode D	$a_{\rm J}$ 3, 2006	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
H U	B Episode D	Day 3, 2006	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U a	3 Episode D	ay 3, 2006	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U a	3 Episode D	Day 3, 2006	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8 Episode D	0ay 1, 2006	0	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	8 Episode D	0ay 1, 2006	1	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	B Episode D	0ay 1, 2006	2	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	B Episode D	Day 1, 2006	3	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	B Episode D	Day 1, 2006	4	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	B Episode D	Day 1, 2006	5	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	s Episode L	Day 1, 2006	6 7	00	(PPM)	0.00	NA	0.00	-9.00
	S Episode L	ay 1, 2006	7	CO	(PPM)	-9.00	INA NA	-9.00	-9.00
	B Episode D	ay 1, 2000	9	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
U A	B Episode D	ay 1, 2000	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
U A	B Episode D	$a_{y} = 1, 2000$	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
U A	B Episode D	av 1, 2006	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	B Episode D	ay 1, 2006	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	3 Episode D	ay 1, 2006	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	3 Episode D	Day 1, 2006	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8 Episode D	0ay 1, 2006	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	B Episode D	0ay 1, 2006	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	B Episode D	ay 1, 2006	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	B Episode D	pay 1, 2006	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	B Episode D	Day 1, 2006	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	s Episode D	Day 1, 2006	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	s Episode D	ay 1, 2006	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	b Episode D	ay 1, 2006	23	00	(PPM)	-9.00	NA NA	-9.00	-9.00
	S Epicode L	ay 2, 2000	U 1	C0 C0	(PPM)	-9.00	NA NA	-9.00	-9.00
	R Enjende D	$a_{2} 2, 2000$	⊥ 2	CO	(DDM)	-9.00	ND NA	_9.00	-9.00
U A	B Episode D	$a_{1} 2, 2000$	3	CO	(PPM)	0.25	NA	0.25	-9.00
U A	B Episode D	Day 2, 2006	4	CO	(PPM)	0.24	NA	0.24	-9.00
U_A	B Episode D	Day 2, 2006	5	CO	(PPM)	0.24	NA	0.24	-9.00
U_A	B Episode D	Day 2, 2006	6	CO	(PPM)	0.24	NA	0.24	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2	006 mob=844.7tp	pd;1.5;	80;I/M	240 w/newest	4myr exempt;		
					2006	2006	2006	1988
SITE AVG	DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PERIO.	D				(UAM)	(CAL3QHC)	(UAM+CAL3)	
U A	8 Episode Day 2, 200	6 7	CO	(PPM)	0.27	NA	0.27	-9.00
U A	8 Episode Day 2, 200	6 8	CO	(PPM)	0.28	NA	0.28	-9.00
U_A	8 Episode Day 2, 200	6 9	CO	(PPM)	0.28	NA	0.28	-9.00
U_A	8 Episode Day 2, 200	6 10	CO	(PPM)	0.28	NA	0.28	-9.00
U_A	8 Episode Day 2, 200	6 11	CO	(PPM)	0.29	NA	0.29	-9.00
U_A	8 Episode Day 2, 200	6 12	CO	(PPM)	0.31	NA	0.31	-9.00
U_A	8 Episode Day 2, 200	6 13	CO	(PPM)	0.34	NA	0.34	-9.00
U_A	8 Episode Day 2, 200	6 14	CO	(PPM)	0.38	NA	0.38	-9.00
U_A	8 Episode Day 2, 200	6 15	CO	(PPM)	0.47	NA	0.47	-9.00
U_A	8 Episode Day 2, 200	6 16	CO	(PPM)	0.79	NA	0.79	-9.00
U_A	8 Episode Day 2, 200	6 17	CO	(PPM)	1.17	NA	1.17	-9.00
U_A	8 Episode Day 2, 200	6 18 C 10	00	(PPM)	1.30	NA	1.30	-9.00
	6 Episode Day 2, 200	6 19	00	(PPM)	1 22	INA NA	1.33	-9.00
	8 Episode Day 2, 200	6 21	C0	(PPM) (DDM)	1 30	NA NA	1 30	-9.00
	8 Episode Day 2, 200	6 22	CO	(PPM)	1 25	NA	1 25	-9 00
	8 Episode Day 2, 200	6 23	CO	(PPM)	1 14	NA	1 14	-9 00
U A	8 Episode Day 3, 200	6 0	CO	(PPM)	0.82	NA	0.82	-9.00
U A	8 Episode Day 3, 200	6 1	CO	(PPM)	0.44	NA	0.44	-9.00
U A	8 Episode Day 3, 200	6 2	CO	(PPM)	0.30	NA	0.30	-9.00
U_A	8 Episode Day 3, 200	6 3	CO	(PPM)	0.27	NA	0.27	-9.00
U_A	8 Episode Day 3, 200	б 4	CO	(PPM)	0.26	NA	0.26	-9.00
U_A	8 Episode Day 3, 200	6 5	CO	(PPM)	0.25	NA	0.25	-9.00
U_A	8 Episode Day 3, 200	6 6	CO	(PPM)	0.26	NA	0.26	-9.00
U_A	8 Episode Day 3, 200	6 7	CO	(PPM)	0.35	NA	0.35	-9.00
U_A	8 Episode Day 3, 200	6 8	CO	(PPM)	0.40	NA	0.40	-9.00
U_A	8 Episode Day 3, 200	6 9	CO	(PPM)	0.44	NA	0.44	-9.00
U_A	8 Episode Day 3, 200	6 10	CO	(PPM)	0.48	NA	0.48	-9.00
U_A	8 Episode Day 3, 200	6 II	CO	(PPM)	0.51	NA	0.51	-9.00
U_A	8 Episode Day 3, 200 9 Episode Day 3, 200	6 12 6 12	00	(PPM)	0.55	NA	0.55	-9.00
	6 Episode Day 3, 200	6 14	00	(PPM)	0.00	INA NA	0.00	-9.00
	8 Episode Day 3, 200	6 15	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
	8 Episode Day 3, 200	6 16	C0	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
	8 Episode Day 3, 200	6 17	CO	(DDM)	-9.00	NA	-9.00	-9.00
U A	8 Episode Day 3, 200	6 18	CO	(PPM)	-9.00	NA	-9.00	-9.00
U A	8 Episode Day 3, 200	6 19	CO	(PPM)	-9.00	NA	-9.00	-9.00
U A	8 Episode Day 3, 200	6 20	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8 Episode Day 3, 200	6 21	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8 Episode Day 3, 200	6 22	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8 Episode Day 3, 200	6 23	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 0	CO	(PPM)	0.00	NA	0.00	-9.00
P_I	8 Episode Day 1, 200	6 1	CO	(PPM)	0.00	NA	0.00	-9.00
P_I	8 Episode Day 1, 200	6 2	CO	(PPM)	0.00	NA	0.00	-9.00
P_I	8 Episode Day 1, 200	6 3	CO	(PPM)	0.00	NA	0.00	-9.00
P_1	8 Episode Day 1, 200	6 4	CO	(PPM)	0.00	NA	0.00	-9.00
P_1 D_T	8 Episode Day 1, 200 9 Episode Day 1, 200	6 5 6	00	(PPM)	0.00	NA	0.00	-9.00
	8 Episode Day 1, 200 9 Episode Day 1, 200	6 7	C0 C0	(PPM)	0.00	NA NA	0.00	-9.00
	8 Episode Day 1, 200	6 9	C0 C0	(PPM)	-9.00	NA NA	-9.00	-9.00
	8 Episode Day 1, 200	6 9	CO	(DDM)	-9.00	NA NA	-9.00	-9.00
P T	8 Episode Day 1, 200	6 10	CO	(PPM)	-9.00	NA	-9.00	-9.00
P I	8 Episode Day 1, 200	6 11	CO	(PPM)	-9.00	NA	-9.00	-9.00
 P I	8 Episode Day 1, 200	6 12	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 13	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 14	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 15	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 16	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 17	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 18	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 19	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8 Episode Day 1, 200	6 20	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_1	o Episode Day I, 200 8 Episode Day 1, 200	o 21	00	(PPM)	-9.00	NA NA	-9.00	-9.00
	6 Episode Day 1, 200	v 22 6 22	00		-9.00	INA ATA	-9.00	-9.00
	8 Episode Dav 2 200	6 <u>2</u> 3	C0 C0	(PPM) (DDM)	-9.00	MN MN	-9.00	_9.00
÷_∸ р т	8 Episode Day 2, 200	6 1	00 00	(PDM)	-9.00	NΔ	-9.00	-9 00
p T	8 Episode Day 2, 200	6 2	CO	(PPM)	-9.00	NA	-9.00	-9.00
P I	8 Episode Day 2. 200	6 3	CO	(PPM)	0.45	NA	0.45	-9.00
 P I	8 Episode Dav 2, 200	6 4	CO	(PPM)	0.43	NA	0.43	-9.00
P_I	8 Episode Day 2, 200	6 5	CO	(PPM)	0.42	NA	0.42	-9.00
P_I	8 Episode Day 2, 200	6 6	CO	(PPM)	0.41	NA	0.41	-9.00
P_I	8 Episode Day 2, 200	6 7	CO	(PPM)	0.50	NA	0.50	-9.00
P_I	8 Episode Day 2, 200	6 8	CO	(PPM)	0.55	NA	0.55	-9.00
P_I	8 Episode Day 2, 200	6 9	CO	(PPM)	0.56	NA	0.56	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High:	2006 mob=844.7t	pd;1.5;	80;I/M	240 w/newest	4myr exempt	;	
						2006	2006	2006	1988
SITE A	AVG	DATE	HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
]]	PERIOD					(UAM)	(CAL3QHC)	(UAM+CAL3)	
P_I	8	Episode Day 2, 20	006 10	CO	(PPM)	0.56	NA	0.56	-9.00
P_I	8	Episode Day 2, 20	006 11	CO	(PPM)	0.57	NA	0.57	-9.00
P_I	8	Episode Day 2, 20	006 12	CO	(PPM)	0.60	NA	0.60	-9.00
P_I	8	Episode Day 2, 20	006 13	CO	(PPM)	0.62	NA	0.62	-9.00
P_I	8	Episode Day 2, 20	006 14	CO	(PPM)	0.65	NA	0.65	-9.00
P_I	8	Episode Day 2, 20	006 15	CO	(PPM)	0.64	NA	0.64	-9.00
P_I	8	Episode Day 2, 20	006 16	CO	(PPM)	0.93	NA	0.93	-9.00
P_I	8	Episode Day 2, 20	006 17	CO	(PPM)	1.51	NA	1.51	-9.00
P_I	8	Episode Day 2, 20	006 18	CO	(PPM)	2.23	NA	2.23	-9.00
P_I	8	Episode Day 2, 20	006 19	CO	(PPM)	2.57	NA	2.57	-9.00
P I	8	Episode Day 2, 20	006 20	CO	(PPM)	2.64	NA	2.64	-9.00
p_I	8	Episode Day 2, 20	006 21	CO	(PPM)	2.66	NA	2.66	-9.00
p_I	8	Episode Day 2, 20	006 22	CO	(PPM)	2.65	NA	2.65	-9.00
РТ	8	Episode Day 2, 20	0.06 2.3	CO	(PPM)	2.55	NA	2.55	-9.00
Р Т	8	Episode Day 3, 20	006 0	CO	(PPM)	2.20	NA	2.20	-9.00
Р Т	8	Episode Day 3, 20	006 1	CO	(PPM)	1.62	NA	1.62	-9.00
Р Т	8	Episode Day 3 20	006 2	CO	(PPM)	0.88	NA	0.88	-9 00
Р Т	8	Episode Day 3, 20	006 3	CO	(PPM)	0.53	NA	0.00	-9 00
Р Т	8	Episode Day 3, 20	006 4	CO	(PPM)	0.33	NA	0.55	-9 00
	8	Episode Day 3, 20	0.06	CO	(DDM)	0.15	ND	0.15	_9 00
	8	Episode Day 3, 20		C0	(PPM)	0.36	NA NA	0.36	-9.00
	8	Episode Day 3, 20		C0	(PPM)	0.30	NA NA	0.30	-9.00
г ± р_т	0	Episode Day 3, 20		00 C0	(PPM)	0.47	NA NA	0.17	9.00
	0	Episode Day 3, 20		C0	(PPM)	0.51	NA NA	0.51	-9.00
	0	Episode Day 3, 20	006 10	C0	(PPM)	0.50	NA NA	0.50	-9.00
P_I D_T	0	Episode Day 3, 20		00	(PPM)	0.61	INA	0.61	-9.00
	8	Episode Day 3, 20		00	(PPM)	0.64	NA	0.64	-9.00
	8	Episode Day 3, 20		00	(PPM)	0.69	NA	0.69	-9.00
	8	Episode Day 3, 20		00	(PPM)	0.75	NA	0.75	-9.00
P_I	8	Episode Day 3, 20			(PPM)	-9.00	NA	-9.00	-9.00
	8	Episode Day 3, 20		00	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day 3, 20		0.0	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day 3, 20	006 17	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day 3, 20	006 18	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day 3, 20	006 19	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day 3, 20	006 20	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day 3, 20	006 21	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day 3, 20	006 22	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day 3, 20	006 23	CO	(PPM)	-9.00	NA	-9.00	-9.00
NOTE:									
NA in 1	THIS re	port appears for A	ALL 8-hr avg CAL	3QHC va	lues				
since a	8-hr ru	nning averages for	r CAL3QHC result	s are N	TOT				
compute	ed; 1-h	r averages for UAN	M and CAL3QHC ar	e					
summed	and th	en 8-hour running	averages are co	mputed.					

MET A7, 08-27-99 EI, 01-11-94 PT, 09-09-99 CAL, 08-27-99 UAM High: 2006 mob=844.7tpd;1.5;80;I/M 240 w/newest 4myr exempt;

TIME AND MAGNITUDE OF MAXIMUM CONCENTRATION FOR 8-HR AVERAGING PERIOD:

station	max concentration (1988 observed)	hour of maximum (perform, stats)	hour of maximum (hour of day)
CMP	18.7	43	18
WBY	8.9	49	0
CRG	10.4	49	0
NJH	11.3	47	22
TIV	0.0	0	0
ICMP	0.0	0	0
ENG	3.7	47	22
BOU	2.1	38	13
GRDS	8.3	45	20
ARV	5.1	37	12
HLD	1.6	47	22
AUR	0.0	0	0
AURS	4.3	44	19
PLM	0.0	0	0
BTN	0.0	0	0
U_1	0.0	0	0
F_A	0.0	0	0
H_U	0.0	0	0
U_A	0.0	0	0
P_I	0.0	0	0
station	max concentration	hour of maximum	hour of maximum
	(2006 predicted)	(perform. stats)	(hour of day)
CMP	7.6	48	23
WBI	4.1	50	1
CKG	4.1 2 E	40	23
	5.5	47	22
TCMP	8 7	47	22
ENG	1.7	44	19
BOU	0.8	42	17
GRDS	0.9	42	17
ARV	1.5	43	18
HLD	1.2	44	19
AUR	2.6	47	22
AURS	3.0	45	20
PLM	3.1	47	22
BTN	1.1	48	23
U_1	4.0	46	21
F_A	0.9	46	21
H_U	1.9	45	20
U_A	1.3	44	19
P_I	2.7	46	21
NOTE: The a unique l	"performance statis hour for the entire	stics hour" refers simulation that is	to sused to red It is
based on	the system where HOI	TR 1 is ALWAYS the	period
from "mid	night to lam" on the	e FIRST day of the	simulation;
if there	are three calendar o	days in the simulat	ion; this
hour coun	ter increments from	1 to 72.	
The "hour	of day" refers to t	the actual hour of	the day

The "hour of day" refers to the actual hour of the day where HOUR 0 is the period from "midnight to lam;" this hour counter increments from 0 to 23 for each day.

MET A7, 08-27-99 EI, 01-11-94 PT, 09-09-99 CAL, 08-27-99 UAM High: 2006 mob=844.7tpd;1.5;80;I/M 240 w/newest 4myr exempt;

TIME AND MAGNITUDE OF MAXIMUM CONCENTRATION FOR $\ensuremath{1-\mathrm{HR}}$ Averaging period:

station	max concentration	hour of maximum	hour of maximu	m
	(1988 observed)	(perform. stats)	(hour of day	·)
CMP	50.5	42	17	
WBY	13.4	43	18	
CRG	16.3	44	19	
NJH	22.9	42	17	
TIV	0.0	0	0	
ICMP	0.0	0	0	

ENG BOUS GRDS ARV HLD AUR AURS PLM BTN U_1 F_A H_U U_A P_I	$\begin{array}{c} 9.4 \\ 6.5 \\ 16.6 \\ 11.0 \\ 4.4 \\ 0.0 \\ 11.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 42\\ 44\\ 33\\ 33\\ 42\\ 0\\ 42\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$		17 19 8 17 0 17 0 0 0 0 0 0 0 0 0
station	max concentration	hour of maximum	hour of m	naximum
CND	(2006 predicted)	(perform. stats)	(hour c	of day)
CMP	14.0	43		18
WBI	5.1	48		23
CRG	5.5	43		18
NJH	0./	44		19
TIV	13.8	43		18
TCMP	15.0	42		10
ENG	5.9	41		10
BOO	1.5	40		15
ADV	1.0	41		16
ARV	3.0	41		17
	5.2	42		10
AUR	4.2 6 4	44		18
DLM	63	15		19
ETIN	1.6	48		23
TT 1	9 1	43		18
Б Р	1 8	41		16
т_с н П	4 5	42		17
II A	3.3	42		17
р I	6.2	43		18
	0.2	10		

NOTE: The "performance statistics hour" refers to a unique hour for the entire simulation that is used to determine when the maximum concentration occurred. It is based on the system where HOUR 1 is ALWAYS the period from "midnight to lam" on the FIRST day of the simulation; if there are three calendar days in the simulation; this hour counter increments from 1 to 72.

The "hour of day" refers to the actual hour of the day where HOUR 0 is the period from "midnight to lam;" this hour counter increments from 0 to 23 for each day.

Appendix F – Urban Airshed Modeling: High Episode 2012 Results (Run L)

Maximum 8-hr Average Carbon Monoxide Concentration Estimates (ppm) from the Urban Airshed Model for Denver Colorado 2012 Projection for the "High" Episode (05DEC88) Control Strategy: 1.5%oxyFuels; 80%RemoteSensing;4yrExempt I/M240 On-Road Mobile Emission Inventory Total = 869 tons/day

										-				-	-					
1.3	1.2	\\7	1.5	1.7	1.6	2	2.8	3.6	3.4	2.6	2.0	1.5	1.4	1.4	1.5	1.5	1.4	1.0	1.0	0.8
1.1	1.9	2.5	1.9	2.1	2.2	3.2	3.2	3.9	3.6	2.7	1.9	1.5	1.4	1.4	1.5	1.6	1.4	1.0	1.0	0.9
1.2	1.6	1.7	¥	2.2	2.1	3.2	3.5	4.1	3.6	2.6	2.0	1.6	1.4	1.4	1.5	1.7	1.5	1.1	0.9	0.9
1.2	1.6	1.7	2.0		2.8	3.8	4.1	▲ WE 4.3	L F .9	2.8	2.0	1.7	1.5	1.4	1.6	1.7	1.7	1.2	1.1	1.0
1.2	1.5	1.5	1.7	2.2	2.3			4.2	3.6	2.8	2.1	1.8	1.6	1.5	1.6	1.8	1.7	1.2	1.0	0.9
1.4 ▲ AR	1.6 V	1.6	2.0	3.0	3.1	5.0	4.5	4.	4.2	3.1	2.3	2.1	1.7	1.6	1.9	1.9	1.8	1.3	1.0	1.0
1.6	2.2	ß	2.6	3.8	3.8	1	4.9	4.1	3.7		2.7	2.3	1.9	1.7	2.0	2.0	1.8	1.3	1.0	1.0
1.7	2.0	2.7	3.5	4.2	4.8		5.7	4.8	3.7	3.5	3.0	3.4	2.8	2.3	2.5	2.4	1.9	1.4	1.1	1.0
1.6	2.0	2.8	3.3	4.3	7.0	7.4	4.8	3.8	2.9	3.0	2.8	2.7	2.5	2.2	2.4	2.3	21	1.5	1.1	1.1
1.8	2.4	3.3	3.2	CRG 5.1	7.9	▲ CA 8.3	MP 4.6	3.7	2.7	3.0	2.9	2.6	2.7	2.5	2.8	2.5	2.1	1.6	N/	1.2
2.3	2.6	3.3	2.9	4.1	6 .7	7.1	4.2	3.6	NJH 2.9	3.2	2.8	2.8	2.7	2.4	3.1	2.7	2.2	1.7	1.2	1.2
2.1	2.6	3.0	2.6	3.3	The second secon	4.6	3.8	4.0	2.8	3.1	2.9	2.6	2.6	2.4	3.4	3.1	2.3	1.7	1.2	1.3
1.3	1.8	1.9	1.8	2.1	2.3	A [®]	2.8	2.9	2.8	3.1	2.6	2.8	2.7	2.7	3.5	3.2	2.6	1.9	1.3	1.4
1.1	1.6	1.9	1.6	1.8	1.8	2.7	28	2.9	2.5	2.7	2.3	2.5	2.3	2.7	2.9	2.8	2.5	2.0	1.5	1.5
1.0	1.5	1.5	1.3	1.5	1.5	2.3	2.3	2.2	K	2.6	2.2	2.6	2.6	2.8	3.0	2.6	2.5	1.9	1.5	1.5
1.0	1.4	1.5	1.1	1.3	1.6	en⊰e	2.1	2.0	1.9	2.3	2.3	2.4	2.8	J₽	2.5	2.4	2.4	1.9	1.4	1.4
0.8	1.4	1.3	1.1	1.2	1.5	1.8	1.7	1.5	1.4	A 1	2.3	2.4	2.4	2.6	2.2	2.3	2.2	1.8	1.4	1.3
1.0	1.5	1.1	0.9	1.1	1.4	1.6	1.5	1.4	1.3	2.0	2.9	2.4	2.1	1.9	2.1	2.2	1.9	1.6	1.3	1.2
1.3	1.0	0.9	0.9	1.4	1.2	1.5	1.4	1.1	1.1	1.4	₩7	2.1	1.9	1.7	1.7	2.0	1.6	1.5	1.3	1.1
1.0	0.8	0.7	0.8	1.1	1.0	1.3	1.4	1.3	1.3	1.5	2.8	2.4	2.3	2.0	1.7	2.3	1.6	1.2	1.2	1.0
0.8	1.0	0.9	0.8	1.1	0.9	1.2	1.4	1.2	1.1	1.3	1.5	2.5	2.1	1.8	1.4	1.4	1.1	1.0	1.0	0.9

One Grid is One Square Mile

The value in each grid cell shows the maximum CO 8-hr running average for the entire simulation

URBAN AIRHSED MODEL OUTPUT - RUNNING 8-HOUR AVERAGES FOR ENTIRE DOMAIN FILENAME: c:\den_co\graphix\l\tmap8_l.max UAM Level 1 CO SIP for Denver, Colorado Episode code processed: 1 Base episode code: a (05DEC88) L: 2012 mobile=868.8 tpd 30aug99 12aoxy15.prn 2012 mob=868.8tpd;1.5;80;I/M 240 w/newest 4myr exempt;27aug99PTS MET A7: DWMZ=12,UAMZ=5,DB=40-225,SimDrainJet,ModEC, 11-01-93 $\langle \rangle$ QA Check - select files used in 2nd day of simulation: c:\den_co\inputs\l\ar_12.b??, 08-30-99 (EI year: 2012) c:\den_co\inputs\l\pt_12.bin, 01-11-94 c:\den_co\inputs\a\uw_a2.bin, 11-01-93 c:\den_co\outputs\1\avg_12.out, 08-30-99 TMAP run dated: 08:25:43 08-31-99 8-Hr Averaging Period Time, magnitude, and location of max/min predicted concentration Ending time 600. UAM Maximum 8-hr average: 2.11 cell (21,47) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ _____ Ending time 700. UAM Maximum 8-hr average: 2.02 cell (21,47) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 800. UAM Maximum 8-hr average: 1.95 cell (21,47) UAM Minimum 8-hr average: 0.16 cell (9,44) _____ Ending time 900. UAM Maximum 8-hr average: 1.72 cell (21,47) UAM Minimum 8-hr average: 0.16 cell (9,44) _____ Ending time 1000. UAM Maximum 8-hr average: 1.46 cell (21,47) UAM Minimum 8-hr average: 0.18 cell (9,44) Ending time 1100. UAM Maximum 8-hr average: 1.38 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) _____ Ending time 1200. UAM Maximum 8-hr average: 1.40 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) _____ Ending time 1300. UAM Maximum 8-hr average: 1.44 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) _____ Ending time 1400. UAM Maximum 8-hr average: 1.51 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (3,37)

Ending time 1500. UAM Maximum 8-hr average: 1.64 cell (23,43) UAM Minimum 8-hr average: 0.19 cell (3,37) _____ Ending time 1600. UAM Maximum 8-hr average: 1.67 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (3,37) _____ _____ Ending time 1700. UAM Maximum 8-hr average: 2.70 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (3,37) _____ Ending time 1800. UAM Maximum 8-hr average: 4.81 cell (23,42) UAM Minimum 8-hr average: 0.18 cell (27,11) _____ Ending time 1900. UAM Maximum 8-hr average: 6.65 cell (23,42) UAM Minimum 8-hr average: 0.18 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) х Υ Predicted (ppm) 23 42 6.650 22 43 6.341 23 43 6.462 _____ Ending time 2000. UAM Maximum 8-hr average: 7.70 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Predicted (ppm) 7.099 Х Υ 23 42 2.2 43 7.315 7.703 23 43 Ending time 2100. UAM Maximum 8-hr average: 7.97 cell (23,43) UAM Minimum 8-hr average: 0.17 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Х Predicted (ppm) Υ 23 42 7.114 22 43 7.590 23 43 7.974 22 44 6.088 23 6.449 44 23 45 6.597 _____ Ending time 2200. UAM Maximum 8-hr average: 8.17 cell (23,43) UAM Minimum 8-hr average: 0.17 cell (28,15)

Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Х Υ Predicted (ppm) 23 42 7.085 22 43 7.762 23 43 8.167 22 44 6.478 23 44 6.852 23 7.113 45 Ending time 2300. UAM Maximum 8-hr average: 8.34 cell (23,43) UAM Minimum 8-hr average: 0.17 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr ave (Only grid cells with a concentration > 6.0 ppm are printed.) 8-hr averaging period. Predicted (ppm) 7.001 Χ Y 23 42 7.890 22 43 8.335 23 43 2.2 44 6.806 23 44 7.192 7.470 23 45 _ _ _ _ _ Ending time Ο. UAM Maximum 8-hr average: 8.30 cell (23,43) UAM Minimum 8-hr average: 0.16 cell (28,16) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Predicted (ppm) Х Y 23 42 6.732 22 43 7.860 23 43 8.298 22 44 7.036 23 44 7.404 23 45 7.729 Ending time 100. 8-hr average: 7.37 cell (23,45) UAM Maximum UAM Minimum 8-hr average: 0.17 cell (28,16) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Predicted (ppm) Х Y 43 6.926 7.296 2.2 23 43 6.692 2.2 44 6.985 23 44 23 45 7.372 Ending time 200. UAM Maximum 8-hr average: 6.45 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Х Y Predicted (ppm) 23 44 6.032 23 45 6.445

Ending time 300. 8-hr average: 5.40 cell (23,45) UAM Maximum UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 400. UAM Maximum 8-hr average: 4.16 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 500. UAM Maximum 8-hr average: 3.30 cell (25,49) UAM Minimum 8-hr average: 0.17 cell (9,44) Ending time 600. UAM Maximum 8-hr average: 2.71 cell (25,50) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ _____ Ending time 700. UAM Maximum 8-hr average: 2.29 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 800. UAM Maximum 8-hr average: 2.30 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 900. UAM Maximum 8-hr average: 2.07 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) Ending time 1000. UAM Maximum 8-hr average: 2.04 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (16,28) _____ Ending time 1100. UAM Maximum 8-hr average: 2.20 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (16,28) _____ Ending time 1200. UAM Maximum 8-hr average: 2.31 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (16,28)

File: ar_1_tot.qa0

Daily emissions for each source category as input to the Urban Airshed Model CO: TOTAL EMISSIONS FOR CATEGORY AMP BEFORE HRLY SCALARS APPLIED = 186.105283 TONS/DAY INVENTORY CODE: L AFTER HRLY SCALARS APPLIED = 186.105289 TONS/DAY TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY PMP BEFORE HRLY SCALARS APPLIED = 249.454414 TONS/DAY INVENTORY CODE: L AFTER HRLY SCALARS APPLIED = 249.454414 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 435.559697 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY OFP BEFORE HRLY SCALARS APPLIED = INVENTORY CODE: L AFTER HRLY SCALARS APPLIED = ...RUNNING SUBTOTAL BEFORE SCALARS = 433.273964 TONS/DAY 433.187313 TONS/DAY 868.833661 TONS/DAY _____ 0.333074 TONS/DAY 0.333074 TONS/DAY 869.166736 TONS/DAY CO: TOTAL EMISSIONS FOR CATEGORY RR BEFORE HRLY SCALARS APPLIED = INVENTORY CODE: L AFTER HRLY SCALARS APPLIED = AFTER HRLY SCALARS APPLIED = ...RUNNING SUBTOTAL BEFORE SCALARS = _____ CO: TOTAL EMISSIONS FOR CATEGORY HLI CO: TOTAL EMISSIONS FOR CALLCOLL INVENTORY CODE: L AFTER HRLY SUBLARS ATTELL ...RUNNING SUBTOTAL BEFORE SCALARS = BEFORE HRLY SCALARS APPLIED = 0.370857 TONS/DAY AFTER HRLY SCALARS APPLIED = 0.370857 TONS/DAY 869.537593 TONS/DAY CO: TOTAL EMISSIONS FOR CATEGORY AC INVENTORY CODE: L BEFORE HRLY SCALARS APPLIED = 24.103800 TONS/DAY AFTER HRLY SCALARS APPLIED = 24.272526 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 893.641393 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY ACS BEFORE HRLY SCALARS APPLIED = 7.700000 TONS/DAY INVENTORY CODE: L AFTER HRLI SCALARS = 7.753900 TONS/DAY 901.341393 TONS/DAY CO: TOTAL EMISSIONS FOR CATEGORY AG INVENTORY CODE: L BEFORE HRLY SCALARS APPLIED = 0.255744 TONS/DAY AFTER HRLY SCALARS APPLIED = 0.255744 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 901.597137 TONS/DAY _____ 8.060200 8.060200 CO: TOTAL EMISSIONS FOR CATEGORY CST BEFORE HRLY SCALARS APPLIED = TONS/DAY INVENTORY CODE: L AFTER HRLY SCALARS APPLIED = TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 909.657337 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY IND BEFORE HRLY SCALARS APPLIED = 23.541000 TONS/DAY ים INVENTORY CODE: L AFTER HRLY SCALARS APPLIED = 23.541000 TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 933.198337 TONS/DAY _____ CO: TOTAL EMISSIONS FOR CATEGORY LTC TONS/DAY BEFORE HRLY SCALARS APPLIED = 130.383000 AFTER HRLY SCALARS APPLIED = 130.383002 INVENTORY CODE: L TONS/DAY ...RUNNING SUBTOTAL BEFORE SCALARS = 1063.581337 TONS/DAY CO: TOTAL EMISSIONS FOR CATEGORY INVENTORY CODE: L ...RUNNING SUBTOTAL BEFORE SCALARS = 10.254174 ...RUNNING SUBTOTAL BEFORE SCALARS = 1073.835511 TONS/DAY AFTER HRLY SCALARS APPLIED = 10.254174 TONS/DAY TONS/DAY _____

	CO: TOTAL INVENTORY	EMISSIONS CODE: L	FOR	CATEGORY		STV	BEFORE HRLY SCALA AFTER HRLY SCALAR NNING SUBTOTAL BEFO	RS APPLIED S APPLIED RE SCALARS	= = =	16.511581 16.511581 1090.347091	TC TC TC	ONS/DAY ONS/DAY ONS/DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: L	FOR (CATEGORY		SFR	BEFORE HRLY SCALA AFTER HRLY SCALAR NNING SUBTOTAL BEFO	RS APPLIED S APPLIED RE SCALARS	= = =	5.446302 5.446738 1095.793394	TC TC	ONS/DAY ONS/DAY ONS/DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: L	FOR (CATEGORY		NG	BEFORE HRLY SCALA AFTER HRLY SCALAR NNING SUBTOTAL BEFO	RS APPLIED S APPLIED RE SCALARS	= = =	9.893396 9.893396 1105.686789	TC TC	ONS/DAY ONS/DAY ONS/DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: L	FOR (CATEGORY		MIN RUN	BEFORE HRLY SCALA AFTER HRLY SCALAR NNING SUBTOTAL BEFO	RS APPLIED S APPLIED RE SCALARS	= = =	21.075900 21.077585 1126.762689	TC TC TC	ONS/DAY ONS/DAY ONS/DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: L	FOR (CATEGORY		MJA RU1	BEFORE HRLY SCALA AFTER HRLY SCALAR NNING SUBTOTAL BEFO	RS APPLIED S APPLIED RE SCALARS	= = =	0.000000 0.000000 1126.762689	TC TC TC	ONS/DAY ONS/DAY ONS/DAY
	QA check c INVENTORY	f CODE: L	CO EI	MISSIONS	total	in UAM	binary file (NOTES	: 1. hourly	scala = =	rs applied; 1126.900793 36510971.5	2. MJE e TC GRAM-MOI	excluded) DNS/DAY LES/DAY
* * * * * * * *	**************************************	*********	***** TOOM	********	******	*******		* * * * * * * * * * *	* * * * * *	******	******	* * * * * * * * *
******	INVENTORY	CODE: L	FROM	ALL CATE	GUR1E2	• INCLUI	BEFORE HRLY SCALAR	S RS APPLIED S APPLIED	= = * * * * * *	1152.327589 1152.465693	TC T(ONS/DAY ONS/DAY

File: ar_omax.qa(Maximum emission) rate	and corr	responding	g UAM grid	d cel	ll for	each	source	Ca	atego	ory
CATEGORY=	AMP:	MAXIMUM	VALUE=	0.990000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	PMP:	MAXIMUM	VALUE=	2.090000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	OFP:	MAXIMUM	VALUE=	2.850000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	RR:	MAXIMUM	VALUE=	0.029800	TPD	@GRID	CELL	(X,Y):	(22,	47)
CATEGORY=	HLI:	MAXIMUM	VALUE=	0.008990	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	AC:	MAXIMUM	VALUE=	3.090000	TPD	@GRID	CELL	(X,Y):	(39,	50)
CATEGORY=	ACS:	MAXIMUM	VALUE=	1.100000	TPD	@GRID	CELL	(X,Y):	(28,	44)
CATEGORY=	AG:	MAXIMUM	VALUE=	0.000148	TPD	@GRID	CELL	(X,Y):	(7,	69)
CATEGORY=	CST:	MAXIMUM	VALUE=	0.021100	TPD	@GRID	CELL	(X,Y):	(З,	26)
CATEGORY=	IND:	MAXIMUM	VALUE=	0.413000	TPD	@GRID	CELL	(X,Y):	(8,	61)
CATEGORY=	LTC:	MAXIMUM	VALUE=	0.594000	TPD	@GRID	CELL	(X,Y):	(8,	61)
CATEGORY=	FP:	MAXIMUM	VALUE=	0.056100	TPD	@GRID	CELL	(X,Y):	(24,	42)
CATEGORY=	STV:	MAXIMUM	VALUE=	0.129000	TPD	@GRID	CELL	(X,Y):	(17,	35)
CATEGORY=	SFR:	MAXIMUM	VALUE=	0.033700	TPD	@GRID	CELL	(X,Y):	(23,	42)
CATEGORY=	NG:	MAXIMUM	VALUE=	0.218000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	MIN:	MAXIMUM	VALUE=	2.560000	TPD	@GRID	CELL	(X,Y):	(28,	67)
CATEGORY=	MJA:	MAXIMUM	VALUE=	0.000000	TPD	@GRID	CELL	(X,Y):	(28,	67)
CATEGORY=	MJE:	MAXIMUM	VALUE=	5.950000	TPD	@GRID	CELL	(X,Y):	(24,	47)
CATEGORY=	TOT:	MAXIMUM	VALUE=	7.470000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	SUM:	MAXIMUM	VALUE=	7.473437	TPD	@GRID	CELL	(X,Y):	(23,	43)

Air Quality Modeling Results for the Denver Carbon Monoxide Maintenance Plan UAM and CAL3QHC Estimates at Monitoring Sites and Roadway Intersections

The attached report is one of several files generated by a the Colorado Department of Public Health and Environment's postprocessing batch program "DPLOT.BTM." This particular report, which presents 1-hour and 8-hour average UAM and CAL3QHC estimates for each monitoring site and roadway intersection, was generated by the FORTRAN program "P_STATS." Strings of text at the beginning of the report uniquely identify the modeling scenario. These IDs (see example on page 2) are auto-built by DPLOT.BTM. Automated title generation for each modeling run streamlines postprocessing while enhancing QA procedures.

P_STATS reads SAI's DPLOT format data files which contain hourly concentration estimates from the Urban Airshed Model and observed concentrations from various monitoring sites. In addition, P_STATS reads another set of DPLOT format files containing hourly concentration estimates from the CAL3QHC model. While there are UAM estimates for every monitoring site and roadway intersection, CAL3QHC estimates are available only at intersections where refined modeling was performed. Please note that all "observed" values are from the historic episode on which the modeling is based. The "DATE" column indicates the year of the MODELED estimates; all observed estimates are for the base year (e.g., 1988 for the "high" and "2nd-high" episodes).

A "-9.00" entry indicates that values were not generated. "NA" is used for all 8-hour CAL3QHC entries because 8-hour average values are not computed; instead, hourly CAL3QHC and UAM estimates are summed before 8-hour average UAM/CAL3QHC values are computed. A key to site abbreviations follows:

Monitoring Sites	Description
СМР	CAMP
WBY	Welby
CRG	Carriage
TIV	Tivoli
FED	Roof of Federal Bldg (downtown) - inlet 72 meters above ground
NJH	NJH-E
PLM	Palmer School (inlet on top of 2 story bldg)
ARV	Arvada
ENG	Englewood
BOU	Boulder (Marine St)
GRDS	Boulder Grandys Special Study Site
HLD	Highland
AUR	Aurora
AURS	Aurora Special Study Site
BTN	Brighton
Intersections	
ICMP	Broadway & Champa (CAMP intersection)
U_1	University & 1 st
F_A	Foothills & Arapahoe (Boulder)
H_U	Hampden & University
U_A	University & Arapahoe
P_I	Parker & Iliff

High: 2012 mob=868.8tpd;1.5;80;I/M 240 w/newest 4myr exempt; MET A7, 08-30-99 EI, 01-11-94 PT, 09-09-99 CAL, 08-30-99 UAM

ſ	High: 2012 mob=868.8tpd;1.5;80;I/M 240 w/newest 4myr exempt;											
	SITE	AVG	DATE			HR	POLI	JUTANT	2012 PREDICTED	2012 PREDICTED	2012 PREDICTED	1988 OBSERVED
		PERIOD							(MAU)	(CAL3QHC)	(UAM+CAL3)	
ľ	CMP	1	Episode	Day 1, 2012		0	CO	(PPM)	-9.00	-9.00	-9.00	2.50
	CMP	1	Episode	Day 1, 2012		1	CO	(PPM)	-9.00	-9.00	-9.00	1.80
	CMP	1	Episode	Day 1, 2012		2	CO	(PPM)	-9.00	-9.00	-9.00	1.50
	CMP	1	Episode	Day 1, 2012		3	CO	(PPM)	-9.00	-9.00	-9.00	2.70
	CMP	1	Episode	Day 1, 2012		4 5	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	3.00
	CMP	1	Episode	Day 1, 2012 Day 1, 2012		6	CO	(PPM)	-9.00	-9.00	-9.00	1 50
	CMP	1	Episode	Day 1, 2012 Day 1, 2012		7	CO	(PPM)	-9.00	-9.00	-9.00	1.50
	CMP	1	Episode	Day 1, 2012		8	CO	(PPM)	-9.00	-9.00	-9.00	1.40
	CMP	1	Episode	Day 1, 2012		9	CO	(PPM)	-9.00	-9.00	-9.00	1.30
	CMP	1	Episode	Day 1, 2012		10	CO	(PPM)	-9.00	-9.00	-9.00	1.30
	CMP	1	Episode	Day 1, 2012		11	CO	(PPM)	-9.00	-9.00	-9.00	1.80
	CMP	1	Episode	Day 1, 2012		12	CO	(PPM)	-9.00	-9.00	-9.00	2.10
	CMP	1	Episode	Day 1, 2012 Day 1, 2012		13 14	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	1.60
	CMP	1	Episode	Day 1, 2012 Day 1, 2012		15	CO	(PPM)	-9.00	-9.00	-9.00	2 80
	CMP	1	Episode	Day 1, 2012 Day 1, 2012		16	CO	(PPM)	-9.00	-9.00	-9.00	6.40
	CMP	1	Episode	Day 1, 2012		17	CO	(PPM)	-9.00	-9.00	-9.00	7.60
	CMP	1	Episode	Day 1, 2012		18	CO	(PPM)	-9.00	-9.00	-9.00	6.80
	CMP	1	Episode	Day 1, 2012		19	CO	(PPM)	-9.00	-9.00	-9.00	3.60
	CMP	1	Episode	Day 1, 2012		20	CO	(PPM)	-9.00	-9.00	-9.00	1.30
	CMP	1	Episode	Day 1, 2012		∠⊥ วว	CO	(PPM)	-9.00	-9.00	-9.00	1.20
	CMP	1	Episode	Day 1, 2012 Day 1, 2012		22 23	CO	(PPM) (DDM)	1 81	-9.00	1.29	1.00
	CMP	1	Episode	Day 2, 2012		0	CO	(PPM)	2.17	-9.00	2.17	1.50
	CMP	1	Episode	Day 2, 2012		1	CO	(PPM)	1.76	-9.00	1.76	0.80
	CMP	1	Episode	Day 2, 2012		2	CO	(PPM)	0.89	-9.00	0.89	0.00
	CMP	1	Episode	Day 2, 2012		3	CO	(PPM)	0.78	-9.00	0.78	0.00
	CMP	1	Episode	Day 2, 2012		4	CO	(PPM)	0.80	-9.00	0.80	0.00
	CMP	1	Episode	Day 2, 2012		5	CO	(PPM)	0.74	-9.00	0.74	0.30
	CMP	1	Episode	Day 2, 2012		6 7	CO	(PPM) (DDM)	0.95	-9.00	0.95	0.80
	CMP	1	Episode	Day 2, 2012 Day 2, 2012		8	CO	(PPM)	1.63	-9.00	1.63	5.40
	CMP	1	Episode	Day 2, 2012		9	CO	(PPM)	1.12	-9.00	1.12	2.90
	CMP	1	Episode	Day 2, 2012		10	CO	(PPM)	0.98	-9.00	0.98	2.90
	CMP	1	Episode	Day 2, 2012		11	CO	(PPM)	1.26	-9.00	1.26	4.50
	CMP	1	Episode	Day 2, 2012		12	CO	(PPM)	1.35	-9.00	1.35	4.00
	CMP	1	Episode	Day 2, 2012		13 14	CO	(PPM)	1.46	-9.00	1.46	4.30
	CMP	1	Episode	Day 2, 2012 Day 2, 2012		14 15	CO	(PPM)	1.09	-9.00	1.09	4.50
	CMP	1	Episode	Day 2, 2012 Day 2, 2012		16	CO	(PPM)	8.79	-9.00	8.79	45.00
	CMP	1	Episode	Day 2, 2012		17	CO	(PPM)	13.87	-9.00	13.87	50.50
	CMP	1	Episode	Day 2, 2012		18	CO	(PPM)	14.68	-9.00	14.68	30.00
	CMP	1	Episode	Day 2, 2012		19	CO	(PPM)	11.14	-9.00	11.14	3.90
	CMP	1	Episode	Day 2, 2012		20	CO	(PPM)	4.56	-9.00	4.56	2.10
	CMP	1	Episode	Day 2, 2012		21	CO	(PPM)	3.47	-9.00	3.47	2.30
	CMP	⊥ 1	Episode	Day 2, 2012 Day 2, 2012		22 23	CO	(PPM)	3.35	-9.00	3.35	4.00
	CMP	1	Episode	Day 3, 2012		0	CO	(PPM)	2.31	-9.00	2.31	4.50
	CMP	1	Episode	Day 3, 2012		1	CO	(PPM)	1.61	-9.00	1.61	2.60
	CMP	1	Episode	Day 3, 2012		2	CO	(PPM)	1.05	-9.00	1.05	1.10
	CMP	1	Episode	Day 3, 2012		3	CO	(PPM)	0.58	-9.00	0.58	0.80
	CMP	1	Episode	Day 3, 2012		4 5	CO	(PPM)	0.62	-9.00	0.62	1.10
	CMP	⊥ 1	Episode	Day 3, 2012 Day 3, 2012		5	CO	(PPM)	⊥.∠U 2 16	-9.00	⊥.∠U 2 16	∠.40 5 10
	CMP	1	Episode	Day 3, 2012 Day 3, 2012		7	CO	(PPM)	4.75	-9.00	4.75	9.30
	CMP	1	Episode	Day 3, 2012		8	CO	(PPM)	2.56	-9.00	2.56	10.70
	CMP	1	Episode	Day 3, 2012		9	CO	(PPM)	2.37	-9.00	2.37	7.20
	CMP	1	Episode	Day 3, 2012		10	CO	(PPM)	2.15	-9.00	2.15	5.10
	CMP	1	Episode	Day 3, 2012		11	CO	(PPM)	1.46	-9.00	1.46	3.60
	CMP	1	Episode	Day 3, 2012		12 12	CO	(PPM)	-9.00	-9.00	-9.00	2.50
	CMP	⊥ 1	Episode	Day 3, 2012 Day 3, 2012		14	CO	(PPM)	-9.00	-9.00	-9.00	2.00
	CMP	1	Episode	Day 3, 2012		15	CO	(PPM)	-9.00	-9.00	-9.00	3.60
	CMP	1	Episode	Day 3, 2012		16	CO	(PPM)	-9.00	-9.00	-9.00	10.10
	CMP	1	Episode	Day 3, 2012		17	CO	(PPM)	-9.00	-9.00	-9.00	12.90
	CMP	1	Episode	Day 3, 2012		18	CO	(PPM)	-9.00	-9.00	-9.00	5.30
	CMP	1	Episode	Day 3, 2012		19	CO	(PPM)	-9.00	-9.00	-9.00	3.90
	CMP	1	Episode	Day 3, 2012		∠U 21	CO	(PPM)	-9.00	-9.00	-9.00	5.30
1	CMP	1	THATHOUS	Day J. ZUIZ		<u>4</u> 1	υJ	(FFM)	-9.00	-9.00	-9.00	4.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868	.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0.01.0	1000
C T T	E AVC	שיייגר			UD	DOT	T TTTT እ NTTT	2012 DEFDICTED	2012 הפרה לתיקה	2012 DREDICTED	1988 OBGEBVED
SII	PERTOD	DAIE			пк	POL	LUIANI	(IIAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	THREED							(0111)	(enilisque)	(0111) 01115)	
CMP	1	Episode	e Day 3,	2012	22	CO	(PPM)	-9.00	-9.00	-9.00	2.90
CMP	1	Episode	Day 3,	2012	23	CO	(PPM)	-9.00	-9.00	-9.00	4.50
WBY	1	Episode	e Day 1,	2012	0	CO	(PPM)	-9.00	-9.00	-9.00	4.00
WBY	1	Episode	e Day I, Davi 1	2012	1 2	CO	(PPM)	-9.00	-9.00	-9.00	4.50
WBI	1	Episode	b Day I, Day 1	2012	2	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	3.00
WBI	1	Episode	Day 1, Day 1	2012	4	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	1 30
WBY	1	Episode	. Day 1, 2 Day 1,	2012	5	CO	(PPM)	-9.00	-9.00	-9.00	0.70
WBY	1	Episode	e Day 1,	2012	6	CO	(PPM)	-9.00	-9.00	-9.00	1.30
WBY	1	Episode	e Day 1,	2012	7	CO	(PPM)	-9.00	-9.00	-9.00	1.70
WBY	1	Episode	e Day 1,	2012	8	CO	(PPM)	-9.00	-9.00	-9.00	1.60
WBY	1	Episode	e Day 1,	2012	9	CO	(PPM)	-9.00	-9.00	-9.00	1.20
WBI	1	Episode	Day I,	2012	10	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	1.00
WBI	1	Episode	Day 1, Day 1	2012	12	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	0.80
WBY	1	Episode	2 Day 1,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	0.50
WBY	1	Episode	Day 1,	2012	14	CO	(PPM)	-9.00	-9.00	-9.00	0.30
WBY	1	Episode	e Day 1,	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	0.40
WBY	1	Episode	e Day 1,	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	0.80
WBY	1	Episode	e Day 1,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	4.30
WBY	1	Episode	e Day I, Day 1	2012	18	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	5.40
WBI	1	Episode	: Day I, Dav 1	2012	20	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	4 60
WBY	1	Episode	. Day 1, 2 Day 1,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	2.10
WBY	1	Episode	Day 1,	2012	22	CO	(PPM)	1.13	-9.00	1.13	1.50
WBY	1	Episode	Day 1,	2012	23	CO	(PPM)	1.36	-9.00	1.36	1.90
WBY	1	Episode	e Day 2,	2012	0	CO	(PPM)	1.52	-9.00	1.52	4.30
WBY	1	Episode	e Day 2,	2012	1	CO	(PPM)	1.42	-9.00	1.42	3.40
WBY	1	Episode	e Day 2, Day 2	2012	2	CO	(PPM)	1.33 1.14	-9.00	1.33 1.14	2.20
WBI	1	Episode	: Day 2, Day 2	2012	4	CO	(PPM) (PPM)	0 90	-9.00	1.14	1 40
WBY	1	Episode	. Day 2, 2 Day 2.	2012	5	CO	(PPM)	0.84	-9.00	0.84	1.40
WBY	1	Episode	a Day 2,	2012	6	CO	(PPM)	0.98	-9.00	0.98	1.70
WBY	1	Episode	Day 2,	2012	7	CO	(PPM)	1.51	-9.00	1.51	5.70
WBY	1	Episode	e Day 2,	2012	8	CO	(PPM)	1.00	-9.00	1.00	6.90
WBY	1	Episode	Day 2,	2012	9	CO	(PPM)	0.95	-9.00	0.95	4.90
WBY	1	Episode	e Day 2,	2012	10	CO	(PPM)	1.08	-9.00	1.08	2.50
WBI	1	Episode	e Day 2, Dav 2	2012	12	CO	(PPM) (DDM)	0.90	-9.00	0.90	1.40
WBY	1	Episode	2, Day 2, 2 Day 2,	2012	13	CO	(PPM)	0.61	-9.00	0.61	0.90
WBY	1	Episode	Day 2,	2012	14	CO	(PPM)	0.60	-9.00	0.60	1.00
WBY	1	Episode	e Day 2,	2012	15	CO	(PPM)	0.82	-9.00	0.82	1.20
WBY	1	Episode	e Day 2,	2012	16	CO	(PPM)	1.56	-9.00	1.56	2.60
WBY	1	Episode	e Day 2,	2012	17	CO	(PPM)	2.60	-9.00	2.60	9.50
WBI	1	Episode	e Day 2, Dav 2	2012	19	CO	(PPM) (DDM)	3.04	-9.00	3.04	9 40
WBY	1	Episode	• Day 2,	2012	20	CO	(PPM)	3.74	-9.00	3.74	7.70
WBY	1	Episode	a Day 2,	2012	21	CO	(PPM)	5.12	-9.00	5.12	6.30
WBY	1	Episode	Day 2,	2012	22	CO	(PPM)	5.17	-9.00	5.17	7.30
WBY	1	Episode	e Day 2,	2012	23	CO	(PPM)	5.21	-9.00	5.21	8.50
WBY	1	Episode	Day 3,	2012	0	CO	(PPM)	4.47	-9.00	4.47	9.40
WBI	1	Episode	Day 3,	2012	1	CO	(PPM) (DDM)	2.03	-9.00	2.03 1.25	7.30
WRY	⊥ 1	Episode	Day 3, Dav 3	2012	∠ 3	CO	(PPM)	0.81	-9.00	0.81	1.70
WBY	1	Episode	e Day 3,	2012	4	CO	(PPM)	0.65	-9.00	0.65	1.60
WBY	1	Episode	Day 3,	2012	5	CO	(PPM)	0.71	-9.00	0.71	1.70
WBY	1	Episode	Day 3,	2012	б	CO	(PPM)	0.80	-9.00	0.80	2.80
WBY	1	Episode	e Day 3,	2012	7	CO	(PPM)	1.04	-9.00	1.04	2.80
WBY	1	Episode	e Day 3,	2012	8	CO	(PPM)	1.02	-9.00	1.02	-9.00
WBI	1	Episode	Day 3, Day 3	2012	10	CO	(PPM) (PPM)	1 15	-9.00	1 15	2 70
WBY	1	Episode	Day 3,	2012	11	CO	(PPM)	0.92	-9.00	0.92	0.60
WBY	1	Episode	Day 3,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	0.40
WBY	1	Episode	Day 3,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	0.30
WBY	1	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	-9.00	-9.00	0.30
WBY	1	Episode	Day 3,	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	0.30
WBY	1	Episode	e Day 3,	∠U⊥∠ 2012	10 17	00	(PPM)	-9.00	-9.00	-9.00	0.80
MBA	1	Episode	: Day 3, Day 2	2012 2012	⊥/ 1 R	CO	(PPM) (DDM)	-9.00 _9.00	-9.00 _9.00	-9.00 _9.00	1.0U
WBY	1	Episode	2 Day 3,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	3.10
WBY	1	Episode	e Day 3,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	6.10
WBY	1	Episode	Day 3,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	6.00
WBY	1	Episode	e Day 3,	2012	22	CO	(PPM)	-9.00	-9.00	-9.00	5.40
WBY	1	Episode	e Day 3,	2012	23	CO	(PPM)	-9.00	-9.00	-9.00	4.40
CRG	1	Episode	e Day 1,	2012	0	CO	(PPM)	-9.00	-9.00	-9.00	4.80
Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 2012 mob	=868.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	2012	1000
਼ ਪਾਸ	AVC	ገልጥም		ЧР	POL	.τ.ιττανιτ	ZUIZ PREDICTED	ZUIZ PRFDICTFD		1988 OBGERVED
JII 2	PERIOD	DAIE		IIIX	FOL	ILUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
							(,	(<u>-</u>)	(,	
CRG	1	Episode	e Day 1, 2012	1	CO	(PPM)	-9.00	-9.00	-9.00	4.50
CRG	1	Episode	Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	3.90
CRG	1	Episode	Day 1, 2012	3	CO	(PPM)	-9.00	-9.00	-9.00	3.50
CRG	1	Episode	Day 1, 2012	4	CO	(PPM)	-9.00	-9.00	-9.00	1.30
CRG	1	Episode	Day 1, 2012	5	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.90
CRG	1	Episode	Day 1, 2012	7	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	2 70
CRG	1	Episode	Day 1, 2012	, 8	CO	(PPM)	-9.00	-9.00	-9.00	1.80
CRG	1	Episode	Day 1, 2012	9	CO	(PPM)	-9.00	-9.00	-9.00	1.30
CRG	1	Episode	Day 1, 2012	10	CO	(PPM)	-9.00	-9.00	-9.00	1.60
CRG	1	Episode	Day 1, 2012	11	CO	(PPM)	-9.00	-9.00	-9.00	1.10
CRG	1	Episode	Day 1, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	1.00
CRG	1	Episode	Day 1, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	0.40
CRG	1	Episode	Day 1, 2012	14	00 00	(PPM)	-9.00	-9.00	-9.00	0.50
CRG	1	Episode	Day 1, 2012	15	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
CRG	1	Episode	Day 1, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	6.00
CRG	1	Episode	Day 1, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	8.00
CRG	1	Episode	Day 1, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	10.80
CRG	1	Episode	Day 1, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	3.50
CRG	1	Episode	Day 1, 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	3.40
CRG	1	Episode	Day 1, 2012	22	CO	(PPM)	1.68	-9.00	1.68	3.50
CRG	1	Episode	Day 1, 2012	23	CO	(PPM)	1.92	-9.00	1.92	3.30
CRG	1	Episode	Day 2, 2012	0	C0 C0	(PPM) (DDM)	2.28	-9.00	2.28	3.70
CRG	1	Episode	Day 2, 2012	⊥ 2	CO	(PPM) (DDM)	2.20	-9.00	2.20	3 50
CRG	1	Episode	Day 2, 2012	3	CO	(PPM)	0.75	-9.00	0.75	2.50
CRG	1	Episode	Day 2, 2012	4	CO	(PPM)	0.58	-9.00	0.58	2.60
CRG	1	Episode	Day 2, 2012	5	CO	(PPM)	0.63	-9.00	0.63	2.70
CRG	1	Episode	Day 2, 2012	б	CO	(PPM)	0.81	-9.00	0.81	5.80
CRG	1	Episode	Day 2, 2012	7	CO	(PPM)	1.76	-9.00	1.76	10.10
CRG	1	Episode	Day 2, 2012	8	CO	(PPM)	1.05	-9.00	1.05	10.50
CRG	1	Episode	Day 2, 2012	9	C0 C0	(PPM) (DDM)	0.90	-9.00	0.90	4.00
CRG	1	Episode	Day 2, 2012	11	CO	(PPM) (DDM)	0.79	-9.00	0.75	1 20
CRG	1	Episode	Day 2, 2012	12	CO	(PPM)	1.08	-9.00	1.08	1.50
CRG	1	Episode	Day 2, 2012	13	CO	(PPM)	1.20	-9.00	1.20	1.30
CRG	1	Episode	Day 2, 2012	14	CO	(PPM)	1.37	-9.00	1.37	1.60
CRG	1	Episode	Day 2, 2012	15	CO	(PPM)	1.79	-9.00	1.79	0.80
CRG	1	Episode	Day 2, 2012	16	CO	(PPM)	3.94	-9.00	3.94	6.40
CRG	1	Episode	Day 2, 2012	17	CO	(PPM)	4.99	-9.00	4.99	9.50
CRG	1	Episode	Day 2, 2012	10	CO	(PPM) (DDM)	5.33 5.11	-9.00	5.33	16 30
CRG	1	Episode	Day 2, 2012	20	CO	(PPM)	4 31	-9.00	4 31	12 80
CRG	1	Episode	Day 2, 2012	21	CO	(PPM)	3.37	-9.00	3.37	7.10
CRG	1	Episode	Day 2, 2012	22	CO	(PPM)	2.65	-9.00	2.65	4.90
CRG	1	Episode	Day 2, 2012	23	CO	(PPM)	2.02	-9.00	2.02	8.60
CRG	1	Episode	Day 3, 2012	0	CO	(PPM)	1.65	-9.00	1.65	10.10
CRG	1	Episode	Day 3, 2012	1	CO	(PPM)	1.47	-9.00	1.47	4.30
CRG	1	Episode	Day 3, 2012	2	00 00	(PPM)	1.14	-9.00	1.14	5.40
CRG	1	Episode	Day 3, 2012	4	CO	(PPM)	0.72	-9.00	0.72	1 90
CRG	1	Episode	Day 3, 2012	5	CO	(PPM)	0.72	-9.00	0.72	3.00
CRG	1	Episode	Day 3, 2012	6	CO	(PPM)	1.41	-9.00	1.41	3.10
CRG	1	Episode	Day 3, 2012	7	CO	(PPM)	2.82	-9.00	2.82	6.10
CRG	1	Episode	Day 3, 2012	8	CO	(PPM)	1.36	-9.00	1.36	5.10
CRG	1	Episode	Day 3, 2012	9	CO	(PPM)	1.23	-9.00	1.23	4.10
CRG	1	Episode	Day 3, 2012	10	CO	(PPM)	0.94	-9.00	0.94	1.50
CRG	1	Episode	Day 3, 2012	12	C0 C0	(PPM) (DDM)	0.84	-9.00	0.84	-9.00
CRG	1	Episode	Day 3, 2012	13	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.70
CRG	1	Episode	Dav 3, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	0.30
CRG	1	Episode	Day 3, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	0.10
CRG	1	Episode	Day 3, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	2.00
CRG	1	Episode	Day 3, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	7.00
CRG	1	Episode	Day 3, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	9.50
CRG	1	Episode	Day 3, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	12.40
CRG	1	Episode	Day 3, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	1U.1U
CKG	⊥ 1	Epicode	Day 3, 2012	∠⊥ 22	C0 C0	(PPM)	-9.00	-9.00 _9.00	-9.00 _9.00	7.90
CRG	1	Episode	Day 3, 2012	22	CO	(PPM)	-9.00	-9.00	-9.00	7.70
NJH	1	Episode	Day 1, 2012	0	CO	(PPM)	-9.00	-9.00	-9.00	2.30
NJH	1	Episode	Day 1, 2012	1	CO	(PPM)	-9.00	-9.00	-9.00	1.50
NJH	1	Episode	Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	1.40
NJH	1	Episode	Day 1, 2012	3	CO	(PPM)	-9.00	-9.00	-9.00	1.30

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2012 mob=	868.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	2012	1000
STTE AVG	חשתם		ЧR	DOT.	ד.ד.ד אז די ד.	2012 PREDICTED	2012 DREDICTED	2012 PREDICTED	1988 OBSERVED
PERIC	DAIL		пк	POL	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	-					(==== ,	(2)	(,	
NJH	1 Episod	le Day 1, 2012	4	CO	(PPM)	-9.00	-9.00	-9.00	2.20
NJH	1 Episod	le Day 1, 2012	5	CO	(PPM)	-9.00	-9.00	-9.00	2.00
NJH	1 Episod	le Day 1, 2012	6	CO	(PPM)	-9.00	-9.00	-9.00	2.80
NJH	1 Episod	le Day 1, 2012	/	00	(PPM)	-9.00	-9.00	-9.00	3.10
NUH	1 Episod	le Day 1, 2012	0 9	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	2.00
NJH	1 Episod	le Day 1, 2012	10	CO	(PPM)	-9.00	-9.00	-9.00	2.10
NJH	1 Episod	le Day 1, 2012	11	CO	(PPM)	-9.00	-9.00	-9.00	1.60
NJH	1 Episod	le Day 1, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	1.00
NJH	1 Episod	le Day 1, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	1.00
NJH	1 Episod	le Day 1, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	0.90
NJH	1 Episod	le Day 1, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	1.10
NUH	1 Episod	$\begin{array}{c} \text{le Day I, 2012} \\ \text{le Day 1, 2012} \\ \end{array}$	10	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	2.90
NTH	1 Episod	le Day 1, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	4.00
NJH	1 Episod	le Day 1, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	3.10
NJH	1 Episod	le Day 1, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	2.80
NJH	1 Episod	le Day 1, 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	2.60
NJH	1 Episod	le Day 1, 2012	22	CO	(PPM)	1.16	-9.00	1.16	2.40
NJH	1 Episod	le Day 1, 2012	23	CO	(PPM)	1.30	-9.00	1.30	2.00
NJH	1 Episod	10 Day 2, 2012	0	C0	(PPM) (DDM)	1.16	-9.00	1.16	2.30
N.TH	1 Episod	le Day 2, 2012	2	CO	(PPM)	0.70	-9.00	0.70	1.30
NJH	1 Episod	le Day 2, 2012	3	CO	(PPM)	0.47	-9.00	0.47	1.10
NJH	1 Episod	le Day 2, 2012	4	CO	(PPM)	0.50	-9.00	0.50	0.90
NJH	1 Episod	le Day 2, 2012	5	CO	(PPM)	0.51	-9.00	0.51	1.60
NJH	1 Episod	le Day 2, 2012	6	CO	(PPM)	0.73	-9.00	0.73	3.30
NJH	1 Episod	le Day 2, 2012	7	CO	(PPM)	1.86	-9.00	1.86	6.40
NJH	1 Episod	le Day 2, 2012	8	CO	(PPM)	1.28	-9.00	1.28	6.10
NJH	1 Episod	le Day 2, 2012	10	CO	(PPM)	0.90	-9.00	0.90	2.80
NJH	1 Episod	le Day 2, 2012	11	CO	(PPM)	0.65	-9.00	0.65	2.00
NJH	1 Episod	le Day 2, 2012	12	CO	(PPM)	0.70	-9.00	0.70	2.00
NJH	1 Episod	le Day 2, 2012	13	CO	(PPM)	0.75	-9.00	0.75	2.70
NJH	1 Episod	le Day 2, 2012	14	CO	(PPM)	1.14	-9.00	1.14	3.20
NJH	1 Episod	le Day 2, 2012	15	CO	(PPM)	1.72	-9.00	1.72	4.60
NJH	1 Episod	le Day 2, 2012	10 17	C0	(PPM) (DDM)	3.50	-9.00	3.50	19.70
NJH	1 Episod	le Day 2, 2012 le Day 2, 2012	18	CO	(PPM) (PPM)	4.50	-9.00	4.50	19 70
NJH	1 Episod	le Day 2, 2012	19	CO	(PPM)	6.39	-9.00	6.39	8.60
NJH	1 Episod	le Day 2, 2012	20	CO	(PPM)	2.70	-9.00	2.70	6.20
NJH	1 Episod	le Day 2, 2012	21	CO	(PPM)	1.37	-9.00	1.37	4.40
NJH	1 Episod	le Day 2, 2012	22	CO	(PPM)	1.38	-9.00	1.38	4.10
NJH	1 Episod	le Day 2, 2012	23	CO	(PPM)	1.13	-9.00	1.13	3.20
NJH	1 Episod	le Day 3, 2012	0	C0	(PPM) (DDM)	0.79	-9.00	0.79	2.30 1.20
NJH	1 Episod	le Day 3, 2012	2	CO	(PPM)	0.48	-9.00	0.48	1.30
NJH	1 Episod	le Day 3, 2012	3	CO	(PPM)	0.34	-9.00	0.34	0.80
NJH	1 Episod	le Day 3, 2012	4	CO	(PPM)	0.36	-9.00	0.36	0.70
NJH	1 Episod	le Day 3, 2012	5	CO	(PPM)	0.48	-9.00	0.48	1.60
NJH	1 Episod	le Day 3, 2012	6	CO	(PPM)	0.78	-9.00	0.78	2.90
NJH	1 Episod	le Day 3, 2012	7	00	(PPM)	2.01	-9.00	2.01	7.00
NUH	1 Episod	le Day 3, 2012	0 9	CO	(PPM) (DDM)	1 01	-9.00	1.20	4 90
NJH	1 Episod	le Day 3, 2012	10	CO	(PPM)	0.86	-9.00	0.86	3.60
NJH	1 Episod	le Day 3, 2012	11	CO	(PPM)	0.83	-9.00	0.83	1.30
NJH	1 Episod	le Day 3, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	1.10
NJH	1 Episod	le Day 3, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
NJH	1 Episod	le Day 3, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	0.60
NJH	1 Episod	le Day 3, 2012	15	00	(PPM)	-9.00	-9.00	-9.00	0.80
NUH	1 Episod	10 Day 3, 2012	10	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	4.40
NJH	1 Episod	le Day 3, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	5.10
NJH	1 Episod	le Day 3, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	6.90
NJH	1 Episod	le Day 3, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	5.50
NJH	1 Episod	le Day 3, 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	4.00
NJH	1 Episod	le Day 3, 2012	22	CO	(PPM)	-9.00	-9.00	-9.00	3.60
NJH	1 Episod	le Day 3, 2012	23	CO	(PPM)	-9.00	-9.00	-9.00	2.40
	1 Epigod	le Day 1, 2012	U 1	C0 C0	(PPM)	-9.00 _9.00	-9.00 _9.00	-9.00 _9.00	-9.00
TIV	1 Episod	le Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episod	le Day 1, 2012	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episod	le Day 1, 2012	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episod	le Day 1, 2012	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episod	le Day 1, 2012	б	CO	(PPM)	-9.00	-9.00	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2012 mob=	868.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	2012	1000
STAR VIC	ኮአሞፑ		пр	DOL	ד. ד. דידי א אדידי	2012 פפרטולידרס	2012 DREDICTED	2012 DREDICTED	1988 OBGEDVED
DER	IOD		пк	POL	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
						(==== ,	(2)	(,	
TIV	1 Episo	de Day 1, 2012	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 1, 2012	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	l Episo	de Day 1, 2012	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episo	de Day 1, 2012	10	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episo	de Day 1, 2012 de Day 1, 2012	12	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 1, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 1, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 1, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 1, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 1, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	l Episo	de Day 1, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episo	de Day 1, 2012	19	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
TTV	1 Episo	de Day 1, 2012 de Day 1, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 1, 2012	22	CO	(PPM)	1.41	-9.00	1.41	-9.00
TIV	1 Episo	de Day 1, 2012	23	CO	(PPM)	1.72	-9.00	1.72	-9.00
TIV	1 Episo	de Day 2, 2012	0	CO	(PPM)	2.07	-9.00	2.07	-9.00
TIV	1 Episo	de Day 2, 2012	1	CO	(PPM)	1.76	-9.00	1.76	-9.00
TIV	1 Episo	de Day 2, 2012	2	CO	(PPM)	0.88	-9.00	0.88	-9.00
	1 Episo	de Day 2, 2012 de Day 2, 2012	3	C0 C0	(PPM) (DDM)	0.64	-9.00	0.64	-9.00
	1 Episo	de Day 2, 2012 de Day 2, 2012	5	CO	(PPM) (DDM)	0.04	-9.00	0.04	-9.00
TIV	1 Episo	de Day 2, 2012	6	CO	(PPM)	0.90	-9.00	0.90	-9.00
TIV	1 Episo	de Day 2, 2012	7	CO	(PPM)	2.57	-9.00	2.57	-9.00
TIV	1 Episo	de Day 2, 2012	8	CO	(PPM)	1.40	-9.00	1.40	-9.00
TIV	1 Episo	de Day 2, 2012	9	CO	(PPM)	0.99	-9.00	0.99	-9.00
TIV	1 Episo	de Day 2, 2012	10	CO	(PPM)	0.87	-9.00	0.87	-9.00
TIV	1 Episo	de Day 2, 2012		CO	(PPM)	1.13	-9.00	1.13	-9.00
	1 Episo	de Day 2, 2012 de Day 2, 2012	13	CO	(PPM) (DDM)	1.51	-9.00	1.51	-9.00
TTV	1 Episo	de Day 2, 2012 de Day 2, 2012	14	CO	(PPM)	1.85	-9.00	1.85	-9.00
TIV	1 Episo	de Day 2, 2012	15	CO	(PPM)	2.87	-9.00	2.87	-9.00
TIV	1 Episo	de Day 2, 2012	16	CO	(PPM)	8.90	-9.00	8.90	-9.00
TIV	1 Episo	de Day 2, 2012	17	CO	(PPM)	14.31	-9.00	14.31	-9.00
TIV	1 Episo	de Day 2, 2012	18	CO	(PPM)	14.38	-9.00	14.38	-9.00
TIV	1 Episo	de Day 2, 2012	19	CO	(PPM)	8.33	-9.00	8.33	-9.00
	1 Episo	de Day 2, 2012	20	CO	(PPM) (DDM)	3.85	-9.00	3.85	-9.00
TTV	1 Episo	de Day 2, 2012 de Day 2, 2012	22	CO	(PPM)	2.84	-9.00	2.84	-9.00
TIV	1 Episo	de Day 2, 2012	23	CO	(PPM)	2.66	-9.00	2.66	-9.00
TIV	1 Episo	de Day 3, 2012	0	CO	(PPM)	2.00	-9.00	2.00	-9.00
TIV	1 Episo	de Day 3, 2012	1	CO	(PPM)	1.49	-9.00	1.49	-9.00
TIV	1 Episo	de Day 3, 2012	2	CO	(PPM)	1.04	-9.00	1.04	-9.00
	1 Episo	de Day 3, 2012 de Day 2, 2012	3	C0 C0	(PPM) (DDM)	0.58	-9.00	0.58	-9.00
	1 Episo	de Day 3, 2012 de Day 3, 2012	5	CO	(PPM) (DDM)	1 19	-9.00	1 19	-9.00
TIV	1 Episo	de Day 3, 2012	6	CO	(PPM)	2.29	-9.00	2.29	-9.00
TIV	1 Episo	de Day 3, 2012	7	CO	(PPM)	4.97	-9.00	4.97	-9.00
TIV	1 Episo	de Day 3, 2012	8	CO	(PPM)	2.65	-9.00	2.65	-9.00
TIV	1 Episo	de Day 3, 2012	9	CO	(PPM)	2.22	-9.00	2.22	-9.00
TIV	l Episo	de Day 3, 2012	10	CO	(PPM)	1.51	-9.00	1.51	-9.00
	1 Episo	de Day 3, 2012	12 12	CO	(PPM) (DDM)	_9 00	-9.00	-9 00	-9.00
TIV	1 Episo	de Day 3, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 3, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 3, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 3, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 3, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TTV	1 Episo	de Day 3, 2012	18	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episo	de Day 3, 2012	19	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 3, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 3, 2012	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1 Episo	de Day 3, 2012	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episo	de Day 1, 2012	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episo	de Day 1, 2012	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episo	de Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	1 Episo	de Day 1, 2012 de Day 1 2012	3 4	00	(PPM)	-9.00 _9.00	-9.00 _0 nn	-9.00	-9.00 _9.00
ICMP	1 Episo	de Day 1, 2012	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episo	de Day 1, 2012	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episo	de Day 1, 2012	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episo	de Day 1, 2012	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episo	de Day 1, 2012	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2012 mob=86	8.8tpd;1.	5;80;	I/M 240	w/newest 4my	yr exempt;	0.01.0	1000
	שיייער			DOT	T TITT እ እTTT	2012	2012	2012	1988 ODGEDVED
SILE AVG	DAIE OD		HK	POL	LUIANI	PREDICIED (IIAM)	(CALSOHC)	(IIAM+CAL3)	OBSERVED
I BRI	0D					(0444)	(CALISQUE)	(OANI CALLS)	
ICMP	1 Episod	de Day 1, 2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	le Day 1, 2012	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 1, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 1, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 1, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	l Episod	de Day 1, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 1, 2012	10	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	1 Episod	The Day 1, 2012	18	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
TCMP	1 Episod	e Day 1, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 1, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 1, 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 1, 2012	22	CO	(PPM)	1.29	-9.00	1.29	-9.00
ICMP	1 Episod	de Day 1, 2012	23	CO	(PPM)	1.81	-9.00	1.81	-9.00
ICMP	1 Episod	de Day 2, 2012	0	CO	(PPM)	2.17	-9.00	2.17	-9.00
ICMP	1 Episod	de Day 2, 2012	1	00	(PPM)	1.76	-9.00	1./6	-9.00
TCMP	1 Episod	1e Day 2, 2012 1e Day 2, 2012	2	CO	(PPM) (DDM)	0.09	-9.00	0.89	-9.00
TCMP	1 Episod	e Day 2, 2012	4	CO	(PPM)	0.80	-9.00	0.80	-9.00
ICMP	1 Episod	de Day 2, 2012	5	CO	(PPM)	0.74	-9.00	0.74	-9.00
ICMP	1 Episod	le Day 2, 2012	6	CO	(PPM)	0.95	-9.00	0.95	-9.00
ICMP	1 Episod	de Day 2, 2012	7	CO	(PPM)	2.91	-9.00	2.91	-9.00
ICMP	1 Episod	de Day 2, 2012	8	CO	(PPM)	1.63	-9.00	1.63	-9.00
ICMP	1 Episod	de Day 2, 2012	9	CO	(PPM)	1.12	-9.00	1.12	-9.00
I CMP	1 Episod	de Day 2, 2012	10	CO	(PPM)	0.98	-9.00	0.98	-9.00
TCMP	1 Episod	1e Day 2, 2012	12	CO	(PPM) (DDM)	1.20	-9.00	1.20	-9.00
TCMP	1 Episod	le Day 2, 2012 le Day 2, 2012	13	CO	(PPM)	1.55	-9.00	1.35	-9.00
ICMP	1 Episod	de Day 2, 2012	14	CO	(PPM)	1.89	1.84	3.73	-9.00
ICMP	1 Episod	de Day 2, 2012	15	CO	(PPM)	3.03	1.38	4.41	-9.00
ICMP	1 Episod	de Day 2, 2012	16	CO	(PPM)	8.79	2.99	11.78	-9.00
ICMP	1 Episod	de Day 2, 2012	17	CO	(PPM)	13.87	2.07	15.94	-9.00
ICMP	1 Episod	le Day 2, 2012	18	CO	(PPM)	14.68	1.15	15.83	-9.00
ICMP	l Episod	de Day 2, 2012	19	CO	(PPM)	11.14	0.35	11.49	-9.00
I CMP	1 Episod	de Day 2, 2012	20	C0 C0	(PPM) (DDM)	4.50	0.35	4.91	-9.00
TCMP	1 Episod	le Day 2, 2012 Ne Day 2, 2012	21	CO	(PPM) (PPM)	3.47	0.00	4 05	-9.00
ICMP	1 Episod	de Day 2, 2012	23	CO	(PPM)	3.35	0.12	3.47	-9.00
ICMP	1 Episod	le Day 3, 2012	0	CO	(PPM)	2.31	-9.00	2.31	-9.00
ICMP	1 Episod	de Day 3, 2012	1	CO	(PPM)	1.61	-9.00	1.61	-9.00
ICMP	1 Episod	de Day 3, 2012	2	CO	(PPM)	1.05	-9.00	1.05	-9.00
ICMP	1 Episod	de Day 3, 2012	3	CO	(PPM)	0.58	-9.00	0.58	-9.00
I CMP	1 Episod	de Day 3, 2012	4 F	00	(PPM)	0.62	-9.00	0.62	-9.00
TCMP	1 Episod	1e Day 3, 2012 1e Day 3, 2012	5	CO	(PPM) (DDM)	2 16	-9.00	2 16	-9.00
TCMP	1 Episod	e Day 3, 2012	7	CO	(PPM)	4.75	-9.00	4.75	-9.00
ICMP	1 Episod	de Day 3, 2012	8	CO	(PPM)	2.56	-9.00	2.56	-9.00
ICMP	1 Episod	le Day 3, 2012	9	CO	(PPM)	2.37	-9.00	2.37	-9.00
ICMP	1 Episod	de Day 3, 2012	10	CO	(PPM)	2.15	-9.00	2.15	-9.00
ICMP	1 Episod	le Day 3, 2012	11	CO	(PPM)	1.46	-9.00	1.46	-9.00
ICMP	l Episod	de Day 3, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	1 Episod	10 Day 3, 2012	13	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
TCMP	1 Episod	le Day 3, 2012 le Day 3, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	le Day 3, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 3, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	le Day 3, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 3, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	le Day 3, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	de Day 3, 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episod	le Day 3, 2012	22	00	(PPM)	-9.00	-9.00	-9.00	-9.00
ENG	1 Episod	le Day 3, 2012 le Day 1 2012	∠ <i>3</i>	00 00	(PPM)	-9.00	-9.00	-9.00	-9.00
ENG	1 Episod	le Day 1, 2012	1	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ENG	1 Episod	de Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	1.30
ENG	1 Episod	de Day 1, 2012	3	CO	(PPM)	-9.00	-9.00	-9.00	1.60
ENG	1 Episod	de Day 1, 2012	4	CO	(PPM)	-9.00	-9.00	-9.00	1.70
ENG	1 Episod	de Day 1, 2012	5	CO	(PPM)	-9.00	-9.00	-9.00	1.70
ENG	1 Episod	de Day I, 2012	6	CO	(PPM)	-9.00	-9.00	-9.00	1.90
FING	1 Episod	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	/	00	(PPM)	-9.00	-9.00	-9.00	1 20
ENG	1 Episod	le Day 1, 2012 Ne Day 1, 2012	o Q	CO	(PPM)	-9.00	-9.00	-9.00	1 00
ENG	1 Episod	le Day 1, 2012	10	CO	(PPM)	-9.00	-9.00	-9.00	0.70
ENG	1 Episod	le Day 1, 2012	11	CO	(PPM)	-9.00	-9.00	-9.00	0.50
ENG	1 Episod	le Day 1, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	0.60

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 2012	mob=868.8tpd;	1.5;80;	I/M 240) w/newest 4my	yr exempt;	0010	1000
SITE	AVG	DATE		HR	POI	LUTANT	2012 PREDICTED	2012 PREDICTED	2012 PREDICTED	1988 OBSERVED
	PERIOD						(UAM)	(CAL3QHC)	(UAM+CAL3)	
ENC	1	Enicodo	Dott 1 201	0 10	00	(DDM)	0.00	0.00	0.00	0 60
ENG	1	Episode	Day 1, 201.	2 13	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	0.00
ENG	1	Episode	Day 1, 201	2 15	CO	(PPM)	-9.00	-9.00	-9.00	0.70
ENG	1	Episode	Day 1, 201	2 16	CO	(PPM)	-9.00	-9.00	-9.00	1.50
ENG	1	Episode	e Day 1, 201	2 17	CO	(PPM)	-9.00	-9.00	-9.00	4.40
ENG	1	Episode	Day 1, 201	2 18	CO	(PPM)	-9.00	-9.00	-9.00	2.40
ENG	1	Episode	Day 1, 201	2 19	CO	(PPM)	-9.00	-9.00	-9.00	1.30
ENG	1	Episode	Day 1, 201	2 20	CO	(PPM)	-9.00	-9.00	-9.00	1.20
ENG	1	Episode	Day 1, 201. Day 1, 201	2 21 2 22	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	1.20
ENG	1	Episode	Day 1, 201	2 23	CO	(PPM)	0.46	-9.00	0.46	1.20
ENG	1	Episode	Day 2, 201	2 0	CO	(PPM)	0.34	-9.00	0.34	0.70
ENG	1	Episode	e Day 2, 201	2 1	CO	(PPM)	0.32	-9.00	0.32	0.70
ENG	1	Episode	Day 2, 201	2 2	CO	(PPM)	0.29	-9.00	0.29	0.50
ENG	1	Episode	Day 2, 201	2 3	CO	(PPM)	0.28	-9.00	0.28	0.50
ENG	1	Episode	2 Day 2, 201.	2 4 2 F	00	(PPM)	0.30	-9.00	0.30	0.50
ENG	1	Episode	Day 2, 201. Day 2, 201	2 5	CO	(PPM) (PPM)	0.33	-9.00	0.33	2 40
ENG	1	Episode	Day 2, 201	2 7	CO	(PPM)	1.00	-9.00	1.00	4.70
ENG	1	Episode	Day 2, 201	2 8	CO	(PPM)	0.60	-9.00	0.60	4.10
ENG	1	Episode	Day 2, 201	2 9	CO	(PPM)	0.38	-9.00	0.38	1.20
ENG	1	Episode	Day 2, 201	2 10	CO	(PPM)	0.32	-9.00	0.32	0.70
ENG	1	Episode	Day 2, 201	2 11	CO	(PPM)	0.37	-9.00	0.37	0.70
ENG	1	Episode	Day 2, 201	2 12 2 12	CO	(PPM)	0.51	-9.00	0.51	0.80
ENG	1	Episode	Day 2, 201	2 14	CO	(PPM)	0.00	-9.00	0.00	1 50
ENG	1	Episode	Day 2, 201	2 15	CO	(PPM)	1.53	-9.00	1.53	2.90
ENG	1	Episode	Day 2, 201	2 16	CO	(PPM)	3.82	-9.00	3.82	6.20
ENG	1	Episode	e Day 2, 201	2 17	CO	(PPM)	3.73	-9.00	3.73	9.40
ENG	1	Episode	Day 2, 201	2 18	CO	(PPM)	1.39	-9.00	1.39	3.20
ENG	1	Episode	Day 2, 201	2 19	CO	(PPM)	0.71	-9.00	0.71	1.90
ENG	1	Episode	Day 2, 201. Day 2, 201	2 20 2 21	CO	(PPM) (DDM)	0.45	-9.00	0.45	1.60
ENG	1	Episode	Day 2, 201	2 22	CO	(PPM)	0.44	-9.00	0.44	2.30
ENG	1	Episode	Day 2, 201	2 23	CO	(PPM)	0.42	-9.00	0.42	1.60
ENG	1	Episode	Day 3, 201	2 0	CO	(PPM)	0.39	-9.00	0.39	1.50
ENG	1	Episode	Day 3, 201	2 1	CO	(PPM)	0.35	-9.00	0.35	1.00
ENG	1	Episode	Day 3, 201	2 2	CO	(PPM)	0.28	-9.00	0.28	0.60
ENG	1	Episode	2 Day 3, 201.	2 3 2 4	CO	(PPM) (DDM)	0.26	-9.00	0.26	0.50
ENG	1	Episode	Day 3, 201	2 5	CO	(PPM)	0.20	-9.00	0.20	0.70
ENG	1	Episode	Day 3, 201	2 6	CO	(PPM)	0.43	-9.00	0.43	1.80
ENG	1	Episode	e Day 3, 201	2 7	CO	(PPM)	1.25	-9.00	1.25	3.50
ENG	1	Episode	Day 3, 201	2 8	CO	(PPM)	0.58	-9.00	0.58	-9.00
ENG	1	Episode	Day 3, 201	2 9	CO	(PPM)	0.61	-9.00	0.61	2.80
ENG	1	Episode	Day 3, 201.	2 10	CO	(PPM) (DDM)	0.62	-9.00	0.62	2.00
ENG	1	Episode	Day 3, 201	2 12	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode	Day 3, 201	2 13	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode	e Day 3, 201	2 14	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode	Day 3, 201	2 15	CO	(PPM)	-9.00	-9.00	-9.00	0.60
ENG	1	Episode	2 Day 3, 201.	2 16 2 17	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	1.60
ENG	1	Episode	Day 3, 201. Day 3, 201	2 18	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	3.80 4.30
ENG	1	Episode	Day 3, 201	2 19	CO	(PPM)	-9.00	-9.00	-9.00	3.00
ENG	1	Episode	Day 3, 201	2 20	CO	(PPM)	-9.00	-9.00	-9.00	2.10
ENG	1	Episode	Day 3, 201	2 21	CO	(PPM)	-9.00	-9.00	-9.00	1.40
ENG	1	Episode	Day 3, 201	2 22	CO	(PPM)	-9.00	-9.00	-9.00	1.10
ENG	1	Episode	2 Day 3, 201.	2 23	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	1.50
BOU	1	Episode	Day 1, 201	2 0	CO	(PPM)	-9.00	-9.00	-9.00	0.00
BOU	1	Episode	Day 1, 201	2 2	CO	(PPM)	-9.00	-9.00	-9.00	0.30
BOU	1	Episode	Day 1, 201	2 3	CO	(PPM)	-9.00	-9.00	-9.00	0.50
BOU	1	Episode	e Day 1, 201	2 4	CO	(PPM)	-9.00	-9.00	-9.00	1.00
BOU	1	Episode	Day 1, 201	2 5	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode	Day 1, 201	∠ 6 2 7	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode	: Day I, 201. Day 1 201	∠ / ? °	00	(PPM)	-9.00 _9.00	-9.00	-9.00	1 QO
ROIT	1	Episode	2 Day 1, 201	2 9	CO	(PPM)	-9.00	-9.00	-9.00	2.70
BOU	1	Episode	Day 1, 201	2 10	CO	(PPM)	-9.00	-9.00	-9.00	1.60
BOU	1	Episode	Day 1, 201	2 11	CO	(PPM)	-9.00	-9.00	-9.00	1.10
BOU	1	Episode	Day 1, 201	2 12	CO	(PPM)	-9.00	-9.00	-9.00	0.70
BOU	1	Episode	Day 1, 201	2 13	CO	(PPM)	-9.00	-9.00	-9.00	0.60
BOU	1	Episode	2 Day I, 201	∠ 14 2 1⊑	CO	(PPM)	-9.00	-9.00	-9.00	U.80 1 EO
000	1	- Prode	. way I, 20I.	- IJ	00	(/	9.00	2.00	9.00	1.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 201	L2 mob=868.8t	pd;1.5	5;80;	I/M 240	w/newest 4my	r exempt;	0.01.0	1000
SITE	AVG PERIOD	DATE			HR	POL	LUTANT	2012 PREDICTED (UAM)	2012 PREDICTED (CAL3QHC)	2012 PREDICTED (UAM+CAL3)	1988 OBSERVED
		_ , ,				~ ~	()				1.00
BOU	1	Episode	Day 1, 20	12	17	CO	(PPM)	-9.00	-9.00	-9.00	1.20
BOU	1	Episode	Day 1, 20	12	10	00	(PPM)	-9.00	-9.00	-9.00	0.40
BOU	1	Episode	Day 1, 20	112	10	CO	(PPM)	-9.00	-9.00	-9.00	0.30
BOU	1	Episode	Day 1, 20	112	20	CO	(PPM)	-9.00	-9.00	-9.00	0.10
BOU	1	Episode	Day 1, 20	112	20	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.00
BOU	1	Episode	Day 1, 20	112	22	CO	(PPM)	-9.00	-9.00	-9.00	0.00
BOU	1	Episode	Day 1, 20	112	22	CO	(PPM)	0.90	-9.00	0.90	0.20
BOU	1	Episode	Day 1, 20	112	23	CO	(DDM)	0.41	-9.00	0.11	0.30
BOU	1	Episode	Day 2, 20	112	1	CO	(DDM)	0.23	-9.00	0.23	0.20
BOU	1	Episode	Day 2, 20	112	2	CO	(DDM)	0.23	-9.00	0.23	0.20
BOU	1	Episode	Day 2, 20	112	วี	CO	(PPM)	0.23	-9.00	0.23	0.10
BOU	1	Episode	Day 2, 20	112	4	CO	(PPM)	0.23	-9.00	0.23	0.10
BOU	1	Episode	Day 2, 20	12	5	CO	(PPM)	0.30	-9.00	0.30	0.60
BOU	1	Episode	Day 2, 20)12	6	CO	(PPM)	0.52	-9.00	0.52	1.20
BOU	1	Episode	Dav 2, 20)12	7	CO	(PPM)	0.85	-9.00	0.85	2.60
BOU	1	Episode	Day 2, 20)12	8	CO	(PPM)	0.41	-9.00	0.41	2.20
BOU	1	Episode	Day 2, 20)12	9	CO	(PPM)	0.50	-9.00	0.50	4.20
BOU	1	Episode	Day 2, 20)12	10	CO	(PPM)	0.65	-9.00	0.65	2.90
BOU	1	Episode	Day 2, 20)12	11	CO	(PPM)	0.65	-9.00	0.65	1.30
BOU	1	Episode	Day 2, 20)12	12	CO	(PPM)	0.63	-9.00	0.63	1.40
BOU	1	Episode	Day 2, 20)12	13	CO	(PPM)	0.57	-9.00	0.57	1.20
BOU	1	Episode	Day 2, 20)12	14	CO	(PPM)	0.78	-9.00	0.78	1.20
BOU	1	Episode	Day 2, 20)12	15	CO	(PPM)	1.47	-9.00	1.47	1.90
BOU	1	Episode	Day 2, 20)12	16	CO	(PPM)	1.15	-9.00	1.15	2.00
BOU	1	Episode	Day 2, 20)12	17	CO	(PPM)	0.63	-9.00	0.63	1.30
BOU	1	Episode	Day 2, 20)12	18	CO	(PPM)	0.50	-9.00	0.50	1.10
BOU	1	Episode	e Day 2, 20)12	19	CO	(PPM)	0.51	-9.00	0.51	6.50
BOU	1	Episode	e Day 2, 20)12	20	CO	(PPM)	0.40	-9.00	0.40	1.60
BOU	1	Episode	e Day 2, 20)12	21	CO	(PPM)	0.35	-9.00	0.35	1.30
BOU	1	Episode	e Day 2, 20	012	22	CO	(PPM)	0.28	-9.00	0.28	0.80
BOU	1	Episode	Day 2, 20)12	23	CO	(PPM)	0.26	-9.00	0.26	0.40
BOU	1	Episode	Day 3, 20	012	0	CO	(PPM)	0.25	-9.00	0.25	0.00
BOU	1	Episode	Day 3, 20)12	1	CO	(PPM)	0.24	-9.00	0.24	0.00
BOU	1	Episode	Day 3, 20	012	2	CO	(PPM)	0.24	-9.00	0.24	0.00
BOU	1	Episode	Day 3, 20	012	3	CO	(PPM)	0.25	-9.00	0.25	0.00
BOU	1	Episode	Day 3, 20)12	4	CO	(PPM)	0.25	-9.00	0.25	0.10
BOU	1	Episode	Day 3, 20)12	5	CO	(PPM)	0.24	-9.00	0.24	0.40
BOU	1	Episode	Day 3, 20	12	6	CO	(PPM)	0.45	-9.00	0.45	0.80
BOU	1	Episode	Day 3, 20	12	/	00	(PPM)	0.90	-9.00	0.90	4.00
BOU	1	Episode	Day 3, 20	12	8	00	(PPM)	0.46	-9.00	0.46	2.30
BOU	1	Episode	Day 3, 20	112	10	CO	(PPM)	0.40	-9.00	0.40	2.90
BOU	1	Episode	Day 3, 20	112	11	CO	(PPM)	0.31	-9.00	0.31	0.70
BOU	1	Episode	Day 3, 20	112	12	CO	(DDM)	-9 00	-9.00	-9 00	0.90
BOU	1	Episode	Day 3, 20	112	13	CO	(PPM)	-9.00	-9.00	-9 00	1 30
BOU	1	Episode	Day 3, 20	112	14	CO	(PPM)	-9.00	-9.00	-9.00	1 00
BOU	1	Episode	Day 3, 20	12	15	CO	(PPM)	-9.00	-9.00	-9.00	0.70
BOU	1	Episode	Day 3, 20)12	16	CO	(PPM)	-9.00	-9.00	-9.00	3.50
BOU	1	Episode	Dav 3, 20)12	17	CO	(PPM)	-9.00	-9.00	-9.00	1.60
BOU	1	Episode	Day 3, 20)12	18	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode	Day 3, 20)12	19	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode	Day 3, 20)12	20	CO	(PPM)	-9.00	-9.00	-9.00	0.80
BOU	1	Episode	Day 3, 20)12	21	CO	(PPM)	-9.00	-9.00	-9.00	0.80
BOU	1	Episode	Day 3, 20)12	22	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode	Day 3, 20)12	23	CO	(PPM)	-9.00	-9.00	-9.00	0.70
GRDS	1	Episode	Day 1, 20)12	0	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	e Day 1, 20)12	1	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	Day 1, 20)12	2	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode	e Day 1, 20)12	3	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode	Day 1, 20)12	4	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode	Day 1, 20)12	5	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	Day 1, 20)12	6	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode	Day 1, 20	112	7	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode	Day 1, 20)12	8	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode	Day 1, 20	12	9	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode	Day 1, 20	112	10	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode	Day 1, 20	112	11	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode	Day 1, 20	12	12	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	rbisode	e Day ⊥, 20	12	13	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode	Day 1, 20	12	14	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode	Day 1, 20	12	15	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	Day 1, 20	12	10	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	Day 1, 20	112	17	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode	e Day 1, 20	112	Τ8	CO	(PPM)	-9.00	-9.00	-9.00	2.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868.	8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
פדידה א	WG	שייד			ЧP	DOT.	ד.דידא אידי	2012 DRFDICTFD	2012 PRFDICTFD	2012 PREDICTED	1988 Observed
DIL A	PERIOD	DAIL			пк	POL	LUIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
_								(/	(<u>c</u>)	(,	
GRDS	1	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	Day I,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	Day I,	2012	22	00	(PPM)	1.27	-9.00	1.2/	4.00
GRDS	1	Episode	Day 1, Day 2	2012	23 0	CO	(PPM) (DDM)	0.50	-9.00	0.50	0.80
GRDS	1	Episode	Day 2,	2012	1	CO	(PPM)	0.20	-9.00	0.20	0.50
GRDS	1	Episode	Day 2,	2012	2	CO	(PPM)	0.24	-9.00	0.24	0.70
GRDS	1	Episode	Day 2,	2012	3	CO	(PPM)	0.24	-9.00	0.24	0.90
GRDS	1	Episode	Day 2,	2012	4	CO	(PPM)	0.25	-9.00	0.25	1.10
GRDS	1	Episode	Day 2,	2012	5	CO	(PPM)	0.30	-9.00	0.30	1.50
GRDS	1	Episode	Day 2,	2012	6	CO	(PPM)	0.57	-9.00	0.57	5.30
GRDS	1	Episode	Day 2,	2012	2 2	CO	(PPM) (DDM)	1.14	-9.00	1.14	16.50
GRDS	1	Episode	Day 2, Day 2.	2012	9	CO	(PPM)	0.58	-9.00	0.58	6.10
GRDS	1	Episode	Day 2,	2012	10	CO	(PPM)	0.76	-9.00	0.76	2.00
GRDS	1	Episode	Day 2,	2012	11	CO	(PPM)	0.74	-9.00	0.74	1.80
GRDS	1	Episode	Day 2,	2012	12	CO	(PPM)	0.63	-9.00	0.63	1.80
GRDS	1	Episode	Day 2,	2012	13	CO	(PPM)	0.58	-9.00	0.58	-9.00
GRDS	1	Episode	Day 2,	2012	14	CO	(PPM)	0.81	-9.00	0.81	2.40
GRDS	1	Episode	Day 2,	2012	15 16	C0 C0	(PPM) (DDM)	1.50	-9.00	1.50	3.50
GRDS	1	Episode	Day 2, Day 2	2012	17	CO	(PPM) (DDM)	1.57	-9.00	0.82	10 00
GRDS	1	Episode	Day 2,	2012	18	CO	(PPM)	0.62	-9.00	0.62	13.20
GRDS	1	Episode	Day 2,	2012	19	CO	(PPM)	0.61	-9.00	0.61	14.00
GRDS	1	Episode	Day 2,	2012	20	CO	(PPM)	0.48	-9.00	0.48	10.60
GRDS	1	Episode	Day 2,	2012	21	CO	(PPM)	0.39	-9.00	0.39	7.30
GRDS	1	Episode	Day 2,	2012	22	CO	(PPM)	0.30	-9.00	0.30	3.30
GRDS	1	Episode	Day 2,	2012	23	CO	(PPM)	0.27	-9.00	0.27	2.30
GRDS	1	Episode	Day 3, Day 3	2012	1	CO	(PPM) (DDM)	0.20	-9.00	0.26	1.00
GRDS	1	Episode	Day 3, Day 3.	2012	2	CO	(PPM)	0.24	-9.00	0.24	0.00
GRDS	1	Episode	Day 3,	2012	3	CO	(PPM)	0.25	-9.00	0.25	0.00
GRDS	1	Episode	Day 3,	2012	4	CO	(PPM)	0.26	-9.00	0.26	0.00
GRDS	1	Episode	Day 3,	2012	5	CO	(PPM)	0.24	-9.00	0.24	1.00
GRDS	1	Episode	Day 3,	2012	6	CO	(PPM)	0.43	-9.00	0.43	2.00
GRDS	1	Episode	Day 3,	2012	./	CO	(PPM)	1.01	-9.00	1.01	9.00
GRDS	1	Episode	Day 3,	2012	8 Q	CO	(PPM) (DDM)	0.54	-9.00	0.54	8.00
GRDS	1	Episode	Day 3, Day 3.	2012	10	CO	(PPM)	0.32	-9.00	0.32	1.00
GRDS	1	Episode	Day 3,	2012	11	CO	(PPM)	0.37	-9.00	0.37	1.00
GRDS	1	Episode	Day 3,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode	Day 3,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode	Day 3,	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode	Day 3,	2012	17	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode	Day 3, Day 3,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	9.00
GRDS	1	Episode	Day 3,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	7.00
GRDS	1	Episode	Day 3,	2012	22	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode	Day 3,	2012	∠3 0	C0 C0	(PPM) (DDM)	-9.00	-9.00	-9.00	4.00
ARV	1	Episode	Day 1, Day 1.	2012	1	CO	(PPM)	-9.00	-9.00	-9.00	2.70
ARV	1	Episode	Day 1,	2012	2	CO	(PPM)	-9.00	-9.00	-9.00	2.50
ARV	1	Episode	Day 1,	2012	3	CO	(PPM)	-9.00	-9.00	-9.00	1.60
ARV	1	Episode	Day 1,	2012	4	CO	(PPM)	-9.00	-9.00	-9.00	0.90
ARV	1	Episode	Day 1,	2012	5	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode	Day 1,	2012	6	CO	(PPM)	-9.00	-9.00	-9.00	1.60
ARV	1	Episode	Day 1,	2012	0	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	2.50
ARV	1	Episode	Day 1, Day 1	2012	9	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	2 00
ARV	1	Episode	Day 1.	2012	10	CO	(PPM)	-9.00	-9.00	-9.00	1.70
ARV	1	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	-9.00	-9.00	1.90
ARV	1	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	1.50
ARV	1	Episode	Day 1,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode	Day 1,	2012	14	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV ADV	⊥ 1	Episode	Day 1,	∠∪⊥∠ 2012	15 16	C0	(PPM)	-9.00 _9.00	-9.00 _9.00	-9.00	1.3U 2.20
ARV	1 1	Episode	Day 1	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	3 80
ARV	1	Episode	Day 1.	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	3.70
ARV	1	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	3.90
ARV	1	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	4.50
ARV	1	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	6.50

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868.	8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
CT.		ኮለጥም			UD	DOL	ד. דידי א אידי	2012 משייים במשפט	2012 ספרטדמידם	2012 DREDICTED	1988 OBGEDVED
511	PERIOD	DAIE			пк	POL	LUIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
								(====)	(<u>c</u> /	(,	
ARV	1	Episode	Day 1,	2012	22	CO	(PPM)	2.70	-9.00	2.70	5.40
ARV	1	Episode	Day 1,	2012	23	CO	(PPM)	2.42	-9.00	2.42	2.40
ARV		Episode	Day 2,	2012	0	CO	(PPM)	1.20	-9.00	1.20	1.70
ARV	· 1	Episode	Day 2,	2012	1	00	(PPM)	0.69	-9.00	0.69	1.30
ARV	· 1	Episode	Day 2, Day 2	2012	2	CO	(PPM) (DDM)	0.90	-9.00	0.90	1.50
ARV	· 1	Episode	Day 2,	2012	4	CO	(PPM)	0.37	-9.00	0.37	1.20
ARV	· 1	Episode	Day 2,	2012	5	CO	(PPM)	0.36	-9.00	0.36	1.80
ARV	· 1	Episode	Day 2,	2012	б	CO	(PPM)	0.43	-9.00	0.43	3.80
ARV	1	Episode	Day 2,	2012	7	CO	(PPM)	0.74	-9.00	0.74	9.60
ARV	1	Episode	Day 2,	2012	8	CO	(PPM)	0.63	-9.00	0.63	11.00
ARV	1	Episode	Day 2,	2012	9	CO	(PPM)	0.76	-9.00	0.76	6.60
ARV	· 1	Episode	Day 2,	2012	10	CO	(PPM) (DDM)	0.75	-9.00	0.75	4.40
ARV	· 1	Episode	Day 2, Day 2	2012	12	CO	(PPM) (PPM)	0.83	-9.00	0.83	2.20
ARV	· 1	Episode	Day 2, Day 2,	2012	13	CO	(PPM)	1.03	-9.00	1.03	1.60
ARV	· 1	Episode	Day 2,	2012	14	CO	(PPM)	1.19	-9.00	1.19	1.70
ARV	· 1	Episode	Day 2,	2012	15	CO	(PPM)	1.52	-9.00	1.52	2.60
ARV	. 1	Episode	Day 2,	2012	16	CO	(PPM)	2.93	-9.00	2.93	5.20
ARV	1	Episode	Day 2,	2012	17	CO	(PPM)	2.18	-9.00	2.18	6.30
ARV	1	Episode	Day 2,	2012	18	CO	(PPM)	0.95	-9.00	0.95	6.20
ARV	· 1	Episode	Day 2,	2012	19	CO	(PPM) (DDM)	0.53	-9.00	0.53	6.UU 5 10
ARV ARV	· 1	Episode	Day 2, Day 2	2012	20	CO	(PPM) (DDM)	0.44	-9.00	0.44	4 10
ARV	· 1	Episode	Day 2,	2012	22	CO	(PPM)	0.43	-9.00	0.43	3.20
ARV	· 1	Episode	Day 2,	2012	23	CO	(PPM)	0.37	-9.00	0.37	2.30
ARV	· 1	Episode	Day 3,	2012	0	CO	(PPM)	0.33	-9.00	0.33	1.50
ARV	· 1	Episode	Day 3,	2012	1	CO	(PPM)	0.31	-9.00	0.31	1.20
ARV	1	Episode	Day 3,	2012	2	CO	(PPM)	0.30	-9.00	0.30	1.10
ARV		Episode	Day 3,	2012	3	CO	(PPM)	0.28	-9.00	0.28	0.90
ARV	· 1	Episode	Day 3,	2012	4	CO	(PPM) (DDM)	0.25	-9.00	0.25	0.60
ARV	· 1	Episode	Day 3, Day 3	2012	6	CO	(PPM) (PPM)	0.28	-9.00	0.28	2 90
ARV	· 1	Episode	Day 3, Dav 3,	2012	7	CO	(PPM)	1.33	-9.00	1.33	8.20
ARV	. 1	Episode	Day 3,	2012	8	CO	(PPM)	0.75	-9.00	0.75	7.30
ARV	· 1	Episode	Day 3,	2012	9	CO	(PPM)	0.75	-9.00	0.75	4.50
ARV	· 1	Episode	Day 3,	2012	10	CO	(PPM)	0.73	-9.00	0.73	-9.00
ARV	1	Episode	Day 3,	2012	11	CO	(PPM)	0.76	-9.00	0.76	1.00
ARV		Episode	Day 3,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV ARV	· 1	Episode	Day 3,	2012	13	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	1.00
ARV	· 1	Episode	Day 3, Day 3.	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV	· 1	Episode	Day 3,	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	2.40
ARV	· 1	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	5.50
ARV	. 1	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	5.20
ARV	1	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	4.80
ARV		Episode	Day 3,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	3.90
ARV ADV	· 1	Episode	Day 3,	2012	21	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	4.00
ARV	· 1	Episode	Day 3, Day 3	2012	23	CO	(PPM)	-9.00	-9 00	-9.00	2 00
HLD	1	Episode	Day 1,	2012	0	CO	(PPM)	-9.00	-9.00	-9.00	0.60
HLD	1	Episode	Day 1,	2012	1	CO	(PPM)	-9.00	-9.00	-9.00	0.60
HLD	1	Episode	Day 1,	2012	2	CO	(PPM)	-9.00	-9.00	-9.00	0.50
HLD	1	Episode	Day 1,	2012	3	CO	(PPM)	-9.00	-9.00	-9.00	0.50
HLD	1	Episode	Day 1,	2012	4	CO	(PPM)	-9.00	-9.00	-9.00	0.40
		Episode	: Day I, Day 1	2012 2012	5	CO	(PPM)	-9.00 _9.00	-9.00 _9.00	-9.00	1.20
HT.P	1	Episode	. Day 1, . Dav 1	2012	7	CO	(PPM)	-9.00	-9.00	-9.00	0.70
HLD	· 1	Episode	Dav 1,	2012	8	CO	(PPM)	-9.00	-9.00	-9.00	0.30
HLD	1	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	-9.00	-9.00	0.10
HLD	1	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD	1	Episode	Day 1,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	0.00
		Episode Episode	: Day I, Day 1	2012 2012	⊥4 1⊑	C0	(PPM)	-9.00 _9.00	-9.00 _9.00	-9.00	0.00
HILD	1	Episode	Day 1, Dav 1	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	0.50
HLD	1	Episode	Dav 1.	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	0.40
HLD	1	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	0.40
HLD	1	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	0.30
HLD	1	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode	Day 1,	2012	22	CO	(PPM)	0.25	-9.00	0.25	0.30
HLL HT.F	· 1	Episode	: Day I, Day 2	2012	∠3 ∩	CO	(PPM)	U.∠4 N 23	-9.00 _9 NN	0.⊿4 0.23	0.20
لالبنية	1	-r-1000C				00	(= = + ¹ /	0.20	2.00	0.20	0.20

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868	8.8tpd;1.	5;80;	I/M 240	w/newest 4my	vr exempt;	0010	1000
C T T T	7770	<u>ה</u> א תיד			υр	DOT	T TTTT እ NTTT	2012 DEFDICTED	2012 DBEDICTED	2012 DREDICTED	1988 OBGEBVED
STIP	PERIOD	DAIE			пк	POL	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
								(,	(<u>c</u> ,	(,	
HLD	1	Episode	Day 2,	2012	1	CO	(PPM)	0.22	-9.00	0.22	0.20
HLD	1	Episode	Day 2,	2012	2	CO	(PPM)	0.21	-9.00	0.21	0.10
HLD	1	Episode	Day 2,	2012	3	CO	(PPM)	0.21	-9.00	0.21	0.20
HLD	1	Episode	Day 2,	2012	4	00	(PPM)	0.22	-9.00	0.22	0.10
HLD	1	Episode	Day 2, Day 2	2012	5	CO	(PPM) (DDM)	0.23	-9.00	0.23	0.10
HLD	1	Episode	Day 2, Day 2.	2012	7	CO	(PPM)	0.39	-9.00	0.39	0.10
HLD	1	Episode	Day 2,	2012	8	CO	(PPM)	0.27	-9.00	0.27	0.00
HLD	1	Episode	Day 2,	2012	9	CO	(PPM)	0.23	-9.00	0.23	0.00
HLD	1	Episode	Day 2,	2012	10	CO	(PPM)	0.23	-9.00	0.23	0.00
HLD	1	Episode	Day 2,	2012	11	CO	(PPM)	0.24	-9.00	0.24	0.00
HLD	1	Episode	Day 2,	2012	12	CO	(PPM)	0.40	-9.00	0.40	0.00
HLD	1	Episode	Day 2,	2012	13	CO	(PPM) (DDM)	0.47	-9.00	0.47	0.00
HLD	1	Episode	Day 2, Day 2	2012	15	CO	(PPM) (PPM)	1 05	-9.00	1 05	0.00
HLD	1	Episode	Dav 2,	2012	16	CO	(PPM)	2.55	-9.00	2.55	4.00
HLD	1	Episode	Day 2,	2012	17	CO	(PPM)	3.20	-9.00	3.20	4.40
HLD	1	Episode	Day 2,	2012	18	CO	(PPM)	1.09	-9.00	1.09	1.60
HLD	1	Episode	Day 2,	2012	19	CO	(PPM)	0.39	-9.00	0.39	0.70
HLD	1	Episode	Day 2,	2012	20	CO	(PPM)	0.30	-9.00	0.30	0.50
HLD	1	Episode	Day 2,	2012	21	CO	(PPM)	0.28	-9.00	0.28	0.30
HLD	1	Episode	Day 2, Day 2	2012	22	CO	(PPM) (DDM)	0.20	-9.00	0.20	0.30
HLD	1	Episode	Day 3.	2012	0	CO	(PPM)	0.25	-9.00	0.25	0.40
HLD	1	Episode	Day 3,	2012	1	CO	(PPM)	0.24	-9.00	0.24	0.40
HLD	1	Episode	Day 3,	2012	2	CO	(PPM)	0.22	-9.00	0.22	0.50
HLD	1	Episode	Day 3,	2012	3	CO	(PPM)	0.22	-9.00	0.22	0.50
HLD	1	Episode	Day 3,	2012	4	CO	(PPM)	0.22	-9.00	0.22	0.40
HLD	1	Episode	Day 3,	2012	5	CO	(PPM)	0.24	-9.00	0.24	0.30
HLD	1	Episode	Day 3, Day 3	2012	6 7	CO	(PPM) (DDM)	0.31	-9.00	0.31	1 90
HLD	1	Episode	Day 3.	2012	, 8	CO	(PPM)	0.02	-9.00	0.72	2.00
HLD	1	Episode	Day 3,	2012	9	CO	(PPM)	0.68	-9.00	0.68	1.10
HLD	1	Episode	Day 3,	2012	10	CO	(PPM)	0.47	-9.00	0.47	0.00
HLD	1	Episode	Day 3,	2012	11	CO	(PPM)	0.39	-9.00	0.39	0.00
HLD	1	Episode	Day 3,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD	1	Episode	Day 3,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD	1	Episode	Day 3,	2012	14	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.00
HLD	1	Episode	Day 3.	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	0.70
HLD	1	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	0.70
HLD	1	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	0.80
HLD	1	Episode	Day 3,	2012	2⊥	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.30
HLD	1	Episode	Day 3, Day 3	2012	22	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	1 80
AUR	1	Episode	Day 1.	2012	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day I,	2012	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Lpisode Frigodo	Day 1,	∠∪⊥∠ 2012	5 6	CO	(PPM) (DDM)	-9.00 _9.00	-9.00 _9.00	-9.00	-9.00
AUR	1	Episode	Day 1, Dav 1	2012	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1.	2012	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	13	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
AUR	1 1	Episode	Day 1, Dav 1	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1.	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 1,	ZUIZ 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Epicode	Day 1, Day 1	2012	∠∠ 22	CO	(PPM)	0.70	-9.00	0.70	-9.00
AUR	1	Episode	Dav 2	2012	0	CO	(PPM)	0.69	-9.00	0.69	-9.00
AUR	ī	Episode	Day 2,	2012	ĩ	CO	(PPM)	0.44	-9.00	0.44	-9.00
AUR	1	Episode	Day 2,	2012	2	CO	(PPM)	0.34	-9.00	0.34	-9.00
AUR	1	Episode	Day 2,	2012	3	CO	(PPM)	0.31	-9.00	0.31	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868	.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	2010	1000
਼ ਪਾਸ	AVC	שייעט			ЧR	DOT.	τ.τιτγανιτ	ZUIZ DRFDICTFD	ZUIZ DRFDICTFD	ZUIZ DRFDICTFD	L988 OBSEBVED
JII 2	PERIOD	DAIL			IIIC	FOL	LUTANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
-	1 2112 02							(0111)	(01120 g110)	(0111) 01120)	
AUR	1	Episode	Day 2,	2012	4	CO	(PPM)	0.33	-9.00	0.33	-9.00
AUR	1	Episode	Day 2,	2012	5	CO	(PPM)	0.37	-9.00	0.37	-9.00
AUR	1	Episode	Day 2,	2012	6	CO	(PPM)	0.54	-9.00	0.54	-9.00
AUR	1	Episode	Day 2,	2012	7	CO	(PPM)	1.16	-9.00	1.16	-9.00
AUR	1	Episode	Day 2,	2012	8	CO	(PPM)	0.90	-9.00	0.90	-9.00
AUR	1	Episode	Day 2,	2012	9	CO	(PPM)	0.63	-9.00	0.63	-9.00
AUR	1	Episode	Day 2,	2012	10	00	(PPM)	0.41	-9.00	0.41	-9.00
AUR	1	Episode	Day 2,	2012	12	CO	(PPM)	0.41	-9.00	0.41	-9.00
AUR	1	Episode	Day 2, Day 2	2012	13	CO	(PPM) (DDM)	0.40	-9.00	0.40	-9.00
AUR	1	Episode	Day 2, Day 2	2012	14	CO	(DDM)	0.34	-9.00	0.54	-9.00
AUR	1	Episode	Day 2,	2012	15	CO	(PPM)	1.23	-9.00	1.23	-9.00
AUR	1	Episode	Dav 2,	2012	16	CO	(PPM)	2.36	-9.00	2.36	-9.00
AUR	1	Episode	Day 2,	2012	17	CO	(PPM)	2.96	-9.00	2.96	-9.00
AUR	1	Episode	Day 2,	2012	18	CO	(PPM)	3.22	-9.00	3.22	-9.00
AUR	1	Episode	Day 2,	2012	19	CO	(PPM)	4.09	-9.00	4.09	-9.00
AUR	1	Episode	Day 2,	2012	20	CO	(PPM)	3.96	-9.00	3.96	-9.00
AUR	1	Episode	Day 2,	2012	21	CO	(PPM)	1.27	-9.00	1.27	-9.00
AUR	1	Episode	Day 2,	2012	22	CO	(PPM)	0.93	-9.00	0.93	-9.00
AUR	1	Episode	Day 2,	2012	23	CO	(PPM)	0.70	-9.00	0.70	-9.00
AUR	1	Episode	Day 3,	2012	0	CO	(PPM)	0.50	-9.00	0.50	-9.00
AUR	1	Episode	Day 3,	2012	1	CO	(PPM)	0.38	-9.00	0.38	-9.00
AUR	1	Episode	Day 3,	2012	2	00	(PPM)	0.31	-9.00	0.31	-9.00
AUR	1	Episode	Day 3,	2012	3	CO	(PPM) (DDM)	0.27	-9.00	0.27	-9.00
AUR	1	Episode	Day 3, Day 3	2012	5	CO	(DDM)	0.20	-9.00	0.20	-9.00
AUR	1	Episode	Day 3, Day 3.	2012	6	CO	(PPM)	0.47	-9.00	0.47	-9.00
AUR	1	Episode	Day 3,	2012	7	CO	(PPM)	1.06	-9.00	1.06	-9.00
AUR	1	Episode	Dav 3,	2012	8	CO	(PPM)	0.66	-9.00	0.66	-9.00
AUR	1	Episode	Day 3,	2012	9	CO	(PPM)	0.59	-9.00	0.59	-9.00
AUR	1	Episode	Day 3,	2012	10	CO	(PPM)	0.58	-9.00	0.58	-9.00
AUR	1	Episode	Day 3,	2012	11	CO	(PPM)	0.53	-9.00	0.53	-9.00
AUR	1	Episode	Day 3,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 3,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 3,	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 3,	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 3,	2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Day 3, Day 3	2012	20	CO	(PPM)	-9.00	-9.00	-9 00	-9 00
AUR	1	Episode	Day 3,	2012	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AUR	1	Episode	Dav 3,	2012	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
AURS	1	Episode	Day 1,	2012	0	CO	(PPM)	-9.00	-9.00	-9.00	0.70
AURS	1	Episode	Day 1,	2012	1	CO	(PPM)	-9.00	-9.00	-9.00	0.60
AURS	1	Episode	Day 1,	2012	2	CO	(PPM)	-9.00	-9.00	-9.00	0.50
AURS	1	Episode	Day 1,	2012	3	CO	(PPM)	-9.00	-9.00	-9.00	0.40
AURS	1	Episode	Day 1,	2012	4	CO	(PPM)	-9.00	-9.00	-9.00	0.40
AURS	1	Episode	Day 1,	2012	5	CO	(PPM)	-9.00	-9.00	-9.00	0.70
AURS	1	Episode	Day I,	2012	6	CO	(PPM)	-9.00	-9.00	-9.00	2.50
AURS	1	Episode	Day I,	2012	/	00	(PPM)	-9.00	-9.00	-9.00	2.20
AUKS	⊥ 1	Episode	Dav 1	∠012 2012	Ö Q	CO	(PPM)	-9.00 _0 00	-9.00	-9.00 _9.00	1 60
AUKS	⊥ 1	Epicode	Dav 1	2012	9 10	CO	(PPM)	-9.00	-9.00	-9.00	1 40
AURS	1	Episode	Dav 1	2012	11	CO	(PPM)	-9 00	-9 00	-9 00	1.50
AURS	1	Episode	Dav 1	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	0.80
AURS	1	Episode	Dav 1.	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	0.90
AURS	1	Episode	Day 1.	2012	14	CO	(PPM)	-9.00	-9.00	-9.00	0.70
AURS	1	Episode	Day 1,	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	0.50
AURS	1	Episode	Day 1,	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	1.20
AURS	1	Episode	Day 1,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	3.70
AURS	1	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	1.60
AURS	1	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	1.30
AURS	1	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	0.90
AURS	1	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	0.80
AURS	1	Episode	Day 1,	∠U1∠ 2012	22	CO	(PPM)	0.56	-9.00	0.56	1.00
AURS	1	Episode	Day 1,	∠U12 2012	∠3 ∩	00	(PPM)	0.53	-9.00	0.53	0.90
AUKS	⊥ 1	Episode	Dav 2,	∠012 2012	U 1	CO	(PPM)	0.40	-9.00	0.40	0.80
PAILY	⊥ 1	Enicode	Dav 2,	2012	⊥ 2	CO	(DDM)	0.31	_9.00	0.31	0.30
AURS	1	Episode	Dav 2,	2012	3	CO	(PPM)	0.26	-9.00	0.26	0.30
AURS	1	Episode	Dav 2.	2012	4	CO	(PPM)	0.28	-9.00	0.28	0.30
AURS	1	Episode	Dav 2.	2012	5	CO	(PPM)	0.32	-9.00	0.32	0.90
AURS	1	Episode	Day 2,	2012	6	CO	(PPM)	0.54	-9.00	0.54	2.80

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

STE AVG PRENDO DATE HE POLLTENC PRELICE (TAM) PRELICE (TAM) PRELICE (TAM) PRELICE (TAM) PRELICE (TAM) OLDEPTION ARES 1 Briade Briade ARES 1 Briade Br				High:	2012 mob=	868.8tpd;1.	.5;80;	I/M 240	w/newest 4my	/r exempt;	0010	1000
Construct Construct <thconstruct< th=""> <thconstruct< th=""> <thc< td=""><td>CTTF.</td><td>NVC</td><td>ኮለጥም</td><td></td><td></td><td>ир</td><td>DOL</td><td>ד. דידי א אידי</td><td>2012 DREDICTED</td><td>2012 DREDICTED</td><td>2012 ספרים משפט</td><td>1988 OBGEDVED</td></thc<></thconstruct<></thconstruct<>	CTTF.	NVC	ኮለጥም			ир	DOL	ד. דידי א אידי	2012 DREDICTED	2012 DREDICTED	2012 ספרים משפט	1988 OBGEDVED
ATTES 1 Disk of a Bay 2 012 7 CO FERN 1.05 3.00 1.09 3.00 ATTES 1 Disk of a Bay 2 0012 1 0010 1.09 3.00 0.09 2 2.00 ATTES 1 Disk of a Bay 2 0012 1 0010 0.15 2 2.00 ATTES 1 Disk of a Bay 2 0012 1 2 1.00 0.00 0.15 2 2.00 ATTES 1 Disk of Bay 2 0012 1 2 1.00 1.00 1.01 1.02 2 1.00 ATTES 1 Disk of Bay 2 0012 1.24 2 1.00 ATTES 1 Disk of Bay 2 0012 1.24 2 1.00 ATTES 1 Disk of Bay 2 0012 1.00 1.00 1.01 1.01 1.01 1.01 1.01	STIF	PERIOD	DAIE			пк	POL	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
AHRS 1 DBS and By 2 2012 7 CO PMM 1.09 -9.00 1.09 3.90 ARRS 1 BDS and By 2 2012 10 CO PMM 0.31 -9.00 0.45 -2.10 ARRS 1 BDS and By 2 2012 11 CO PMM 0.31 -9.00 0.13 2.10 ARRS 1 BD index By 2 2012 11 CO PMM 0.31 -9.00 0.13 2.10 ARRS 1 BD index By 2 2.012 11 CO PMM 0.31 -9.00 0.423 2.10 ARRS 1 Bp index By 2 2.012 11 CO PMM 1.33 -9.00 0.423 1.20 ARRS 1 Bp index By 2 2.012 11 CO PMM 0.83 -9.00 0.53 1.01 2.00 ARRS 1 Bp index By 2 2.012 10 CO PMM 0.									(/	(<u>-</u>)	(,	
ABRS 1 Belinder Bay 2, 2012 4 CO (PMV) 0.65 -4.00 0.1.55 2.7.0 ARRS 1 Delinder Bay 2, 2012 10 CO (PMV) 0.35 -4.00 0.1.35 -2.70 ARRS 1 Delinder Bay 2, 2012 11 CO (PMV) 0.35 -9.00 0.25 2.70 ARRS 1 Delinder Bay 2, 2012 13 CO (PMV) 0.45 9.00 0.25 2.70 ARRS 1 Belinder Bay 2, 2012 15 CO (PMV) 0.48 -9.00 1.34 2.60 ARRS 1 Belinder Bay 2, 2012 15 CO (PMV) 3.85 -9.00 6.21 3.90 3.62 3.00 ARRS 1 Belinder Bay 2, 2012 22 CO PMV 0.85 -9.00 0.52 2.21 1.30 ARRS 1 Belinder Bay 2, 2012 22 CO PMV 0.85 -9.00 0.55 <t< td=""><td>AURS</td><td>1</td><td>Episode</td><td>Day 2,</td><td>2012</td><td>7</td><td>CO</td><td>(PPM)</td><td>1.09</td><td>-9.00</td><td>1.09</td><td>3.90</td></t<>	AURS	1	Episode	Day 2,	2012	7	CO	(PPM)	1.09	-9.00	1.09	3.90
ALES 1 Epidode Day 2 2012 10 CO FERS 0.51 -9.00 0.51 2.70 AUKS 1 Epidode Day 2 2012 11 CO (PWR) 0.48 -9.00 0.48 2.30 AUKS 1 Epidode Day 2 2012 13 CO (PWR) 0.48 -9.00 0.48 2.30 AUKS 1 Epidode Day 2 2012 16 CO (PWR) 0.48 -9.00 1.57 5.30 AUKS 1 Epidode Day 2 2012 16 CO (PWR) 3.52 -9.00 5.76 1.13 2.60 AUKS 1 Epidode Day 2 2012 20 CO (PWR) 0.53 -9.00 5.76 1.13 1.60 AUKS 1 Epidode Day 2 2012 21 CO (PWR) 0.53 -9.00 0.43 1.70 1.70 AUKS 1 Epidode Day 3 2012 21	AURS	1	Episode	Day 2,	2012	8	CO	(PPM)	0.65	-9.00	0.65	2.70
mode i by isode by isode j l l c c j d j d j d j d j d j d j d j d j d j d j d j d j d j< j j< j< j< j< j< j< j< j< j<< j<< j< j<< j< j< j<< j< j<< j<<	AURS	1	Episode	Day 2,	2012	9	CO	(PPM)	0.37	-9.00	0.37	2.30
ANDS 1 Depinde Day 2 2012 11 CC PRES 0.48 3.00 0.48 2.10 AURS 1 Episode Day 2 2012 14 CC PRES 0.62 3.00 0.48 3.10 AURS 1 Episode Day 2 2012 14 CC PRES 0.62 3.50 AURS 1 Episode Day 2 2012 14 CC PRES 5.76 -9.00 6.51 5.60 AURS 1 Episode Day 2 2012 13 CC PRES 5.76 -9.00 6.51 5.60 AURS 1 Episode Day 2 2012 21 CC PRES 0.61 -9.00 0.55 1.70 AURS 1 Episode Day 2 2012 21 CC PRES 0.61 -9.00 0.55 1.70 AURS 1 Episode Day 3 2012 2 CC PRES 0.61 1.70 AURS	AURS	1	Episode	Day 2,	2012	10	00	(PPM)	0.31	-9.00	0.31	2.10
ARTES 1 Dejiacde Day 2, 2012 13 CC (PNM) 0.62 -9.00 0.62 2.50 ARTES 1 Epiacde Day 2, 2012 14 CC (PNM) 0.62 -9.00 0.62 2.50 ARTES 1 Epiacde Day 2, 2012 14 CC (PNM) 1.16 -9.00 5.76 11.30 ARTES 1 Epiacde Day 2, 2012 15 CC (PNM) 6.62 -9.00 6.21 5.60 ARTES 1 Epiacde Day 2, 2012 210 CC (PNM) 6.62 -9.00 6.21 5.60 ARTES 1 Epiacde Day 2, 2012 22 CC (PNM) 0.62 -9.00 0.62 1.80 ARTES 1 Epiacde Day 3, 2012 2 CC (PNM) 0.52 -9.00 0.53 0.50 ARTES 1 Epiacde Day 3, 2012 4 CC (PNM) 0.32 -9.00 0.32 0.50 0.50 ARTES	AURS	1	Episode	Day 2, Day 2	2012	12	CO	(PPM) (DDM)	0.35	-9.00	0.35	2.70
AURS 1 Episode Day 2, 2012 14 CO DPWI 0.83 -9.00 0.83 1.70 AURS 1 Episode Day 2, 2012 15 CO (PPWI) 1.54 -9.00 1.34 2.60 AURS 1 Episode Day 2, 2012 15 CO (PPWI) 3.56 -9.00 6.21 5.60 AURS 1 Episode Day 2, 2012 2012 CO (PPWI) 3.52 -9.00 3.21 5.60 AURS 1 Episode Day 2, 2012 22 CO (PPWI) 0.82 -9.00 0.31 2.201 AURS 1 Episode Day 2, 2012 22 CO (PPWI) 0.41 -9.00 0.41 1.30 AURS 1 Episode Day 3, 2012 2 CO (PPWI) 0.25 -9.00 0.28 0.30 0.34 1.81 AURS 1 Episode Day 3, 2012 3 CO (PPWI) 0.25 -9.00 0.28 0.50 <th< td=""><td>AURS</td><td>1</td><td>Episode</td><td>Day 2</td><td>2012</td><td>13</td><td>CO</td><td>(PPM)</td><td>0.62</td><td>-9.00</td><td>0.62</td><td>2.50</td></th<>	AURS	1	Episode	Day 2	2012	13	CO	(PPM)	0.62	-9.00	0.62	2.50
AURE 1 Episode bay 2, 2012 15 CO (PPR) 1.34 -0.00 3.55 5.30 AURE 1 Episode Day 2, 2012 10 CO (PPR) 5.23 -0.00 5.73 11.20 AURE 1 Episode Day 2, 2012 10 CO (PPR) 5.23 -0.00 5.73 11.20 AURE 1 Episode Day 2, 2012 20 CO (PPR) 6.22 -0.00 0.43 2.20 AURE 1 Episode Day 2, 2012 20 CO (PPR) 0.41 -0.00 0.41 1.33 AURE 1 Episode Day 3, 2012 0 CO (PPR) 0.43 -0.00 0.33 0.50 AURE 1 Episode Day 3, 2012 0 CO (PPR) 0.43 -0.00 0.28 0.70 AURE 1 E	AURS	1	Episode	Day 2	2012	14	CO	(PPM)	0.83	-9.00	0.83	1.70
AURS 1 Episode Day 2, 2012 10 CO (PPM) 3.55 -9.00 3.55 5.30 AURS 1 Episode Day 2, 2012 10 CO (PPM) 5.76 -9.00 5.77 -1.20 AURS 1 Episode Day 2, 2012 20 CO (PPM) 0.52 -9.00 0.62 2.20 AURS 1 Episode Day 2, 2012 20 CO (PPM) 0.52 -9.00 0.62 1.80 AURS 1 Episode Day 2, 2012 20 CO (PPM) 0.53 -9.00 0.55 1.80 AURS 1 Episode Day 3, 2012 2 CO (PPM) 0.33 -9.00 0.28 0.50 AURS 1 Episode Day 3, 2012 4 CO (PPM) 0.48 -9.00 0.28 0.50 AURS 1 Episode Day 3, 2012 4 CO (PPM) 0.48 -9.00 0.48 5.40 AURS 1	AURS	1	Episode	Day 2,	2012	15	CO	(PPM)	1.34	-9.00	1.34	2.60
AURS 1 Episode Bay 2, 2012 17 CC (PPH) 5.76 -0.00 5.76 1.120 AURS 1 Episode Bay 2, 2012 19 CC (PPH) 6.22 9.00 5.25 5.60 AURS 1 Episode Day 2, 2012 21 CC (PPH) 0.42 -9.00 0.62 1.80 AURS 1 Episode Day 2, 2012 22 CC (PPH) 0.43 -9.00 0.65 1.70 AURS 1 Episode Day 2, 2012 22 CC (PPH) 0.33 -9.00 0.437 1.30 AURS 1 Episode Day 3, 2012 2 CC (PPH) 0.28 -9.00 0.28 0.50 AURS 1 Episode Day 3, 2012 3 CC (PPH) 0.46 -9.00 0.28 5.00 AURS 1 Episode Day 3, 2012 7 CC (PPH) 0.46 -9.00 0.46 5.00 AURS 1	AURS	1	Episode	Day 2,	2012	16	CO	(PPM)	3.55	-9.00	3.55	5.30
ARRS 1 Depende Bay 2, 2012 13 CCO PPHN 812 -800 621 560 ARRS 1 Replande Day 2, 2012 202 CCO PPHN 062 -0.00 062 180 ARRS 1 Replande Day 2, 2012 222 CCO (PPHN) 062 -0.00 062 180 ARRS 1 Replande Day 2, 2012 222 CCO (PPHN) 062 -0.00 041 130 ARRS 1 Replande Day 2, 2012 2 CCO (PPN) 042 -0.00 043 -0.00 028 050 ARRS 1 Replande Day 3, 2012 3 CCO (PPN) 043 -0.00 028 050 ARRS 1 Replande Day 3, 2012 1 CCO (PPN) 045 -0.00 048 540 ARRS 1 Replande <thday 2012<="" 3,="" t<="" td=""><td>AURS</td><td>1</td><td>Episode</td><td>Day 2,</td><td>2012</td><td>17</td><td>CO</td><td>(PPM)</td><td>5.76</td><td>-9.00</td><td>5.76</td><td>11.20</td></thday>	AURS	1	Episode	Day 2,	2012	17	CO	(PPM)	5.76	-9.00	5.76	11.20
AURS 1 Bilescal Bilescal 1 20 CO PENN 0.62 -9.00 0.63 2.80 AURS 1 Bpiaede Day 2, 2012 22 CO (PMN) 0.62 -9.00 0.63 1.80 AURS 1 Bpiaede Day 2, 2012 22 CO (PMN) 0.41 -9.00 0.41 1.80 AURS 1 Bpiaede Day 3, 2012 2 CO (PMN) 0.33 -9.00 0.43 0.50 AURS 1 Bpiaede Day 3, 2012 2 CO (PMN) 0.28 -9.00 0.25 0.50 AURS 1 Bpiaede Day 3, 2012 3 CO (PMN) 0.26 -9.00 0.36 6.00 1.08 6.00 1.08 6.00 1.08 6.00 1.08 6.00 1.08 6.00 1.08 6.00 1.08 6.00 1.08 6.00 1.08 6.00 1.00 1.00 1.00 1.00 1.00 1.00	AURS	1	Episode	Day 2,	2012	18	CO	(PPM)	6.21	-9.00	6.21	5.60
MATRS 1 Episode Day 2, 2012 21 CO (FPH) 0.85 -9,00 0.82 -1,00 AURS I Episode Day 2, 2012 22 CO (FPH) 0.45 -9,00 0.43 1.30 AURS I Episode Day 3, 2012 1 CO (FPH) 0.41 1.30 AURS I Episode Day 3, 2012 1 CO (FPH) 0.45 -9,00 0.45 0.50 AURS I Episode Day 3, 2012 4 CO (FPH) 0.25 -9,00 0.25 0.50 AURS I Episode Day 3, 2012 4 CO (FPH) 0.26 -9,00 0.26 0.70 AURS I Episode Day 3, 2012 6 CO (FPH) 0.48 5.40 AURS I Episode Day 3, 2012 10 CO (FPH) 0.54 -9,00 0.55 3.30 AURS I Episode Day 3, 2012 11 CO (FPH)<	AURS	1	Episode	Day 2,	2012	19	00	(PPM)	3.84	-9.00	3.84	3.00
AURS 1 Triplande may 2, 2012 22 CC (PPH) 0.55 -9.00 0.55 1.70 AURS 1 Epiacde Day 3, 2012 0 CC (PPH) 0.37 0.80 AURS 1 Epiacde Day 3, 2012 1 CC (PPH) 0.37 -9.00 0.37 0.80 AURS 1 Epiacde Day 3, 2012 1 CC (PPH) 0.28 -9.00 0.28 0.50 AURS 1 Epiacde Day 3, 2012 4 CC (PPH) 0.26 -9.00 0.26 0.70 AURS 1 Epiacde Day 3, 2012 5 CC (PPH) 0.30 -9.00 0.48 5.00 AURS 1 Epiacde Day 3, 2012 10 CC (PPH) 0.48 -9.00 1.08 6.90 AURS 1 Epiacde Day 3, 2012 10 CC (PPH) 0.45 -9.00 0.55 0.56 0.90 AURS 1 Epiacde Day 3, 2012 10 CC (PPH) -9.00 -9.00 -9.00	AURS	1	Episode	Day 2, Day 2	2012	20	CO	(PPM) (DDM)	0.93	-9.00	0.93	2.20
AURS 1 Episode Day 2, 2012 23 CO (PPM) 0.41 1.30 AURS 1 Episode Day 3, 2012 1 CO (PPM) 0.37 -9.00 0.37 0.80 AURS 1 Episode Day 3, 2012 1 CO (PPM) 0.38 -9.00 0.35 0.50 AURS 1 Episode Day 3, 2012 2 CO (PPM) 0.38 -9.00 0.36 0.50 AURS 1 Episode Day 3, 2012 6 CO (PPM) 0.48 5.40 AURS 1 Episode Day 3, 2012 6 CO (PPM) 0.48 5.40 AURS 1 Episode Day 3, 2012 10 CO (PPM) 0.48 5.40 AURS 1 Episode Day 3, 2012 10 CO (PPM) 0.45 0.90 0.46 0.90 0.45 0.90 0.45 0.90 0.45 0.90 0.45 0.90 0.47 0.45 0.90	AURS	1	Episode	Day 2	2012	22	CO	(PPM)	0.55	-9.00	0.55	1.70
AURS 1 brisode Day 3, 2012 0 CO (PPM) 0.35 -9.00 0.77 0.80 AURS 1 Episode Day 3, 2012 2 CO (PPM) 0.35 -9.00 0.28 0.50 AURS 1 Episode Day 3, 2012 4 CO (PPM) 0.26 -9.00 0.28 0.50 AURS 1 Episode Day 3, 2012 5 CO (PPM) 0.36 -9.00 0.36 0.70 AURS 1 Episode Day 3, 2012 6 CO (PPM) 0.48 -9.00 0.48 5.40 AURS 1 Episode Day 3, 2012 10 CO (PPM) 0.54 -9.00 0.45 0.00 4.45 5.00 AURS 1 Episode Day 3, 2012 11 CO (PPM) -9.00 -9.00 0.40 0.00 0.46 0.00 0.45 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00	AURS	1	Episode	Day 2	2012	23	CO	(PPM)	0.41	-9.00	0.41	1.30
ALRES 1 Episode Day 3, 2012 1 CCO (PPM) 0.32 -9.00 0.32 0.50 AURES 1 Episode Day 3, 2012 2 CO (PPM) 0.28 -9.00 0.32 0.50 AURES 1 Episode Day 3, 2012 5 CO (PPM) 0.33 -9.00 0.35 0.50 AURES 1 Episode Day 3, 2012 6 CO (PPM) 0.48 -9.00 0.48 5.40 AURES 1 Episode Day 3, 2012 7 CO (PPM) 0.56 -9.00 0.56 3.30 AURES 1 Episode Day 3, 2012 10 CO (PPM) 0.56 -9.00 0.56 3.30 AURES 1 Episode Day 3, 2012 13 CO (PPM) -9.00 -9.00 -9.00 0.65 3.30 AURES 1 Episode Day 3, 2012 13 CO (PPM) -9.00 -9.00 0.0 0.0 0.0 0.	AURS	1	Episode	Day 3,	2012	0	CO	(PPM)	0.37	-9.00	0.37	0.80
ALRS 1 Episode Day 3, 2012 2 CCO (PMM) 0.25 -9.00 0.26 0.50 ALRS 1 Episode Day 3, 2012 4 CCO (PMM) 0.25 -9.00 0.25 0.50 ALRS 1 Episode Day 3, 2012 6 CCO (PMM) 0.24 -9.00 0.48 5.40 ALRS 1 Episode Day 3, 2012 6 CCO (PPM) 0.48 -9.00 0.48 5.40 ALRS 1 Episode Day 3, 2012 6 CCO (PPM) 0.54 -9.00 0.56 3.30 ALRS 1 Episode Day 3, 2012 11 CCO (PPM) 0.46 -9.00 -9.60	AURS	1	Episode	Day 3,	2012	1	CO	(PPM)	0.35	-9.00	0.35	0.50
AURS 1 Episode Bay 3, 2012 3 CO (PPM) 0.25 -9.00 0.25 0.170 AURS 1 Episode Day 3, 2012 5 CO (PPM) 0.48 -9.00 0.25 1.70 AURS 1 Episode Day 3, 2012 7 CO (PPM) 0.48 -9.00 0.48 5.40 AURS 1 Episode Day 3, 2012 8 CO (PPM) 0.56 -9.00 0.56 3.30 AURS 1 Episode Day 3, 2012 10 CO (PPM) 0.56 -9.00 0.56 0.90 0.70 AURS Episode Day 3, 2012 10 CO (PPM) 0.56 -9.00 0.60 0.70 AURS Episode Day 3, 2012 13 CO (PPM) -9.00 -9.00 0.60 0.70 AURS Episode Day 3, 2012 15 CO (PPM) -9.00 -9.00 0.60 AURS Episode Day 3, 2012 10 CO	AURS	1	Episode	Day 3,	2012	2	CO	(PPM)	0.28	-9.00	0.28	0.50
AURS 1 Dplaced Py 3, AUL2 4 CO CD Feb 0 <td>AURS</td> <td>1</td> <td>Episode</td> <td>Day 3,</td> <td>2012</td> <td>3</td> <td>CO</td> <td>(PPM)</td> <td>0.25</td> <td>-9.00</td> <td>0.25</td> <td>0.50</td>	AURS	1	Episode	Day 3,	2012	3	CO	(PPM)	0.25	-9.00	0.25	0.50
ARRS 1 Epicade bay 3, 2012 6 CC (FPR) 0.4 -9.00 0.48 5.40 AURS Epicade bay 3, 2012 8 CC (FPR) 1.68 -9.00 0.48 5.40 AURS Epicade bay 3, 2012 8 CC (FPR) 0.56 -9.00 0.56 .50 0.90 AURS Epicade bay 3, 2012 12 CC (FPR) 0.45 -9.00 0.56 .90 0.56 .90 0.56 .90 0.56 .90 0.90 .90	AURS	1	Episode	Day 3,	2012	4	CO	(PPM)	0.26	-9.00	0.20	0.70
AURS 1 Epieode Day 3, 2012 7 CO (PPM) 1.08 -9.00 1.08 6.90 AURS 1 Epieode Day 3, 2012 9 CO (PPM) 0.54 -9.00 0.56 5.00 AURS 1 Epieode Day 3, 2012 10 CO (PPM) 0.56 -9.00 0.56 3.30 AURS 1 Epieode Day 3, 2012 11 CO (PPM) 0.45 -9.00 0.45 0.90 AURS 1 Epieode Day 3, 2012 13 CO (PPM) -9.00 -9.00 0.40 0.80 AURS 1 Epieode Day 3, 2012 14 CO (PPM) -9.00 -9.00 -9.00 0.80 AURS 1 Epieode Day 3, 2012 16 CO (PPM) -9.00 -9.00 -9.00 3.40 AURS 1 Epieode Day 3, 2012 20 CO (PPM) -9.00 -9.00 3.00 AURS 1 Epieode	AURS	1	Episode	Day 3, Day 3	2012	5	CO	(PPM) (DDM)	0.30	-9.00	0.30	5 40
NIRS I Epiaode Day 3, 2012 8 CO (PPM) 0.54 -9.00 0.54 5.00 AURS 1 Epiaode Day 3, 2012 10 CO (PPM) 0.55 -9.00 0.56 3.30 AURS 1 Epiaode Day 3, 2012 11 CO (PPM) 0.45 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -8.00 0.80 AURS 1 Epiaode Day 3, 2012 14 CO (PPM) -9.00 -9.00 -9.00 -8.00 .80 AURS 1 Epiaode Day 3, 2012 16 CO (PPM) -9.00 -9.00 -9.00 -8.00 .80 AURS 1 Epiaode Day 3, 2012 18 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 .270 AURS 1 Epiaode Day 3, 2012 21 CO (PPM) -9.00	AURS	1	Episode	Day 3	2012	7	CO	(PPM)	1.08	-9.00	1.08	6.90
AURS 1 Episode Day 3, 2012 9 CO (PPM) 0.56 -9.00 0.56 3.30 AURS 1 Episode Day 3, 2012 10 CCO (PPM) 0.45 -9.00 0.45 0.90 AURS 1 Episode Day 3, 2012 12 CCO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -8.00 -9.	AURS	1	Episode	Day 3	2012	8	CO	(PPM)	0.54	-9.00	0.54	5.00
AURS 1 Episode Day 3, 2012 10 CO (PPM) 0.50 -9.00 0.50 0.90 AURS 1 Episode Day 3, 2012 12 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -8.00 -9.00	AURS	1	Episode	Day 3,	2012	9	CO	(PPM)	0.56	-9.00	0.56	3.30
AURS 1 Episode Day 3, 2012 11 CO (PPM) -0.45 -9.00 -0.45 0.90 AURS 1 Episode Day 3, 2012 12 CO (PPM) -9.00 -9.00 -9.00 -9.00 -8.00 0.70 AURS 1 Episode Day 3, 2012 14 CO (PPM) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 3, 2012 15 CO (PPM) -9.00 -9.00 -9.00 -9.00 1.80 AURS 1 Episode Day 3, 2012 16 CO (PPM) -9.00 -9.00 -9.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.00 AURS 1 Episode Day 3, 2012 2.0 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 2.00 2.00 AURS 1 Episode Day 1, 2012 2.0	AURS	1	Episode	Day 3,	2012	10	CO	(PPM)	0.50	-9.00	0.50	0.90
AURS 1 Episode Day 3, 2012 12 CO CO PPN -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 3, 2012 14 CO (PPN) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 3, 2012 14 CO (PPN) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 3, 2012 17 CO (PPN) -9.00 -9.00 -9.00 3.40 AURS 1 Episode Day 3, 2012 18 CO (PPN) -9.00 -9.00 -9.00 3.40 AURS 1 Episode Day 3, 2012 20 CO (PPN) -9.00 -9.00 -9.00 2.70 AURS 1 Episode Day 3, 2012 22 CO (PPN) -9.00 -9.00 -9.00 2.50 AURS 1 Episode Day 1, 2012 0 CO (PPN) -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9	AURS	1	Episode	Day 3,	2012	11	CO	(PPM)	0.45	-9.00	0.45	0.90
ARRS 1 Delsode Day 5, 2012 14 CO (PPN) -9.00	AURS	1	Episode	Day 3,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	0.70
ARRE 1 Defined Day, 3 2012 15 CO FERM -3.00 -3.00 -9.	AURS	1	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	-9.00	-9.00	0.80
AURS 1 Episode Day 3, 2012 16 CO (PPM) -9.00 -9.00 -9.00 -9.00 3.40 AURS 1 Episode Day 3, 2012 17 CO (PPM) -9.00 -9.00 -9.00 3.40 AURS 1 Episode Day 3, 2012 19 CO (PPM) -9.00	AURS	1	Episode	Day 3, Day 3	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	0.80
AURS 1 Episode Day 3, 2012 17 CO (PPM) -9.00 -9.00 -9.00 3.40 AURS 1 Episode Day 3, 2012 18 CO (PPM) -9.00 -9.00 -9.00 2.70 AURS 1 Episode Day 3, 2012 20 CO (PPM) -9.00 -9.00 -9.00 2.70 AURS 1 Episode Day 3, 2012 22 CO (PPM) -9.00 -9.00 -9.00 2.50 AURS 1 Episode Day 1, 2012 20 CO (PPM) -9.00 -9.0	AURS	1	Episode	Day 3	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	1.80
AURS 1 Episode Day 3, 2012 18 CO (PPM) -9.00 -9.00 -9.00 2.00 AURS 1 Episode Day 3, 2012 20 CO (PPM) -9.00 -9.00 -9.00 3.00 AURS 1 Episode Day 3, 2012 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 2.50 AURS 1 Episode Day 3, 2012 22 CO (PPM) -9.00 -9	AURS	1	Episode	Day 3	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	3.40
AURS 1 Episode Day 3, 2012 19 CC (PPM) -9.00	AURS	1	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	3.90
AURS 1 Episode Day 3, 2012 20 CO (PPM) -9.00	AURS	1	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	2.70
AURS 1 Episode Day 3, 2012 21 CO (EPM) -9.00 -9.00 -9.00 2.50 AURS 1 Episode Day 3, 2012 22 CO (EPM) -9.00 -9.00 -9.00 1.50 AURS 1 Episode Day 1, 2012 0 CO (EPM) -9.00 -	AURS	1	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	3.00
AURS 1 Episode Day 3, 2012 22 CO (EPI) -9.00	AURS	1	Episode	Day 3,	2012	21	00	(PPM)	-9.00	-9.00	-9.00	2.50
Phot 1 Episode Day 1, 2012 10 CO (EPM) -9.00	AURS	1	Episode	Day 3, Day 3	2012	22	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	1 10
PLM 1 Episode Day 1 2012 2 CO (PPM) -9.00	PLM	1	Episode	Day 1	2012	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 2 CO (PPM) -9.00 <t< td=""><td>PLM</td><td>1</td><td>Episode</td><td>Day 1</td><td>2012</td><td>1</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	PLM	1	Episode	Day 1	2012	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 3 CO<(PPM)	PLM	1	Episode	Day 1,	2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 4 CO (PPM) -9.00	PLM	1	Episode	Day 1,	2012	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 5 CO (PPM) -9.00 <t< td=""><td>PLM</td><td>1</td><td>Episode</td><td>Day 1,</td><td>2012</td><td>4</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	PLM	1	Episode	Day 1,	2012	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 0 CO (PPM) -9.00 <t< td=""><td>PLM</td><td>1</td><td>Episode</td><td>Day 1,</td><td>2012</td><td>5</td><td>00</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	PLM	1	Episode	Day 1,	2012	5	00	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 3 CO CPM -9.00	PLM DT.M	1	Episode	Day 1, Day 1	2012	7	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 9 CO (PPM) -9.00 <t< td=""><td>PLM</td><td>1</td><td>Episode</td><td>Day 1</td><td>2012</td><td>, 8</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	PLM	1	Episode	Day 1	2012	, 8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 10 CO (PPM) -9.00 <	PLM	1	Episode	Day 1	2012	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 11 CO (PPM) -9.00 <	PLM	1	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 12 CO (PPM) -9.00 <	PLM	1	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 13 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 PLM 1 Episode Day 1, 2012 14 CO (PPM) -9.00 <	PLM	1	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 14 CO (PPM) -9.00 <	PLM	1	Episode	Day I,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 13 CO (PFM) -9.00 <	PLM DT.M	1	Episode	Day 1, Day 1	2012	14	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 17 CO (PPM) -9.00 <	PLM PLM	1	Episode	Day 1, Day 1	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 18 CO (PPM) -9.00 -9.00 -9.00 -9.00 PLM 1 Episode Day 1, 2012 19 CO (PPM) -9.00 -9.00 -9.00 -9.00 PLM 1 Episode Day 1, 2012 20 CO (PPM) -9.00 -9.00 -9.00 -9.00 PLM 1 Episode Day 1, 2012 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 PLM 1 Episode Day 1, 2012 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 PLM 1 Episode Day 1, 2012 23 CO (PPM) 1.09 -9.00 1.09 -9.00 PLM 1 Episode Day 2, 2012 0 CO (PPM) 0.86 -9.00 0.86 -9.00 PLM 1 Episode Day 2, 2012 1 CO (PPM) 0.41 -9.00 0.41 -9.00 PLM 1 Episode Day 2, 2012 3 CO (PPM) 0.43 -9.00 0.43 -9.00 PLM 1 Episode Day 2, 2012 4	PLM	1	Episode	Day 1	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 19 CO (PPM) -9.00 <	PLM	1	Episode	Day 1	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 20 CO (PPM) -9.00 <	PLM	1	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 21 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 PLM 1 Episode Day 1, 2012 22 CO (PPM) 1.09 -9.00 1.09 -9.00 PLM 1 Episode Day 1, 2012 23 CO (PPM) 1.13 -9.00 1.13 -9.00 PLM 1 Episode Day 2, 2012 0 CO (PPM) 0.86 -9.00 0.86 -9.00 PLM 1 Episode Day 2, 2012 1 CO (PPM) 0.50 -9.00 0.50 -9.00 PLM 1 Episode Day 2, 2012 2 CO (PPM) 0.41 -9.00 0.41 -9.00 PLM 1 Episode Day 2, 2012 3 CO (PPM) 0.38 -9.00 0.43 -9.00 PLM 1 Episode Day 2, 2012 4 CO (PPM) 0.43 -9.00 0.40 -9.00 PLM 1 Episode Day 2, 2012 5 CO (PPM) 0.64 -9.00 <	PLM	1	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 22 CO<(PPM)	PLM	1	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1 Episode Day 1, 2012 23 CO<(PPM)	PLM	1	Episode	Day 1,	2012	22	CO	(PPM)	1.09	-9.00	1.09	-9.00
PLM 1 Episode Day 2, 2012 0 CO<(PFM)	РЪМ рт.м	⊥ 1	Episode Episode	Dav 0	2012	23 0	C0 C0	(PPM)	1.13 0 86	-9.00 _0 00	1.13 0.86	-9.00
PLM 1 Episode Day 2, 2012 2 CO (PPM) 0.41 -9.00 0.41 -9.00 PLM 1 Episode Day 2, 2012 3 CO (PPM) 0.41 -9.00 0.38 -9.00 PLM 1 Episode Day 2, 2012 3 CO (PPM) 0.40 -9.00 0.38 -9.00 PLM 1 Episode Day 2, 2012 4 CO (PPM) 0.40 -9.00 0.40 -9.00 PLM 1 Episode Day 2, 2012 5 CO (PPM) 0.43 -9.00 0.43 -9.00 PLM 1 Episode Day 2, 2012 6 CO (PPM) 0.64 -9.00 0.64 -9.00 PLM 1 Episode Day 2, 2012 7 CO (PPM) 1.58 -9.00 1.64 -9.00 PLM 1 Episode Day 2, 2012 7 CO (PPM) 1.58 -9.00 1.58 -9.00 PLM 1 Episode Day 2, 2012 8 CO (PPM) 1.07 -9.00 1.07 -9.00 PLM 1 Episode Day 2, 2012 9 CO (PPM) </td <td>PLM</td> <td>1</td> <td>Episode</td> <td>Day 2, Dav 2</td> <td>2012</td> <td>1</td> <td>CO</td> <td>(PPM)</td> <td>0.50</td> <td>-9.00</td> <td>0.50</td> <td>-9.00</td>	PLM	1	Episode	Day 2, Dav 2	2012	1	CO	(PPM)	0.50	-9.00	0.50	-9.00
PLM 1 Episode Day 2, 2012 3 CO (PPM) 0.38 -9.00 0.38 -9.00 PLM 1 Episode Day 2, 2012 4 CO (PPM) 0.40 -9.00 0.40 -9.00 PLM 1 Episode Day 2, 2012 5 CO (PPM) 0.43 -9.00 0.43 -9.00 PLM 1 Episode Day 2, 2012 6 CO (PPM) 0.64 -9.00 0.64 -9.00 PLM 1 Episode Day 2, 2012 7 CO (PPM) 1.58 -9.00 1.64 -9.00 PLM 1 Episode Day 2, 2012 7 CO (PPM) 1.58 -9.00 1.64 -9.00 PLM 1 Episode Day 2, 2012 8 CO (PPM) 1.58 -9.00 1.07 -9.00 PLM 1 Episode Day 2, 2012 8 CO (PPM) 1.07 -9.00 1.07 -9.00 PLM 1 Episode Day 2, 2012 9 CO (PPM) 0.82 -9.00 0.82 -9.00	PLM	1	Episode	Dav 2	2012	2	CO	(PPM)	0.41	-9.00	0.41	-9.00
PLM 1 Episode Day 2, 2012 4 CO (PPM) 0.40 -9.00 0.40 -9.00 PLM 1 Episode Day 2, 2012 5 CO (PPM) 0.43 -9.00 0.43 -9.00 PLM 1 Episode Day 2, 2012 6 CO (PPM) 0.64 -9.00 0.64 -9.00 PLM 1 Episode Day 2, 2012 6 CO (PPM) 0.64 -9.00 0.64 -9.00 PLM 1 Episode Day 2, 2012 7 CO (PPM) 1.58 -9.00 1.58 -9.00 PLM 1 Episode Day 2, 2012 8 CO (PPM) 1.07 -9.00 1.07 -9.00 PLM 1 Episode Day 2, 2012 9 CO (PPM) 0.82 -9.00 0.82 -9.00	PLM	1	Episode	Day 2	2012	3	CO	(PPM)	0.38	-9.00	0.38	-9.00
PLM 1 Episode Day 2, 2012 5 CO (PPM) 0.43 -9.00 0.43 -9.00 PLM 1 Episode Day 2, 2012 6 CO (PPM) 0.64 -9.00 0.64 -9.00 PLM 1 Episode Day 2, 2012 7 CO (PPM) 1.58 -9.00 1.58 -9.00 PLM 1 Episode Day 2, 2012 8 CO (PPM) 1.07 -9.00 1.07 -9.00 PLM 1 Episode Day 2, 2012 9 CO (PPM) 0.82 -9.00 0.82 -9.00	PLM	1	Episode	Day 2,	2012	4	CO	(PPM)	0.40	-9.00	0.40	-9.00
PLM 1 Episode Day 2, 2012 6 CO<(PPM) 0.64 -9.00 0.64 -9.00 PLM 1 Episode Day 2, 2012 7 CO<(PPM)	PLM	1	Episode	Day 2,	2012	5	CO	(PPM)	0.43	-9.00	0.43	-9.00
PLM I Episode Day 2, 2012 / CO<(PPM) 1.58 -9.00 1.58 -9.00 PLM 1 Episode Day 2, 2012 8 CO<(PPM)	PLM	1	Episode	Day 2,	2012	6	CO	(PPM)	0.64	-9.00	0.64	-9.00
PLM 1 Episode Day 2, 2012 8 CO (PPM) 1.07 -9.00 1.07 -9.00 PLM 1 Episode Day 2, 2012 9 CO (PPM) 0.82 -9.00 0.82 -9.00	PLM	1	Episode	Day 2,	2012	./	CO	(PPM)	1.58	-9.00	1.58	-9.00
	PTW DI'W	1 1	Episode	Day 2, Dav 2	2012	8 9	CO	(PPM)	0.82	-9.00	0.82	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868.	8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
SITE	AVG	DATE			HR	POL	τ.Π.ΤΑΝΤ	2012 PREDICTED	2012 PREDICTED	2012 PREDICTED	1988 Observed
SIII	PERIOD	DATE			1110	101	DOTANT	(UAM)	(CAL3QHC)	(UAM+CAL3)	ODDERVED
								. ,	· ~ /	. ,	
PLM	1	Episode	Day 2,	2012	10	CO	(PPM)	0.52	-9.00	0.52	-9.00
PLM	1	Episode	Day 2,	2012		CO	(PPM)	0.51	-9.00	0.51	-9.00
PLM DI.M	1	Episode	Day 2, Day 2	2012	13	CO	(PPM) (DDM)	0.59	-9.00	0.59	-9.00
PLM	1	Episode	Day 2,	2012	14	CO	(PPM)	0.95	-9.00	0.95	-9.00
PLM	1	Episode	Day 2,	2012	15	CO	(PPM)	1.54	-9.00	1.54	-9.00
PLM	1	Episode	Day 2,	2012	16	CO	(PPM)	3.13	-9.00	3.13	-9.00
PLM	1	Episode	Day 2,	2012	17	CO	(PPM)	4.05	-9.00	4.05	-9.00
PLM	1	Episode	Day 2,	2012	18	CO	(PPM)	4.66	-9.00	4.66	-9.00
PLM	1	Episode	Day 2,	2012	19	CO	(PPM)	5.93	-9.00	5.93	-9.00
PLM	1	Episode	Day 2,	2012	20	CO	(PPM)	1.98	-9.00	1.98	-9.00
PLM PLM	1	Episode	Day 2, Day 2	2012	22	CO	(PPM) (PPM)	1 07	-9.00	1 07	-9.00
PLM	1	Episode	Dav 2,	2012	23	CO	(PPM)	0.82	-9.00	0.82	-9.00
PLM	1	Episode	Day 3,	2012	0	CO	(PPM)	0.57	-9.00	0.57	-9.00
PLM	1	Episode	Day 3,	2012	1	CO	(PPM)	0.47	-9.00	0.47	-9.00
PLM	1	Episode	Day 3,	2012	2	CO	(PPM)	0.39	-9.00	0.39	-9.00
PLM	1	Episode	Day 3,	2012	3	CO	(PPM)	0.31	-9.00	0.31	-9.00
PLM	1	Episode	Day 3,	2012	4	CO	(PPM)	0.31	-9.00	0.31	-9.00
PLM DLM	1	Episode	Day 3,	2012	5	CO	(PPM) (DDM)	0.37	-9.00	0.37	-9.00
PLM	1	Episode	Day 3, Day 3.	2012	7	CO	(PPM)	1.48	-9.00	1.48	-9.00
PLM	1	Episode	Dav 3,	2012	8	CO	(PPM)	0.91	-9.00	0.91	-9.00
PLM	1	Episode	Day 3,	2012	9	CO	(PPM)	0.73	-9.00	0.73	-9.00
PLM	1	Episode	Day 3,	2012	10	CO	(PPM)	0.69	-9.00	0.69	-9.00
PLM	1	Episode	Day 3,	2012	11	CO	(PPM)	0.78	-9.00	0.78	-9.00
PLM	1	Episode	Day 3,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2012	13 14	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
PLM DI.M	1	Episode	Day 3, Day 3	2012	15	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM	1	Episode	Day 3,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
PLM DI.M	1	Episode	Day 3, Day 3	2012	22	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 3, Dav 1,	2012	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day I,	2012	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day I, Day 1	2012	5	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day 1, Day 1.	2012	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day 1,	2012 2012	13 14	CO	(PPM)	-9.00 _0 00	-9.00 _0 00	-9.00 _9.00	-9.00
BTN	1	Episode	Day 1	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day 1, Day 1	2012	22	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Dav 1.	2012	23	CO	(PPM)	0.30	-9.00	0.30	-9.00
BTN	1	Episode	Day 2,	2012	Ō	CO	(PPM)	0.42	-9.00	0.42	-9.00
BTN	1	Episode	Day 2,	2012	1	CO	(PPM)	0.52	-9.00	0.52	-9.00
BTN	1	Episode	Day 2,	2012	2	CO	(PPM)	0.49	-9.00	0.49	-9.00
BTN	1	Episode	Day 2,	2012	3	CO	(PPM)	0.44	-9.00	0.44	-9.00
BIN	1	Episode	Day 2,	∠U⊥∠ 2012	4	00	(PPM)	U.36	-9.00	U.36	-9.00
N 118 MTR	⊥ 1	Episode	Day 2, Day 2	2012	5 6	C0 C0	(PPM)	0.31	-9.00 _9.00	0.31	-9.00
BTN	1	Episode	Day 2,	2012	7	CO	(PPM)	0.51	-9.00	0.51	-9.00
BTN	1	Episode	Day 2,	2012	8	CO	(PPM)	0.47	-9.00	0.47	-9.00
BTN	1	Episode	Day 2,	2012	9	CO	(PPM)	0.54	-9.00	0.54	-9.00
BTN	1	Episode	Day 2,	2012	10	CO	(PPM)	0.65	-9.00	0.65	-9.00
BTN	1	Episode	Day 2,	2012	11	CO	(PPM)	0.77	-9.00	0.77	-9.00
BTN	1	Episode	. Day 2,	2012	12	CO	(PPM)	0.76	-9.00	0.76	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868.	8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
SITE	AVG	DATE			HR	POL	LUTANT	2012 PREDICTED	2012 PREDICTED	2012 PREDICTED	OBSERVED
	PERIOD							(UAM)	(CAL3QHC)	(UAM+CAL3)	
				0010	10		(5514)	0 54		0.54	0.00
BIN	1	Episode	Day 2,	2012	13 14	CO	(PPM)	0.74	-9.00	0.74	-9.00
BIN	1	Episode	Day 2, Day 2.	2012	15	CO	(PPM)	0.91	-9.00	0.91	-9.00
BTN	1	Episode	Day 2,	2012	16	CO	(PPM)	1.24	-9.00	1.24	-9.00
BTN	1	Episode	Day 2,	2012	17	CO	(PPM)	1.43	-9.00	1.43	-9.00
BTN	1	Episode	Day 2,	2012	18	CO	(PPM)	1.53	-9.00	1.53	-9.00
BTN	1	Episode	Day 2,	2012	19	CO	(PPM)	1.23	-9.00	1.23	-9.00
BIN	1	Episode	Day 2,	2012	∠0 21	C0	(PPM) (DDM)	0.75	-9.00	0.75	-9.00
BTN	1	Episode	Day 2, Day 2.	2012	22	CO	(PPM)	1.39	-9.00	1.39	-9.00
BTN	1	Episode	Day 2,	2012	23	CO	(PPM)	1.68	-9.00	1.68	-9.00
BTN	1	Episode	Day 3,	2012	0	CO	(PPM)	1.05	-9.00	1.05	-9.00
BTN	1	Episode	Day 3,	2012	1	CO	(PPM)	0.80	-9.00	0.80	-9.00
BTN	1	Episode	Day 3,	2012	2	CO	(PPM)	0.61	-9.00	0.61	-9.00
BIN	1	Episode	Day 3,	2012	3	CO	(PPM) (DDM)	0.41	-9.00	0.41	-9.00
BIN	1	Episode	Day 3, Day 3.	2012	5	CO	(PPM)	0.33	-9.00	0.33	-9.00
BTN	1	Episode	Day 3,	2012	6	CO	(PPM)	0.38	-9.00	0.38	-9.00
BTN	1	Episode	Day 3,	2012	7	CO	(PPM)	0.42	-9.00	0.42	-9.00
BTN	1	Episode	Day 3,	2012	8	CO	(PPM)	0.35	-9.00	0.35	-9.00
BTN	1	Episode	Day 3,	2012	9	CO	(PPM)	0.39	-9.00	0.39	-9.00
BTN	1	Episode	Day 3,	2012	10 11	00	(PPM)	0.35	-9.00	0.35	-9.00
BIN	1	Episode	Day 3, Day 3	2012	12	CO	(PPM) (DDM)	-9 00	-9.00	-9 00	-9.00
BTN	1	Episode	Day 3,	2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 3,	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 3,	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day 3,	2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode	Day 3, Day 3.	2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 3,	2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 3,	2012	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode	Day 3,	2012	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1, Day 1.	2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode	Day 1,	2012	6 7	C0	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode	Day 1, Day 1,	2012	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
Ū_1	1	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1 TT 1	1	Episode	Day 1, Day 1	2012	14	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode	Day 1,	2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	19	00	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1, Day 1.	2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode	Day 1,	2012	22	CO	(PPM)	1.10	-9.00	1.10	-9.00
U_1	1	Episode	Day 1,	2012	23	CO	(PPM)	1.14	-9.00	1.14	-9.00
U_1	1	Episode	Day 2,	2012	0	CO	(PPM)	0.84	-9.00	0.84	-9.00
U_1	1	Episode	Day 2,	2012	1	CO	(PPM)	0.54	-9.00	0.54	-9.00
	1	Episode	Day 2,	2012	2	C0	(PPM) (DDM)	U.44 0 41	-9.00 _9.00	0.44 0.41	-9.00
U_1	1	Episode	Dav 2	2012	4	CO	(PPM)	0.44	-9.00	0.44	-9.00
U_1	1	Episode	Day 2,	2012	5	CO	(PPM)	0.48	-9.00	0.48	-9.00
U_1	1	Episode	Day 2,	2012	6	CO	(PPM)	0.70	-9.00	0.70	-9.00
U_1	1	Episode	Day 2,	2012	7	CO	(PPM)	1.86	-9.00	1.86	-9.00
U_1	1	Episode	Day 2,	2012	8	CO	(PPM)	1.22	-9.00	1.22	-9.00
U_L TT 1	1	Episode	Day 2, Day 2	2012	9 10	C0 C0	(PPM) (PDM)	0.74	-9.00 _9.00	0.74	-9.00
U 1	1	Episode	Dav 2.	2012	11	CO	(PPM)	0.56	-9.00	0.56	-9.00
Ŭ_1	1	Episode	Day 2,	2012	12	CO	(PPM)	0.75	-9.00	0.75	-9.00
U_1	1	Episode	Day 2,	2012	13	CO	(PPM)	0.95	-9.00	0.95	-9.00
U_1	1	Episode	Day 2,	2012	14	CO	(PPM)	1.52	-9.00	1.52	-9.00
U_1	1	Episode	Day 2,	2012	15	CO	(PPM)	2.12	-9.00	2.12	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2012 mob=86	8.8tpd;1.	5;80;	I/M 240	w/newest 4my	vr exempt;	2010	1000
STTE AVC	ካልጥም		ЧR	DOT.	Τ.ΤΙͲΔΝͲ	2012 PREDICTED	2012 PREDICTED	2012 PREDICTED	1988 OBSERVED
PERIOI)		IIIC	FOL	DOIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
							~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(,	
U_1 1	. Episode	e Day 2, 2012	16	CO	(PPM)	5.03	-9.00	5.03	-9.00
U_1 1	. Episode	e Day 2, 2012	17	CO	(PPM)	8.62	-9.00	8.62	-9.00
	. Episode	e Day 2, 2012	18	CO	(PPM)	8.64	-9.00	8.64	-9.00
	. Episode	e Day 2, 2012	19	CO	(PPM)	2.73	-9.00	2.73	-9.00
	. Episode	e Day 2, 2012	∠0 21	CO	(PPM) (DDM)	1.15	-9.00	1.15	-9.00
	Episode	e Day 2, 2012 e Day 2, 2012	22	CO	(PPM)	0.99	-9.00	0.99	-9.00
U 1 1	. Episode	e Dav 2, 2012	23	CO	(PPM)	0.87	-9.00	0.87	-9.00
U_1 1	Episode	e Day 3, 2012	0	CO	(PPM)	0.67	-9.00	0.67	-9.00
U_1 1	. Episode	e Day 3, 2012	1	CO	(PPM)	0.58	-9.00	0.58	-9.00
U_1 1	Episode	e Day 3, 2012	2	CO	(PPM)	0.41	-9.00	0.41	-9.00
	. Episode	e Day 3, 2012	3	CO	(PPM)	0.32	-9.00	0.32	-9.00
	. Episode	e Day 3, 2012	4 5	CO	(PPM) (DDM)	0.34	-9.00	0.34	-9.00
	Episode	e Day 3, 2012 e Day 3, 2012	5	CO	(PPM)	0.47	-9.00	0.47	-9.00
U 1 1	. Episode	e Day 3, 2012	7	CO	(PPM)	2.35	-9.00	2.35	-9.00
U_1 1	Episode	e Day 3, 2012	8	CO	(PPM)	1.47	-9.00	1.47	-9.00
U_1 1	Episode	e Day 3, 2012	9	CO	(PPM)	1.03	-9.00	1.03	-9.00
U_1 1	. Episode	e Day 3, 2012	10	CO	(PPM)	0.89	-9.00	0.89	-9.00
U_1 1	. Episode	e Day 3, 2012	11	CO	(PPM)	0.86	-9.00	0.86	-9.00
	. Episode	e Day 3, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	. Episode	e Day 3, 2012 e Day 3, 2012	14	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
	Episode	e Day 3, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1	Episode	e Day 3, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1	. Episode	e Day 3, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1	. Episode	e Day 3, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1	. Episode	e Day 3, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	. Episode	e Day 3, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	. Episode	e Day 3, 2012 e Day 3, 2012	22	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U 1 1	Episode	e Day 3, 2012	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	Episode	e Day I, 2012	4	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	. Episode	e Day 1, 2012 e Day 1, 2012	5	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
FA 1	. Episode	e Day 1, 2012	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	Episode	e Day 1, 2012	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	Episode	e Day 1, 2012	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day I, 2012 e Day 1 2012	12	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
F A 1	Episode	e Day 1, 2012 e Day 1, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
FA 1	. Episode	e Day 1, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	. Episode	e Day 1, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A I	. Episode	e Day I, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
г_А 1 F Δ 1	Episode	e Day 1, 2012 e Day 1, 2012	20	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
FA 1	. Episode	e Day 1, 2012	22	CO	(PPM)	1.34	-9.00	1.34	-9.00
F_A 1	. Episode	e Day 1, 2012	23	CO	(PPM)	0.65	-9.00	0.65	-9.00
F_A 1	. Episode	e Day 2, 2012	0	CO	(PPM)	0.29	-9.00	0.29	-9.00
F_A 1	Episode	e Day 2, 2012	1	CO	(PPM)	0.25	-9.00	0.25	-9.00
F_A 1	. Episode	e Day 2, 2012	2	CO	(PPM)	0.26	-9.00	0.26	-9.00
	. Episode	e Day 2, 2012	3	CO	(PPM)	0.26	-9.00	0.26	-9.00
	Enicod	e Day 2, 2012 e Day 2, 2012	4 5	CO	(PPM)	0.20 N 34	-9.00 _9.00	0.20	-9.00
FA 1	. Episode	e Day 2, 2012	6	CO	(PPM)	0.62	-9.00	0.62	-9.00
F_A 1	. Episode	e Day 2, 2012	7	CO	(PPM)	1.30	-9.00	1.30	-9.00
F_A 1	Episode	e Day 2, 2012	8	CO	(PPM)	0.65	-9.00	0.65	-9.00
F_A 1	Episode	e Day 2, 2012	9	CO	(PPM)	0.60	-9.00	0.60	-9.00
F_A 1	Episode	e Day 2, 2012	10	CO	(PPM)	0.59	-9.00	0.59	-9.00
F_A 1	. Episode	e Day 2, 2012	11	CO	(PPM)	0.54	-9.00	0.54	-9.00
г_А	Episode	e Day 2, 2012 e Day 2, 2012	⊥∠ 1 2	C0 C0	(PPM) (DDM)	U.51 0 49	-9.00 _9.00	U.51 N 49	-9.00
FA 1	Episode	e Day 2, 2012	14	CO	(PPM)	0.40	-9.00	0.40	-9.00
F_A 1	. Episode	e Day 2, 2012	15	CO	(PPM)	1.19	-9.00	1.19	-9.00
F_A 1	Episode	e Day 2, 2012	16	CO	(PPM)	1.77	-9.00	1.77	-9.00
F_A 1	. Episode	e Day 2, 2012	17	CO	(PPM)	0.97	-9.00	0.97	-9.00
F_A 1	. Episode	e Day 2, 2012	18	CO	(PPM)	0.74	-9.00	0.74	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2012 mob=868	8.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;		
SITE AVG	DATE	HR	POL	Τ.ΤΙΤΆΝΤ	2012 PREDICTED	2012 PREDICTED	2012 PREDICTED	1988 Observed
PERIOD	DATE	IIIC	101		(UAM)	(CAL3QHC)	(UAM+CAL3)	OBOBICVED
F_A 1	Episode Day 2, 2012	19	CO	(PPM)	0.77	-9.00	0.77	-9.00
F_A I	Episode Day 2, 2012	20	CO	(PPM)	0.66	-9.00	0.66	-9.00
F_A 1	Episode Day 2, 2012 Episode Day 2, 2012	21	CO	(PPM) (DDM)	0.48	-9.00	0.48	-9.00
F A 1	Episode Day 2, 2012 Episode Day 2 2012	23	CO	(PPM)	0.30	-9.00	0.30	-9.00
F A 1	Episode Day 3, 2012	0	CO	(PPM)	0.28	-9.00	0.28	-9.00
F_A 1	Episode Day 3, 2012	1	CO	(PPM)	0.26	-9.00	0.26	-9.00
F_A 1	Episode Day 3, 2012	2	CO	(PPM)	0.26	-9.00	0.26	-9.00
F_A 1	Episode Day 3, 2012	3	CO	(PPM)	0.27	-9.00	0.27	-9.00
F_A I	Episode Day 3, 2012	4	CO	(PPM)	0.29	-9.00	0.29	-9.00
	Episode Day 3, 2012 Episode Day 3, 2012	5	CO	(PPM) (DDM)	0.20	-9.00	0.20	-9.00
FA 1	Episode Day 3, 2012	7	CO	(PPM)	1.13	-9.00	1.13	-9.00
F_A 1	Episode Day 3, 2012	8	CO	(PPM)	0.64	-9.00	0.64	-9.00
F_A 1	Episode Day 3, 2012	9	CO	(PPM)	0.44	-9.00	0.44	-9.00
F_A 1	Episode Day 3, 2012	10	CO	(PPM)	0.31	-9.00	0.31	-9.00
F_A I	Episode Day 3, 2012		CO	(PPM)	0.38	-9.00	0.38	-9.00
	Episode Day 3, 2012 Episode Day 3, 2012	13	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
FA 1	Episode Day 3, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	Episode Day 3, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	Episode Day 3, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	Episode Day 3, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	Episode Day 3, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A I	Episode Day 3, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	Episode Day 3, 2012 Episode Day 3, 2012	20	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
F A 1	Episode Day 3, 2012	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1	Episode Day 3, 2012	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U I	Episode Day 1, 2012 Episode Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
нц 1	Episode Day 1, 2012 Episode Day 1, 2012	4	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
HU 1	Episode Day 1, 2012	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U I 	Episode Day 1, 2012 Episode Day 1, 2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H U 1	Episode Day 1, 2012 Episode Day 1, 2012	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	Episode Day 1, 2012 Episode Day 1, 2012	10 17	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
H U 1	Episode Day 1, 2012 Episode Day 1, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1	Episode Day 1, 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U I	Episode Day 1, 2012	22	CO	(PPM)	0.60	-9.00	0.60	-9.00
нц 1	Episode Day 1, 2012 Episode Day 2 2012	23 0	CO	(PPM) (PPM)	0.40	-9.00	0.40	-9.00
H_U 1	Episode Day 2, 2012	1	CO	(PPM)	0.31	-9.00	0.31	-9.00
H_U 1	Episode Day 2, 2012	2	CO	(PPM)	0.28	-9.00	0.28	-9.00
H_U 1	Episode Day 2, 2012	3	CO	(PPM)	0.28	-9.00	0.28	-9.00
H_U 1	Episode Day 2, 2012	4	CO	(PPM)	0.29	-9.00	0.29	-9.00
H_U 1	Episode Day 2, 2012 Episode Day 2, 2012	5	CO	(PPM)	0.31	-9.00	0.31	-9.00
HU 1	Episode Day 2, 2012 Episode Day 2, 2012	7	CO	(PPM)	0.77	-9.00	0.77	-9.00
H_U 1	Episode Day 2, 2012	8	CO	(PPM)	0.54	-9.00	0.54	-9.00
H_U 1	Episode Day 2, 2012	9	CO	(PPM)	0.33	-9.00	0.33	-9.00
H_U 1	Episode Day 2, 2012	10	CO	(PPM)	0.29	-9.00	0.29	-9.00
H_U 1	Episode Day 2, 2012	11	CO	(PPM)	0.32	-9.00	0.32	-9.00
	Episode Day 2, 2012 Episode Day 2 2012	⊥∠ 1 २	CO	(PPM)	U.41 N 59	-9.00 _9.00	U.41 N 59	-9.00 -9.00
нт 1	Episode Day 2, 2012	14	CO	(PPM)	1.00	-9.00	1.00	-9.00
H_U 1	Episode Day 2, 2012	15	CO	(PPM)	1.85	-9.00	1.85	-9.00
H_U 1	Episode Day 2, 2012	16	CO	(PPM)	4.14	-9.00	4.14	-9.00
H_U 1	Episode Day 2, 2012	17	CO	(PPM)	4.43	-9.00	4.43	-9.00
H_U 1	Episode Day 2, 2012	18	CO	(PPM)	1.76	-9.00	1.76	-9.00
	Episode Day 2, 2012 Episode Day 2, 2012	20 19	CO	(PPM)	0.80	-9.00	0.80	-9.00 _9.00
H_U 1	Episode Day 2, 2012	20	CO	(PPM)	0.41	-9.00	0.41	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2012 mob	=868.8tpd;1.5	5;80;	I/M 240	w/newest 4my	r exempt;	2012	1000
STTE AVC	ኮለጥም		ир	DOL	ד. ד. דידי א אדידי	2012 פפרטולידרס	2012 DREDICTED	2012 DREDICTED	1988 OBGEDVED
PERI	OD		IIIX	FOI	LIOIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
						(,	(<u>-</u>)	(,	
H_U	1 Episod	de Day 2, 2012	22	CO	(PPM)	0.41	-9.00	0.41	-9.00
H_U	1 Episod	de Day 2, 2012	23	CO	(PPM)	0.37	-9.00	0.37	-9.00
H_U	l Episod	de Day 3, 2012	0	CO	(PPM)	0.35	-9.00	0.35	-9.00
H_U u II	1 Episod	de Day 3, 2012	1	CO	(PPM) (DDM)	0.33	-9.00	0.33	-9.00
н п	1 Episod	de Day 3, 2012	3	CO	(PPM)	0.26	-9.00	0.26	-9.00
H U	1 Episod	de Day 3, 2012	4	CO	(PPM)	0.26	-9.00	0.26	-9.00
H_U	1 Episod	de Day 3, 2012	5	CO	(PPM)	0.28	-9.00	0.28	-9.00
H_U	1 Episod	de Day 3, 2012	6	CO	(PPM)	0.42	-9.00	0.42	-9.00
H_U	1 Episod	de Day 3, 2012	7	CO	(PPM)	1.09	-9.00	1.09	-9.00
H_U	l Episod	de Day 3, 2012	8	CO	(PPM)	0.56	-9.00	0.56	-9.00
н_U н п	1 Episod	de Day 3, 2012 de Day 3, 2012	10	CO	(PPM) (DDM)	0.57	-9.00	0.57	-9.00
н п	1 Episod	de Day 3, 2012	11	CO	(PPM)	0.61	-9.00	0.61	-9.00
H_U	1 Episod	de Day 3, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episod	de Day 3, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episod	de Day 3, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episod	de Day 3, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episod	de Day 3, 2012	10	00	(PPM)	-9.00	-9.00	-9.00	-9.00
н II	1 Episod	le Day 3, 2012	18	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
H U	1 Episod	de Day 3, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episod	de Day 3, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episod	de Day 3, 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episod	de Day 3, 2012	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U	1 Episod	de Day 3, 2012	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episod	de Day I, 2012 Ne Day 1 2012	0	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U A	1 Episod	de Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012 No Day 1, 2012	/	C0	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
	1 Episod	de Day 1, 2012 de Day 1, 2012	9	CO	(PPM) (PPM)	-9.00	-9.00	-9.00	-9.00
U A	1 Episod	de Day 1, 2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012 No Day 1, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U A	1 Episod	de Day 1, 2012 de Day 1, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U A	1 Episod	de Day 1, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episod	de Day 1, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episod	de Day 1, 2012	21	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U A	1 Episod	de Day 1, 2012	23	CO	(PPM)	0.25	-9.00	0.25	-9.00
U_A	1 Episod	de Day 2, 2012	0	CO	(PPM)	0.25	-9.00	0.25	-9.00
U_A	1 Episod	de Day 2, 2012	1	CO	(PPM)	0.23	-9.00	0.23	-9.00
U_A	1 Episod	de Day 2, 2012	2	CO	(PPM)	0.22	-9.00	0.22	-9.00
U_A	1 Episod	de Day 2, 2012	3	CO	(PPM)	0.22	-9.00	0.22	-9.00
	1 Episod	de Day 2, 2012	4	CO	(PPM) (DDM)	0.23	-9.00	0.23	-9.00
U A	1 Episod	de Day 2, 2012	6	CO	(PPM)	0.31	-9.00	0.31	-9.00
U A	1 Episod	de Day 2, 2012	7	CO	(PPM)	0.44	-9.00	0.44	-9.00
U_A	1 Episod	de Day 2, 2012	8	CO	(PPM)	0.32	-9.00	0.32	-9.00
U_A	1 Episod	de Day 2, 2012	9	CO	(PPM)	0.25	-9.00	0.25	-9.00
U_A	⊥ Episoo	de Day 2, 2012	10	CO	(PPM)	0.24	-9.00	0.24	-9.00
U_A	L Episo	de Day 2, 2012		CO	(PPM)	0.27	-9.00	0.27	-9.00
U_A TI A	1 Episod	de Day 2, 2012	⊥∠ 1 २	CO	(PPM)	0.41	-9.00	0.41	-9.00
U A	1 Episod	de Day 2, 2012	14	CO	(PPM)	0.69	-9.00	0.69	-9.00
U_A	1 Episod	de Day 2, 2012	15	CO	(PPM)	1.17	-9.00	1.17	-9.00
U_A	1 Episod	de Day 2, 2012	16	CO	(PPM)	2.90	-9.00	2.90	-9.00
U_A	1 Episod	de Day 2, 2012	17	CO	(PPM)	3.28	-9.00	3.28	-9.00
U_A	1 Episod	de Day 2, 2012	18	00	(PPM)	1.35	-9.00	1.35	-9.00
	1 Episod	le Day 2, 2012 de Day 2, 2012	19 20	00	(PPM)	U.40 A 22	-9.00	U.40 N 20	-9.00
U A	1 Episod	de Day 2, 2012	20	CO	(PPM)	0.32	-9.00	0.32	-9.00
U_A	1 Episod	de Day 2, 2012	22	CO	(PPM)	0.29	-9.00	0.29	-9.00
U_A	1 Episod	de Day 2, 2012	23	CO	(PPM)	0.26	-9.00	0.26	-9.00
U_A	1 Episod	de Day 3, 2012	0	CO	(PPM)	0.27	-9.00	0.27	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2012 mob=868	.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0.01.0	1000
STTE AVG	ኮልጥፑ		ЧP	POL	.Τ.ΓΓΥΔΝΤ	2012 DREDICTED	2012 PRFDICTFD	2012 DRFDICTFD	1988 OBSERVED
PERIO	DAIL		III	FOL		(MAU)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
						(=== ;	(2 <i>i</i>	(,	
U_A	1 Episode	e Day 3, 2012	1	CO	(PPM)	0.26	-9.00	0.26	-9.00
U_A	1 Episode	e Day 3, 2012	2	CO	(PPM)	0.23	-9.00	0.23	-9.00
U_A	1 Episode	e Day 3, 2012	3	CO	(PPM)	0.22	-9.00	0.22	-9.00
U_A	1 Episode	2 Day 3, 2012	4	CO	(PPM) (DDM)	0.23	-9.00	0.23	-9.00
	1 Episode	= Day 3, 2012	5	CO	(PPM)	0.25	-9.00	0.25	-9.00
U A	1 Episode	= Day 3, 2012	7	CO	(PPM)	0.96	-9.00	0.96	-9.00
U_A	1 Episode	e Day 3, 2012	8	CO	(PPM)	0.59	-9.00	0.59	-9.00
U_A	1 Episode	e Day 3, 2012	9	CO	(PPM)	0.63	-9.00	0.63	-9.00
U_A	1 Episode	e Day 3, 2012	10	CO	(PPM)	0.56	-9.00	0.56	-9.00
U_A	1 Episode	e Day 3, 2012		CO	(PPM)	0.45	-9.00	0.45	-9.00
	1 Episode	2 Day 3, 2012	13	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U A	1 Episode	= Day 3, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episode	e Day 3, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episode	e Day 3, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episode	e Day 3, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episode	e Day 3, 2012	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episode	e Day 3, 2012	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episode	z Day 3, 2012	20	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U A	1 Episode	= Day 3, 2012	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A	1 Episode	e Day 3, 2012	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episode	e Day I, 2012 - Day 1 2012	3 4	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
г Р Т	1 Episode	= Day 1, 2012 = Day 1, 2012	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P I	1 Episode	e Day 1, 2012	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episode	e Day I, 2012	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episode	2 Day 1, 2012 2 Day 1 2012	12	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
P I	1 Episode	$a_{\rm Day} 1, 2012$ $a_{\rm Day} 1, 2012$	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1 Episode	2 Day 1, 2012 2 Day 1 2012	18	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
P I	1 Episode	a Day 1, 2012	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
P_I	1 Episode	e Day 1, 2012	22	CO	(PPM)	0.71	-9.00	0.71	-9.00
P_I	1 Episode	e Day 1, 2012	23	CO	(PPM)	0.62	-9.00	0.62	-9.00
P_I	1 Episode	e Day 2, 2012	0	CO	(PPM)	0.45	-9.00	0.45	-9.00
	1 Episode	2 Day 2, 2012	⊥ 2	CO	(PPM) (DDM)	0.35	-9.00	0.35	-9.00
P I	1 Episode	a Day 2, 2012	3	CO	(PPM)	0.29	-9.00	0.29	-9.00
P_I	1 Episode	e Day 2, 2012	4	CO	(PPM)	0.31	-9.00	0.31	-9.00
P_I	1 Episode	e Day 2, 2012	5	CO	(PPM)	0.36	-9.00	0.36	-9.00
P_I	1 Episode	e Day 2, 2012	6	CO	(PPM)	0.59	-9.00	0.59	-9.00
P_I	1 Episode	e Day 2, 2012	.7	CO	(PPM)	1.28	-9.00	1.28	-9.00
	1 Episode	e Day 2, 2012 - Day 2, 2012	8	CO	(PPM) (DDM)	0.80	-9.00	0.80	-9.00
P_1 P T	1 Episode	= Day 2, 2012 = Day 2, 2012	10	CO	(PPM)	0.34	-9.00	0.34	-9.00
P I	1 Episode	= Day 2, 2012	11	CO	(PPM)	0.38	-9.00	0.38	-9.00
P_I	1 Episode	e Day 2, 2012	12	CO	(PPM)	0.50	-9.00	0.50	-9.00
P_I	1 Episode	e Day 2, 2012	13	CO	(PPM)	0.56	-9.00	0.56	-9.00
P_I	1 Episode	e Day 2, 2012	14	CO	(PPM)	0.78	-9.00	0.78	-9.00
	1 Episode	e Day 2, 2012	15	CO	(PPM)	1.28	-9.00	1.28	-9.00
Р_1 рт	1 Episode	= $Day 2, 2012$ = $Day 2, 2012$	17	CO	(PPM)	5.05 4 87	-9.00	5.05 4 87	-9.00
P I	1 Episode	e Day 2, 2012	18	CO	(PPM)	5.99	-9.00	5.99	-9.00
 P_I	1 Episode	e Day 2, 2012	19	CO	(PPM)	3.08	-9.00	3.08	-9.00
P_I	1 Episode	e Day 2, 2012	20	CO	(PPM)	1.04	-9.00	1.04	-9.00
P_I	1 Episode	e Day 2, 2012	21	CO	(PPM)	0.70	-9.00	0.70	-9.00
P_I	⊥ Episode	e Day 2, 2012	22	CO	(PPM)	0.67	-9.00	0.67	-9.00
	1 Episode	e Day 2, 2012	23	CO	(PPM)	0.48	-9.00	0.48	-9.00
Р_1 р т	1 Episode	= Day 3, 2012 = Day 3, 2012	1	CO	(PPM)	0.40	-9.00 _9.00	0.40	-9.00
P I	1 Episode	= Day 3, 2012	2	CO	(PPM)	0.28	-9.00	0.28	-9.00
 P_I	1 Episode	e Day 3, 2012	3	CO	(PPM)	0.26	<u> </u>	0.26	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2012 r	nob=868.8tpd;1.	5;80;I/M 240	w/newest 4my	r exempt;		
SITE AVG PERIOD	DATE	HR	POLLUTANT	2012 PREDICTED (UAM)	2012 PREDICTED (CAL3QHC)	2012 PREDICTED (UAM+CAL3)	1988 OBSERVED
P_I 1 P_I 1 P_	Episode Day 3, 2012 Episode Day 3, 2012	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	CO (PPM) CO (PPM)	$\begin{array}{c} 0.27\\ 0.31\\ 0.53\\ 1.28\\ 0.73\\ 0.72\\ 0.64\\ 0.52\\ -9.00\\ -9.$	$\begin{array}{c} -9.00\\ -9$	$\begin{array}{c} 0.27\\ 0.31\\ 0.53\\ 1.28\\ 0.72\\ 0.64\\ 0.52\\ -9.00\\ -9$	$\begin{array}{c} -9.00\\ -9$
CMP 8	Episode Day 1, 2012 Episode Day 2, 2012	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 22 23 0 1 22 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16 17 8 9 20 21 22 23 0 1 22 23 3 4 5 6 7 7 8 9 9 10 21 23 3 4 5 6 7 7 8 9 9 10 21 23 3 4 5 6 7 7 8 9 10 21 23 3 4 5 6 7 7 8 9 10 11 12 13 13 14 15 16 17 17 18 19 20 21 23 23 10 11 22 23 10 10 11 12 13 13 14 15 16 16 17 17 18 19 20 21 23 10 11 12 13	CO (PPM) CO (PP	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -9.00\\ -1.45\\ 1.36\\ 1.28\\ 1.24\\ 1.38\\ 1.24\\ 1.31\\ 1.23\\ 1.24\\ 1.37\\ 1.46\end{array}$	NA NA NA NA NA NA NA NA NA NA NA NA NA N	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -9.00\\ -1.45\\ 1.36\\ 1.28\\ 1.24\\ 1.38\\ 1.24\\ 1.31\\ 1.23\\ 1.24\\ 1.37\\ 1.46\end{array}$	$\begin{array}{c} -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ 2.04\\ 1.90\\ 1.84\\ 1.81\\ 1.70\\ 1.59\\ 1.56\\ 1.57\\ 1.74\\ 2.36\\ 3.15\\ 3.84\\ 4.06\\ 3.91\\ 3.84\\ 4.06\\ 3.91\\ 3.84\\ 4.06\\ 3.91\\ 3.84\\ 4.06\\ 3.91\\ 3.84\\ 3.69\\ 3.08\\ 2.23\\ 1.38\\ 0.93\\ 0.76\\ 0.65\\ 0.63\\ 0.94\\ 1.43\\ 1.69\\ 2.05\\ 2.61\\ 3.11\\ 3.61\\ \end{array}$
CMP 8	Episode Day 2, 2012 Episode Day 3, 2012 Episode Day 3, 2012 Episode Day 3, 2012 Episode Day 3, 2012	14 15 16 17 18 19 20 21 22 23 0 1 2 2 3 3	CO (PPM) CO (PPM)	1.57 1.59 2.48 4.08 5.79 7.03 7.43 7.68 7.89 7.93 7.12 5.59 3.88 2.56	NA NA NA NA NA NA NA NA NA NA NA NA	1.57 1.59 2.48 4.08 5.79 7.03 7.43 7.68 7.89 7.93 7.12 5.59 3.88 2.56	4.08 4.44 9.39 15.34 18.73 18.65 18.41 18.16 18.08 17.70 12.64 6.65 3.04 2.65

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=	868.8tp	d;1.	5;80;	I/M 240	w/newest 4my	vr exempt;	2012	1000
SITE AVG	TOD	DATE			1	HR	POL	LUTANT	2012 PREDICTED	2012 PREDICTED	2012 PREDICTED	OBSERVED
PER	100								(UAM)	(CAL3QHC)	(UAM+CAL3)	
CMP	8	Episode	Day 3,	2012		4	CO	(PPM)	2.07	NA	2.07	2.53
CMP	8	Episode	Day 3,	2012		5	CO	(PPM)	1.79	NA	1.79	2.54
CMP	8	Episode	Day 3,	2012		6	CO	(PPM)	1.61	NA	1.61	2.70
CMP	8	Episode	Day 3, Day 3	2012		/ 8	CO	(PPM) (DDM)	1.78	NA NA	1.78	3.30 4 14
CMP	8	Episode	Day 3, Dav 3,	2012		9	CO	(PPM)	1.91	NA	1.91	4.71
CMP	8	Episode	Day 3,	2012		10	CO	(PPM)	2.05	NA	2.05	5.21
CMP	8	Episode	Day 3,	2012		11	CO	(PPM)	2.16	NA	2.16	5.56
CMP	8	Episode	Day 3,	2012	-	12	CO	(PPM)	2.38	NA	2.38	5.74
CMP	8	Episode	Day 3,	2012		13 14	CO	(PPM)	2.5/	NA NA	2.5/	5.69
CMP	8	Episode	Day 3, Day 3.	2012		15	CO	(PPM)	-9.00	NA	-9.00	4.64
CMP	8	Episode	Day 3,	2012		16	CO	(PPM)	-9.00	NA	-9.00	4.56
CMP	8	Episode	Day 3,	2012		17	CO	(PPM)	-9.00	NA	-9.00	5.28
CMP	8	Episode	Day 3,	2012	-	18	CO	(PPM)	-9.00	NA	-9.00	5.30
CMP	8	Episode	Day 3,	2012		20 19	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	5.34
CMP	8	Episode	Day 3, Day 3.	2012		20 21	CO	(PPM)	-9.00	NA	-9.00	5.94
CMP	8	Episode	Day 3,	2012		22	CO	(PPM)	-9.00	NA	-9.00	6.00
CMP	8	Episode	Day 3,	2012		23	CO	(PPM)	-9.00	NA	-9.00	6.11
WBY	8	Episode	Day 1,	2012		0	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode	Day 1,	2012		1 2	CO	(PPM)	0.00	NA NA	0.00	-9.00
WBI	8	Episode	Day 1, Day 1.	2012		3	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode	Day 1,	2012		4	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode	Day 1,	2012		5	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode	Day 1,	2012		6	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode	Day 1,	2012		0	CO	(PPM)	-9.00	NA NA	-9.00	2.44
WBI	8	Episode	Day 1, Day 1.	2012		9	CO	(PPM)	-9.00	NA	-9.00	1.73
WBY	8	Episode	Day 1,	2012		10	CO	(PPM)	-9.00	NA	-9.00	1.48
WBY	8	Episode	Day 1,	2012	:	11	CO	(PPM)	-9.00	NA	-9.00	1.23
WBY	8	Episode	Day 1,	2012		12	CO	(PPM)	-9.00	NA	-9.00	1.16
WBY	8	Episode	Day 1,	2012		13 14	CO	(PPM)	-9.00	NA NA	-9.00	1.14
WBY	8	Episode	Day 1, Day 1.	2012		15	CO	(PPM)	-9.00	NA	-9.00	0.85
WBY	8	Episode	Day 1,	2012		16	CO	(PPM)	-9.00	NA	-9.00	0.75
WBY	8	Episode	Day 1,	2012		17	CO	(PPM)	-9.00	NA	-9.00	1.14
WBY	8	Episode	Day 1,	2012	-	18	CO	(PPM)	-9.00	NA	-9.00	1.69
WBI	8 8	Episode	Day 1,	2012		19 20	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2 41
WBY	8	Episode	Day 1, Dav 1,	2012		21	CO	(PPM)	-9.00	NA	-9.00	2.61
WBY	8	Episode	Day 1,	2012	1	22	CO	(PPM)	-9.00	NA	-9.00	2.76
WBY	8	Episode	Day 1,	2012		23	CO	(PPM)	-9.00	NA	-9.00	2.95
WBY	8	Episode	Day 2,	2012		0	CO	(PPM)	-9.00	NA	-9.00	3.39
WBI	0 8	Episode	Day 2, Day 2	2012		2	CO	(PPM) (PPM)	-9.00	NA NA	-9.00	2.88
WBY	8	Episode	Day 2,	2012		3	CO	(PPM)	1.32	NA	1.32	2.70
WBY	8	Episode	Day 2,	2012		4	CO	(PPM)	1.26	NA	1.26	2.30
WBY	8	Episode	Day 2,	2012		5	CO	(PPM)	1.21	NA	1.21	2.21
WBY	8	Episode	Day 2,	2012		6 7	CO	(PPM)	1.19	NA NA	1.19	2.24
WBY	8	Episode	Day 2, Day 2.	2012		8	CO	(PPM)	1.14	NA	1.14	3.04
WBY	8	Episode	Day 2,	2012		9	CO	(PPM)	1.08	NA	1.08	3.22
WBY	8	Episode	Day 2,	2012		10	CO	(PPM)	1.05	NA	1.05	3.26
WBY	8	Episode	Day 2,	2012		11	CO	(PPM)	1.02	NA	1.02	3.24
WBI WRY	8 R	Episode	Day 2, Day 2	∠∪⊥∠ 2012	:	⊥∠ 13	C0 C0	(PPM)	1.UU 0 97	NA NA	1.00 0.97	3.⊥/ 3.11
WBY	8	Episode	Dav 2.	2012		14	CO	(PPM)	0.93	NA	0.93	3.02
WBY	8	Episode	Day 2,	2012		15	CO	(PPM)	0.84	NA	0.84	2.46
WBY	8	Episode	Day 2,	2012		16	CO	(PPM)	0.91	NA	0.91	1.92
WBY	8	Episode	Day 2,	2012		17	CO	(PPM)	1.12	NA	1.12	2.50
WBI WRY	8 R	Episode	Day 2, Day 2	∠∪⊥∠ 2012	:	⊥¤ 19	C0 C0	(PPM)	1.44 1.67	NA NA	1.44 1.67	3.80 4 86
WBY	8	Episode	Dav 2.	2012		20	CO	(PPM)	2.04	NA	2.04	5.71
WBY	8	Episode	Day 2,	2012		21	CO	(PPM)	2.61	NA	2.61	6.39
WBY	8	Episode	Day 2,	2012	:	22	CO	(PPM)	3.18	NA	3.18	7.17
WBY	8	Episode	Day 2,	2012	:	23	CO	(PPM)	3.73	NA	3.73	8.09
WBI WRY	8 R	Episode	Day 3,	∠∪⊥∠ 2012		U 1	C0 C0	(PPM)	4.09 4 NG	NA NA	4.09 4 NG	0.94 8 66
WBY	8	Episode	Dav 3	2012		2	CO	(PPM)	3.81	NA	3.81	7.36
WBY	8	Episode	Day 3,	2012		3	CO	(PPM)	3.56	NA	3.56	6.40
WBY	8	Episode	Day 3,	2012		4	CO	(PPM)	3.18	NA	3.18	5.64
WBY	8	Episode	Day 3,	2012		5	CO	(PPM)	2.63	NA	2.63	5.06
 MRI	8	rbrzoge	Day 3,	ZUIZ		Ø	ĊŬ	(PPM)	∠.08	NA	2.08	4.50

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

				High:	2012 mol	b=868.8tpd	1.5;80	;I/M 24	0 w/newest 4m	yr exempt;	0.01.0	1000
	יתייתי	7170	שיייי ער					ד ד ד דידי א אזיז		2012	2012	1988 ODCEDVED
2	STIR	AVG	DAIE			H	c PO	LLUIANI	. PREDICIED (IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
		IBRIOD							(OAN)	(CADSQUE)	(UANICALS)	
V	VBY	8	Episode	Day 3,	2012	-	CO	(PPM)	1.56	NA	1.56	3.79
V	VBY	8	Episode	Day 3,	2012	8	CO	(PPM)	1.13	NA	1.13	2.99
V	VBY	8	Episode	Day 3,	2012	9	CO	(PPM)	0.94	NA	0.94	2.46
V	VBY	8	Episode	Day 3,	2012	10	CO	(PPM)	0.92	NA	0.92	2.41
V	VBY	8	Episode	Day 3,	2012	11	. CO	(PPM)	0.93	NA	0.93	2.26
V	VBY	8	Episode	Day 3,	2012	12		(PPM)	0.97	NA	0.97	2.09
V T	VDI VDV	o g	Episode	Day 3, Day 3	2012	1.		(PPM) (DDM)	_9 00	NA NA	_9 00	1 53
V	VBY	8	Episode	Day 3, Day 3.	2012	1		(PPM)	-9.00	NA	-9.00	1.17
V	VBY	8	Episode	Day 3,	2012	16	CO	(PPM)	-9.00	NA	-9.00	1.13
V	VBY	8	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	NA	-9.00	0.88
V	VBY	8	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	0.70
V	VBY	8	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	NA	-9.00	1.01
V	VBY	8	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	NA	-9.00	1.73
V	VBY	8	Episode	Day 3,	2012	21	. CO	(PPM)	-9.00	NA	-9.00	2.44
V	VBY	8	Episode	Day 3,	2012	24		(PPM)	-9.00	NA	-9.00	3.08
V	VDI VDC	0 8	Episode	Day 3, Day 1	2012	23		(PPM)	-9.00	NA NA	-9.00	_9 00
	TRG	8	Episode	Day 1, Day 1.	2012	-	, CO CO	(PPM)	0.00	NA	0.00	-9.00
	IRG	8	Episode	Day 1.	2012	-	CO	(PPM)	0.00	NA	0.00	-9.00
C	CRG	8	Episode	Day 1,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
C	CRG	8	Episode	Day 1,	2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
C	CRG	8	Episode	Day 1,	2012	Į.	co	(PPM)	0.00	NA	0.00	-9.00
C	CRG	8	Episode	Day 1,	2012	6	CO	(PPM)	0.00	NA	0.00	-9.00
(CRG	8	Episode	Day I,	2012		CO	(PPM)	-9.00	NA	-9.00	2.91
	LRG	8	Episode	Day 1,	2012	۶ د		(PPM)	-9.00	NA	-9.00	2.54
	DRC	0 8	Episode	Day 1, Day 1	2012	1((PPM) (DDM)	-9.00	NA NA	-9.00	2.14
	TRG	8	Episode	Day 1, Day 1	2012	11	, CO CO	(PPM)	-9.00	NA	-9.00	1 55
	CRG	8	Episode	Day 1, Day 1,	2012	12	CO	(PPM)	-9.00	NA	-9.00	1.51
C	CRG	8	Episode	Day 1,	2012	13	CO	(PPM)	-9.00	NA	-9.00	1.45
C	CRG	8	Episode	Day 1,	2012	14	CO	(PPM)	-9.00	NA	-9.00	1.30
C	CRG	8	Episode	Day 1,	2012	15	co	(PPM)	-9.00	NA	-9.00	1.10
C	CRG	8	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	NA	-9.00	1.19
	CRG	8	Episode	Day 1,	2012	1	CO	(PPM)	-9.00	NA	-9.00	1.86
	LRG	8	Episode	Day 1,	2012	10		(PPM)	-9.00	NA	-9.00	2.77
	DDC	o g	Episode	Day 1, Day 1	2012	13		(PPM) (DDM)	-9.00	NA NA	-9.00	4.10
	TRG	8	Episode	Day 1, Day 1.	2012	21	, CO CO	(PPM)	-9.00	NA	-9.00	4.94
	CRG	8	Episode	Day 1,	2012	22	co	(PPM)	-9.00	NA	-9.00	5.37
0	CRG	8	Episode	Day 1,	2012	23	co	(PPM)	-9.00	NA	-9.00	5.11
0	CRG	8	Episode	Day 2,	2012	(CO	(PPM)	-9.00	NA	-9.00	5.28
0	CRG	8	Episode	Day 2,	2012	-	. CO	(PPM)	-9.00	NA	-9.00	5.14
(CRG	8	Episode	Day 2,	2012	4	CO	(PPM)	-9.00	NA	-9.00	4.58
	LRG	8	Episode	Day 2,	2012	-		(PPM)	1.72	NA	1.72	3.54
	DDC	o g	Episode	Day 2, Day 2	2012	-		(PPM) (DDM)	1.56	NA NA	1 44	3.43
	TRG	8	Episode	Day 2, Day 2	2012	F		(PPM)	1 34	NA	1 34	3.54
	CRG	8	Episode	Dav 2,	2012	-	CO	(PPM)	1.32	NA	1.32	4.48
C	CRG	8	Episode	Day 2,	2012	8	CO	(PPM)	1.16	NA	1.16	5.33
C	CRG	8	Episode	Day 2,	2012	0	CO	(PPM)	0.99	NA	0.99	5.21
0	CRG	8	Episode	Day 2,	2012	10	CO	(PPM)	0.91	NA	0.91	5.01
(CRG	8	Episode	Day 2,	2012	11	. CO	(PPM)	0.92	NA	0.92	4.85
	CRG	8	Episode	Day 2,	2012	12	CO	(PPM)	0.98	NA	0.98	4.71
	-KG	8	Lpisode	Day 2,	2012	1:		(PPM)	L.U5	NA NA	1.05	4.54
	RG PDC	8 Q	Episode	Day 2, Day 2	2012	14		(PPM)	1.12	NA NA	1.12	4.01
	'RG	8	Episode	Day 2, Day 2	2012	16		(PPM)	1 49	NA	1 49	2.05
	IRG	8	Episode	Day 2,	2012	1	CO	(PPM)	2.00	NA	2.00	3.03
	CRG	8	Episode	Day 2,	2012	18	CO	(PPM)	2.56	NA	2.56	4.50
C	CRG	8	Episode	Day 2,	2012	19	CO	(PPM)	3.10	NA	3.10	6.39
C	CRG	8	Episode	Day 2,	2012	20	CO	(PPM)	3.50	NA	3.50	7.80
0	CRG	8	Episode	Day 2,	2012	21	CO	(PPM)	3.78	NA	3.78	8.52
0	CRG	8	Episode	Day 2,	2012	22	CO	(PPM)	3.94	NA	3.94	8.94
	RG	8	Episode	Day 2,	2012	23	CO	(PPM)	3.96	NA	3.96	9.91
	LKG TPC	8 0	Lpisode	Day 3,	2012	(· CO	(PPM)	3.68	NA NA	3.68	1U.38 9 72
	TRC	0 Q	Enicode	Day 3,	2012	-		(DDM)	5.24 2.71	ND MM	3.24 9.71	8 69
	CRG	8	Episode	Dav 3.	2012	4	. CO	(PPM)	2.17	NA	2.17	7.14
	CRG	8	Episode	Day 3.	2012	4	CO	(PPM)	1.70	NA	1.70	5.78
	CRG	8	Episode	Day 3,	2012	[CO	(PPM)	1.37	NA	1.37	5.26
0	CRG	8	Episode	Day 3,	2012	6	co	(PPM)	1.21	NA	1.21	5.04
0	CRG	8	Episode	Day 3,	2012		CO	(PPM)	1.31	NA	1.31	4.73
0	CRG	8	Episode	Day 3,	2012	8	CO	(PPM)	1.27	NA	1.27	4.10
	LRG	8	Episode	Day 3,	2012	9	CO CO	(PPM)	1.24	NA	1.24	4.08

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

				High:	2012 mob=868.8	Stpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	2010	1000
	מיידצ	AVC	שייד			НÞ	DOL	T.TITTANTT	2012 DRFDICTFD	2012 PRFDICTFD	2012 DREDICTED	1988 Observed
	9115	PERIOD	DAIL			IIIC	FOL	DOIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
									(====)	(<u>2</u> /	(,	
(CRG	8	Episode	Day 3,	2012	10	CO	(PPM)	1.22	NA	1.22	3.59
(CRG	8	Episode	Day 3,	2012	11	CO	(PPM)	1.23	NA	1.23	3.54
(CRG	8	Episode	Day 3,	2012	12	CO	(PPM)	1.33	NA	1.33	3.37
(CRG	8	Episode	Day 3,	2012	14	00	(PPM)	1.43	NA	1.43	3.00
	TPC	8 Q	Episode	Day 3,	2012	14 15	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.00
	TRC	8	Episode	Day 3, Day 3	2012	16	CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	1 30
	TRG	8	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	NA	-9.00	1.71
(CRG	8	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	2.86
(CRG	8	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	NA	-9.00	4.05
(CRG	8	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	NA	-9.00	5.23
(CRG	8	Episode	Day 3,	2012	21	CO	(PPM)	-9.00	NA	-9.00	6.16
(CRG	8	Episode	Day 3,	2012	22	CO	(PPM)	-9.00	NA	-9.00	7.05
1	URG MTU	8 Q	Episode	Day 3, Day 1	2012	∠3	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9 00
1	NU H N.TH	8	Episode	Day 1, Day 1	2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
1	NJH	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
1	NJH	8	Episode	Day 1,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
1	NJH	8	Episode	Day 1,	2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
1	NJH	8	Episode	Day 1,	2012	5	CO	(PPM)	0.00	NA	0.00	-9.00
1	NJH	8	Episode	Day 1,	2012	6	CO	(PPM)	0.00	NA	0.00	-9.00
1	HUN	8	Episode	Day I,	2012	.7	CO	(PPM)	-9.00	NA	-9.00	2.08
1	HUN	8	Episode	Day 1,	2012	8	C0 C0	(PPM)	-9.00	NA NA	-9.00	2.04
י	NO II NTH	8	Episode	Day 1, Day 1.	2012	10	CO	(PPM)	-9.00	NA	-9.00	2.21
1	NJH	8	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	NA	-9.00	2.25
1	NJH	8	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	NA	-9.00	2.10
1	NJH	8	Episode	Day 1,	2012	13	CO	(PPM)	-9.00	NA	-9.00	1.98
1	NJH	8	Episode	Day 1,	2012	14	CO	(PPM)	-9.00	NA	-9.00	1.74
1	NJH	8	Episode	Day 1,	2012	15	CO	(PPM)	-9.00	NA	-9.00	1.49
1	HUN	8	Episode	Day I,	2012	10	00	(PPM)	-9.00	NA	-9.00	1.60
1	H UN	8 Q	Episode	Day 1, Day 1	2012	18	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.43
י	NO II NTH	8	Episode	Day 1, Day 1.	2012	19	CO	(PPM)	-9.00	NA	-9.00	2.85
1	NJH	8	Episode	Day 1, Day 1,	2012	20	CO	(PPM)	-9.00	NA	-9.00	3.08
1	NJH	8	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	NA	-9.00	3.28
1	NJH	8	Episode	Day 1,	2012	22	CO	(PPM)	-9.00	NA	-9.00	3.46
1	NJH	8	Episode	Day 1,	2012	23	CO	(PPM)	-9.00	NA	-9.00	3.58
1	NJH	8	Episode	Day 2,	2012	0	CO	(PPM)	-9.00	NA	-9.00	3.50
1	HUN	8	Episode	Day 2,	2012	1	00	(PPM)	-9.00	NA	-9.00	2.56
1	NUR	0 8	Episode	Day 2, Day 2	2012	2	CO	(PPM) (PPM)	-9.00	NA NA	-9.00	2.21
1	NJH	8	Episode	Day 2,	2012	4	CO	(PPM)	0.82	NA	0.82	1.73
1	NJH	8	Episode	Day 2,	2012	5	CO	(PPM)	0.78	NA	0.78	1.60
1	NJH	8	Episode	Day 2,	2012	6	CO	(PPM)	0.73	NA	0.73	1.71
1	NJH	8	Episode	Day 2,	2012	7	CO	(PPM)	0.80	NA	0.80	2.26
1	NJH	8	Episode	Day 2,	2012	8	CO	(PPM)	0.82	NA	0.82	2.74
1	HUN	8	Episode	Day 2,	2012	10	CO	(PPM)	0.85	NA	0.85	2.97
1	HUN	8 0	Episode	Day 2,	2012	11	CO	(PPM)	0.87	NA NA	0.87	3.1/
י	NO II NTH	8	Episode	Day 2, Day 2.	2012	12	CO	(PPM)	0.91	NA	0.91	3.42
1	NJH	8	Episode	Day 2,	2012	13	CO	(PPM)	0.94	NA	0.94	3.56
1	NJH	8	Episode	Day 2,	2012	14	CO	(PPM)	0.99	NA	0.99	3.55
1	NJH	8	Episode	Day 2,	2012	15	CO	(PPM)	0.98	NA	0.98	3.32
1	NJH	8	Episode	Day 2,	2012	16	CO	(PPM)	1.25	NA	1.25	5.03
1	HUN	8	Episode	Day 2,	2012	17	CO	(PPM)	1.71	NA	1.71	7.49
1	HUN	8	Episode	Day 2,	2012	10	C0 C0	(PPM)	2.29	NA NA	2.29	9.60
1	NO II N.TH	8	Episode	Day 2, Day 2	2012	20	CO	(DDM)	3.01	NΔ	3 26	10.45
1	NJH	8	Episode	Day 2,	2012	21	CO	(PPM)	3.34	NA	3.34	11.16
1	NJH	8	Episode	Day 2,	2012	22	CO	(PPM)	3.37	NA	3.37	11.27
1	NJH	8	Episode	Day 2,	2012	23	CO	(PPM)	3.29	NA	3.29	11.10
1	NJH	8	Episode	Day 3,	2012	0	CO	(PPM)	2.95	NA	2.95	8.92
1	NJH	8	Episode	Day 3,	2012	1	CO	(PPM)	2.46	NA	2.46	6.21
1	HUN	8	Episode	Day 3,	2012	2	CO	(PPM)	1.86	NA	1.86	3.91
ן ז	н ыл чт.ти	א ס	Episode	Day 3,	2012 2012	3 4	00	(PPM)	1.1U 0 81	NA NA	1.1U 0 81	2.94 2.25
ן ו	N'TH	о А	Episode	Dav 3,	2012	т 5	CO	(PPM)	0.01	NΔ	0.01	1 90
1	NJH	8	Episode	Day 3.	2012	6	CO	(PPM)	0.62	NA	0.62	1.75
1	NJH	8	Episode	Day 3,	2012	7	CO	(PPM)	0.73	NA	0.73	2.22
1	NJH	8	Episode	Day 3,	2012	8	CO	(PPM)	0.79	NA	0.79	2.65
1	NJH	8	Episode	Day 3,	2012	9	CO	(PPM)	0.84	NA	0.84	3.11
1	NJH	8	Episode	Day 3,	2012	10	CO	(PPM)	0.89	NA	0.89	3.40
1	HUN	8	Episode	Day 3,	2012	11	CO	(PPM)	0.95	NA	0.95	3.46
	нuи	8	"Fbrzoge	Day 3,	ZUIZ	12	ĊŬ	(PPM)	1.03	NA	1.03	3.51

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

				High:	2012 mob=8	868.8tpd;1	.5;80;	I/M 240	w/newest 4my	/r exempt;	0010	1000
		•					DOT	ד דוידי א אוידי	2012	2012	2012	1988 ODCEDVED
5	DFR DFR	, TUD	DAIL			HR	POL	LUIANI	PREDICIED (IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
	1 11								(0111)	(CALISQUE)	(OANI CALL)	
N	JH	8	Episode	Day 3,	2012	13	CO	(PPM)	1.12	NA	1.12	3.79
N	JH	8	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	NA	-9.00	3.46
N	JH	8	Episode	Day 3,	2012	15	CO	(PPM)	-9.00	NA	-9.00	2.57
Ν	JH	8	Episode	Day 3,	2012	16	CO	(PPM)	-9.00	NA	-9.00	2.39
N	JH	8	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	NA	-9.00	2.63
IN	JH	8	Episode	Day 3,	2012	18	00	(PPM)	-9.00	NA	-9.00	2.84
IN N	лы П	o g	Episode	Day 3,	2012	19	CO	(PPM) (DDM)	-9.00	INA NA	-9.00	3.04 4.27
N	TH	8	Episode	Day 3, Day 3.	2012	20	CO	(PPM)	-9.00	NA	-9.00	4.24
N	JH	8	Episode	Day 3,	2012	22	CO	(PPM)	-9.00	NA	-9.00	4.61
N	JH	8	Episode	Day 3,	2012	23	CO	(PPM)	-9.00	NA	-9.00	4.81
Т	JV	8	Episode	Day 1,	2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
Т	VI	8	Episode	Day 1,	2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
Т	VI	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
Т	'IV	8	Episode	Day 1,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
1	1V	8	Episode	Day I,	2012	4	00	(PPM)	0.00	NA	0.00	-9.00
1 T	⊥V VTV	0 0	Episode	Day 1, Day 1	2012	5	CO	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
Т	TV VTV	8	Episode	Day 1, Day 1.	2012	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
T	'IV	8	Episode	Day 1,	2012	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	'IV	8	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	VI	8	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	VI	8	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	VI	8	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	'IV	8	Episode	Day 1,	2012	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	IV	8	Episode	Day I,	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
1 T	1ν ττ.	8	Episode	Day 1,	2012	15 16	C0 C0	(PPM)	-9.00	NA NA	-9.00	-9.00
т Т	1 V 77 TV	0 Q	Episode	Day 1, Day 1	2012	17	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
Т	TV VTV	8	Episode	Day 1, Day 1.	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
T	'IV	8	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	'IV	8	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	'IV	8	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	VI	8	Episode	Day 1,	2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	VI	8	Episode	Day 1,	2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
T	'IV	8	Episode	Day 2,	2012	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	1 V 1 V	8	Episode	Day 2,	2012	1	00	(PPM)	-9.00	NA	-9.00	-9.00
ц 1 т	V L V TV	8	Episode	Day 2,	2012	2	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
Ť	TV	8	Episode	Day 2,	2012	4	CO	(PPM)	1.30	NA	1.30	-9.00
T	'IV	8	Episode	Dav 2,	2012	5	CO	(PPM)	1.23	NA	1.23	-9.00
Т	VI	8	Episode	Day 2,	2012	6	CO	(PPM)	1.16	NA	1.16	-9.00
Т	VI	8	Episode	Day 2,	2012	7	CO	(PPM)	1.27	NA	1.27	-9.00
Т	VI	8	Episode	Day 2,	2012	8	CO	(PPM)	1.18	NA	1.18	-9.00
Т	VI	8	Episode	Day 2,	2012	9	CO	(PPM)	1.09	NA	1.09	-9.00
1	11	8	Episode	Day 2,	2012	10	CO	(PPM)	1.09	NA	1.09	-9.00
1 T	1ν •τν	8	Episode	Day 2,	2012	12	C0 C0	(PPM)	1.15	NA NA	1.15	-9.00
ц т Т	⊥v TV	8	Episode	Day 2, Day 2	2012	13	CO	(PPM)	1 38	NA	1 38	-9.00
Т	TV	8	Episode	Day 2,	2012	14	CO	(PPM)	1.49	NA	1.49	-9.00
T	'IV	8	Episode	Day 2,	2012	15	CO	(PPM)	1.53	NA	1.53	-9.00
Т	VI	8	Episode	Day 2,	2012	16	CO	(PPM)	2.47	NA	2.47	-9.00
Т	VI	8	Episode	Day 2,	2012	17	CO	(PPM)	4.13	NA	4.13	-9.00
Т	VI	8	Episode	Day 2,	2012	18	CO	(PPM)	5.82	NA	5.82	-9.00
Т	'IV	8	Episode	Day 2,	2012	19	CO	(PPM)	6.72	NA	6.72	-9.00
Т	'IV	8	Episode	Day 2,	2012	20	CO	(PPM)	7.02	NA	7.02	-9.00
	1 V 77 TV	8	Episode	Day 2,	2012	21	CO	(PPM)	7.19	NA NA	7.19	-9.00
т Т	1 V 77 TV	0 Q	Episode	Day 2, Day 2	2012	22	CO	(PPM)	7.52	NA NA	7.34	-9.00
Т	TV VTV	8	Episode	Day 3.	2012	23	CO	(PPM)	6.43	NA	6.43	-9.00
T	'IV	8	Episode	Dav 3,	2012	1	CO	(PPM)	4.83	NA	4.83	-9.00
Т	'IV	8	Episode	Day 3,	2012	2	CO	(PPM)	3.16	NA	3.16	-9.00
Т	VI	8	Episode	Day 3,	2012	3	CO	(PPM)	2.19	NA	2.19	-9.00
T	VI	8	Episode	Day 3,	2012	4	CO	(PPM)	1.78	NA	1.78	-9.00
Т	VI	8	Episode	Day 3,	2012	5	CO	(PPM)	1.55	NA	1.55	-9.00
Т	IV	8	Episode	Day 3,	2012	6	CO	(PPM)	1.48	NA	1.48	-9.00
	TV TV	8	Episode	Day 3,	2012	.7	CO	(PPM)	1.77	NA	1.77	-9.00
	⊥V TV	8	Episode	Day 3,	∠U⊥∠ 2012	8	CO	(PPM)	1.85	NA N7	1.85	-9.00
1 T	⊥v 'TV	o Q	Episode	Day 3,	2012	9 10	C0 C0	(PPM)	1.94 2 NO	NA NA	1.94 2 NO	-9.00
т	TV.	о Я	Episode	Day 3, Dav 3	2012	11	CO	(PDM)	2.00	NA NA	2.00	-9.00
T	'IV	8	Episode	Day 3.	2012	12	CO	(PPM)	2.28	NA	2.28	-9.00
T	'IV	8	Episode	Day 3,	2012	13	CO	(PPM)	2.46	NA	2.46	-9.00
Т	'IV	8	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
Т	VI	8	Episode	Day 3,	2012	15	CO	(PPM)	<u>-9.</u> 00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=8	868.8tpd;1	.5;80;	I/M 240	w/newest 4my	yr exempt;	0.01.0	1000
с т т р	MIC	<u>ה</u> אתם			UD	DOT	T TTTT እ NTTT	2012 תידיים תפת	2012 תקיים בתקפת	2012 DREDICTED	1988 OBGEBVED
DITE	PERIOD	DAIE			пк	POL		(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	1 21(102							(0111)	(011200110)	(0111101120)	
TIV	8	Episode	Day 3,	2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
TTV	8	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
	8 8	Episode	Day 3,	2012	∠0 21	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
	8	Episode	Day 3, Day 3.	2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode	Dav 3,	2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode	Day 1,	2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode	Day I,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
TCMP	o g	Episode	Day 1, Day 1	2012	4 5	CO	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
ICMP	8	Episode	Day 1, Day 1,	2012	6	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode	Day 1,	2012	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012		CO	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	8	Episode	Day 1, Day 1	2012	13	C0 C0	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
ICMP	8	Episode	Day 1, Day 1,	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	8	Episode	Day 1,	2012	19	00	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	0 8	Episode	Day 1, Day 1	2012	20	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 1,	2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 2,	2012	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 2,	2012	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 2,	2012	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	8	Episode	Day 2,	2012	3	C0 C0	(PPM) (DDM)	1.45	NA NA	1.45	-9.00
TCMP	8	Episode	Day 2, Day 2	2012	5	CO	(PPM)	1 28	NA	1 28	-9.00
ICMP	8	Episode	Day 2,	2012	6	CO	(PPM)	1.24	NA	1.24	-9.00
ICMP	8	Episode	Day 2,	2012	7	CO	(PPM)	1.38	NA	1.38	-9.00
ICMP	8	Episode	Day 2,	2012	8	CO	(PPM)	1.31	NA	1.31	-9.00
ICMP	8	Episode	Day 2,	2012	9	CO	(PPM)	1.23	NA	1.23	-9.00
TCMP	8	Episode	Day 2,	2012	10	C0 C0	(PPM)	1.24	NA NA	1.24	-9.00
TCMP	8	Episode	Day 2, Day 2.	2012	12	CO	(PPM)	1.30	NA	1.30	-9.00
ICMP	8	Episode	Day 2,	2012	13	CO	(PPM)	1.46	NA	1.46	-9.00
ICMP	8	Episode	Day 2,	2012	14	CO	(PPM)	1.57	NA	1.80	-9.00
ICMP	8	Episode	Day 2,	2012	15	CO	(PPM)	1.59	NA	1.99	-9.00
ICMP	8	Episode	Day 2,	2012	16	CO	(PPM)	2.48	NA	3.26	-9.00
ICMP ICMD	8	Episode	Day 2,	2012	17	CO	(PPM)	4.08	NA	5.11	-9.00
TCMP	8	Episode	Day 2, Day 2.	2012	19	CO	(PPM)	7.03	NA	8.25	-9.00
ICMP	8	Episode	Day 2,	2012	20	CO	(PPM)	7.43	NA	8.69	-9.00
ICMP	8	Episode	Day 2,	2012	21	CO	(PPM)	7.68	NA	8.94	-9.00
ICMP	8	Episode	Day 2,	2012	22	CO	(PPM)	7.89	NA	8.98	-9.00
ICMP	8	Episode	Day 2,	2012	23	CO	(PPM)	7.93	NA	8.87	-9.00
ICMP ICMD	8	Episode	Day 3,	2012	0	CO	(PPM)	7.12	NA	7.68	-9.00
TCMP	0 8	Episode	Day 3, Day 3	2012	2	CO	(PPM) (DDM)	3.59	NA NA	5.89 4 04	-9.00
ICMP	8	Episode	Day 3,	2012	3	CO	(PPM)	2.56	NA	2.68	-9.00
ICMP	8	Episode	Day 3,	2012	4	CO	(PPM)	2.07	NA	2.14	-9.00
ICMP	8	Episode	Day 3,	2012	5	CO	(PPM)	1.79	NA	1.86	-9.00
ICMP	8	Episode	Day 3,	2012	6	CO	(PPM)	1.61	NA	1.62	-9.00
ICMP	8	Episode	Day 3,	2012	.7	CO	(PPM)	1.78	NA	1.78	-9.00
LCMP TCMD	8	Episode	Day 3,	∠U⊥∠ 2012	8	00	(PDM)	1.82 1.01	NA NA	1.82 1.01	-9.00
TCMP	o R	Episode	Day 3, Dav 3	2012	9 10	CO	(PPM)	2.05	NA NA	2.05	-9.00
ICMP	8	Episode	Dav 3.	2012	11	CO	(PPM)	2.16	NA	2.16	-9.00
ICMP	8	Episode	Day 3,	2012	12	CO	(PPM)	2.38	NA	2.38	-9.00
ICMP	8	Episode	Day 3,	2012	13	CO	(PPM)	2.57	NA	2.57	-9.00
ICMP	8	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 3,	2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	ט ס	Episode	Day 3,	∠∪⊥∠ 2012	10 17	00	(PPM)	-9.00 _9.00	NA N7	-9.00	-9.00
ICMP	8	Episode	Day 3, Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=8	868.8tp	1;1.	5;80;	I/M 240	w/newest 4my	vr exempt;	0010	1000
SITE A	VG	DATE			I	łR	POL	LUTANT	2012 PREDICTED	PREDICTED	2012 PREDICTED	OBSERVED
P	ERIOD								(UAM)	(CAL3QHC)	(UAM+CAL3)	
TOND	0	Deigede	Dec. 2	2012		1.0	00		0.00	NT 7	0.00	0.00
ICMP ICMP	8	Episode	Day 3, Day 3	2012	-	L9 20	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
ICMP	8	Episode	Day 3, Day 3,	2012		21	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 3,	2012		22	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode	Day 3,	2012	1	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
ENG	8	Episode	Day 1,	2012		0	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode	Day 1,	2012		1	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode	Day 1,	2012		2	00	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode	Day 1, Day 1	2012		4	CO	(PPM) (PPM)	0.00	NΑ NΔ	0.00	-9.00
ENG	8	Episode	Day 1, Day 1,	2012		5	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode	Day 1,	2012		6	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode	Day 1,	2012		7	CO	(PPM)	-9.00	NA	-9.00	1.50
ENG	8	Episode	Day 1,	2012		8	CO	(PPM)	-9.00	NA	-9.00	1.54
ENG	8	Episode	Day 1,	2012		9	00	(PPM)	-9.00	NA	-9.00	1.54
ENG	0 8	Episode	Day 1, Day 1	2012	-	11	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1 32
ENG	8	Episode	Day 1, Day 1,	2012	-	12	CO	(PPM)	-9.00	NA	-9.00	1.19
ENG	8	Episode	Day 1,	2012		13	CO	(PPM)	-9.00	NA	-9.00	1.05
ENG	8	Episode	Day 1,	2012		L4	CO	(PPM)	-9.00	NA	-9.00	0.90
ENG	8	Episode	Day 1,	2012	-	15	CO	(PPM)	-9.00	NA	-9.00	0.76
ENG	8	Episode	Day 1,	2012	-	L6	CO	(PPM)	-9.00	NA	-9.00	0.79
ENG	8	Episode	Day 1,	2012	:	L / 1 O	C0 C0	(PPM)	-9.00	NA NA	-9.00	1.21
ENG	8	Episode	Day 1, Day 1.	2012	:	19	CO	(PPM)	-9.00	NA	-9.00	1.52
ENG	8	Episode	Day 1,	2012	-	20	CO	(PPM)	-9.00	NA	-9.00	1.60
ENG	8	Episode	Day 1,	2012	1	21	CO	(PPM)	-9.00	NA	-9.00	1.67
ENG	8	Episode	Day 1,	2012	1	22	CO	(PPM)	-9.00	NA	-9.00	1.80
ENG	8	Episode	Day 1,	2012	-	23	CO	(PPM)	-9.00	NA	-9.00	1.86
ENG	8	Episode	Day 2,	2012		0	CO	(PPM)	-9.00	NA	-9.00	1.76 1.20
ENG	0 8	Episode	Day 2, Day 2	2012		⊥ 2	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1.30
ENG	8	Episode	Day 2, Day 2,	2012		3	CO	(PPM)	0.41	NA	0.41	0.96
ENG	8	Episode	Day 2,	2012		4	CO	(PPM)	0.39	NA	0.39	0.88
ENG	8	Episode	Day 2,	2012		5	CO	(PPM)	0.38	NA	0.38	0.88
ENG	8	Episode	Day 2,	2012		6	CO	(PPM)	0.34	NA	0.34	0.96
ENG	8	Episode	Day 2,	2012		./	CO	(PPM)	0.41	NA	0.41	1.40
ENG	8	Episode	Day 2, Day 2	2012		8 9	CO	(PPM) (DDM)	0.44	NA NA	0.44	1.82
ENG	8	Episode	Day 2, Day 2,	2012		LŐ	CO	(PPM)	0.46	NA	0.46	1.91
ENG	8	Episode	Day 2,	2012		11	CO	(PPM)	0.47	NA	0.47	1.94
ENG	8	Episode	Day 2,	2012	-	12	CO	(PPM)	0.49	NA	0.49	1.97
ENG	8	Episode	Day 2,	2012	-	13	CO	(PPM)	0.53	NA	0.53	1.96
ENG	8	Episode	Day 2,	2012	:	L4 15	CO	(PPM)	0.58	NA NA	0.58	1.85
ENG	8	Episode	Day 2, Day 2.	2012	:	16	CO	(PPM)	1.05	NA	1.05	1.89
ENG	8	Episode	Day 2,	2012		L7	CO	(PPM)	1.47	NA	1.47	2.91
ENG	8	Episode	Day 2,	2012		18	CO	(PPM)	1.60	NA	1.60	3.22
ENG	8	Episode	Day 2,	2012		19	CO	(PPM)	1.65	NA	1.65	3.38
ENG	8	Episode	Day 2,	2012	-	20	CO	(PPM)	1.64	NA	1.64	3.47
ENG	8	Episode	Day 2, Day 2	2012	:	21 22	CO	(PPM) (DDM)	1.01	NA NA	1.01	3.50
ENG	8	Episode	Day 2,	2012		23	CO	(PPM)	1.42	NA	1.42	3.50
ENG	8	Episode	Day 3,	2012		Ō	CO	(PPM)	1.00	NA	1.00	2.91
ENG	8	Episode	Day 3,	2012		1	CO	(PPM)	0.57	NA	0.57	1.86
ENG	8	Episode	Day 3,	2012		2	CO	(PPM)	0.43	NA	0.43	1.54
ENG	8	Episode	Day 3,	2012		3	00	(PPM)	0.38	NA	0.38	1.36
ENG ENG	δ Q	Episode	Dav 3,	2012		4 5	00	(PPM)	0.32	INA NA	0.35	1.44 1.09
ENG	8	Episode	Day 3, Day 3.	2012		6	CO	(PPM)	0.33	NA	0.33	1.02
ENG	8	Episode	Day 3,	2012		7	CO	(PPM)	0.44	NA	0.44	1.26
ENG	8	Episode	Day 3,	2012		8	CO	(PPM)	0.46	NA	0.46	1.23
ENG	8	Episode	Day 3,	2012		9	CO	(PPM)	0.49	NA	0.49	1.49
ENG	8	Episode	Day 3,	2012	-	LU 11	00	(PPM)	0.54	NA	0.54	1.69
ENG	8	Episode	Day 3,	2012	:	12	C0 C0	(PPM) (DDM)	0.59	NA NA	0.59	1.70 1.71
ENG	8	Episode	Day 3, Day 3.	2012		13	CO	(PPM)	0.69	NA	0.69	1.70
ENG	8	Episode	Day 3.	2012		L4	CO	(PPM)	-9.00	NA	-9.00	1.53
ENG	8	Episode	Day 3,	2012		15	CO	(PPM)	-9.00	NA	-9.00	1.11
ENG	8	Episode	Day 3,	2012		16	CO	(PPM)	-9.00	NA	-9.00	1.17
ENG	8	Episode	Day 3,	2012	-	L7	CO	(PPM)	-9.00	NA	-9.00	1.30
ENG	8	Episode	Day 3,	2012		L B I G	00	(PPM)	-9.00	NA NA	-9.00	1.59 1.90
ENG	б Д	Epicode	Day 3, Day 3	2012	-	ະ∍ 20	C0 C0	(PPM)	-9.00	INA ND	-9.00	1.09 2 07
ENG	8	Episode	Day 3,	2012		21	CO	(PPM)	-9.00	NA	-9.00	2.17

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 2012 mob	p=868.8tpd;1	.5;80;	I/M 240	w/newest 4my	vr exempt;	2012	1000
SIT	E AVG PERIOD	DATE		HR	POL	LUTANT	2012 PREDICTED (UAM)	PREDICTED (CAL3QHC)	2012 PREDICTED (UAM+CAL3)	OBSERVED
TNG	0	D	Dec. 2 0010	20			0.00		0.00	2 24
ENG	8	Episode	e Day 3, 2012 A Day 3, 2012	22	C0 C0	(PPM) (DDM)	-9.00	NA NA	-9.00	2.24
BOU	8	Episode	Day 3, 2012	25	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode	e Day 1, 2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode	2 Day 1, 2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode	e Day 1, 2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode	e Day 1, 2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode	e Day 1, 2012	5	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	0 8	Episode	Day 1, 2012	0 7	CO	(PPM) (DDM)	-9 00	NA NA	-9 00	-9.00
BOU	8	Episode	Day 1, 2012	, 8	CO	(PPM)	-9.00	NA	-9.00	0.85
BOU	8	Episode	e Day 1, 2012	9	CO	(PPM)	-9.00	NA	-9.00	1.19
BOU	8	Episode	e Day 1, 2012	10	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode	Day 1, 2012	11	CO	(PPM)	-9.00	NA	-9.00	1.43
BOU	8	Episode	e Day 1, 2012	12	CO	(PPM)	-9.00	NA	-9.00	1.39
BOU	8	Episode	e Day I, 2012	14	00	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode	Day 1, 2012	15	CO	(PPM)	-9.00	NA	-9.00	1 35
BOU	8	Episode	e Day 1, 2012	16	CO	(PPM)	-9.00	NA	-9.00	1.28
BOU	8	Episode	e Day 1, 2012	17	CO	(PPM)	-9.00	NA	-9.00	0.99
BOU	8	Episode	e Day 1, 2012	18	CO	(PPM)	-9.00	NA	-9.00	0.83
BOU	8	Episode	e Day 1, 2012	19	CO	(PPM)	-9.00	NA	-9.00	0.70
BOU	8	Episode	e Day 1, 2012	20	CO	(PPM)	-9.00	NA	-9.00	0.61
BOU	8	Episode	2 Day 1, 2012 2 Day 1 2012	∠⊥ 22	C0 C0	(PPM) (DDM)	-9.00	NA NA	-9.00	0.54
BOU	8	Episode	Day 1, 2012	23	CO	(PPM)	-9.00	NA	-9.00	0.34
BOU	8	Episode	e Day 2, 2012	0	CO	(PPM)	-9.00	NA	-9.00	0.21
BOU	8	Episode	e Day 2, 2012	1	CO	(PPM)	-9.00	NA	-9.00	0.19
BOU	8	Episode	Day 2, 2012	2	CO	(PPM)	-9.00	NA	-9.00	0.16
BOU	8	Episode	e Day 2, 2012	3	CO	(PPM)	0.39	NA	0.39	0.16
BOU	8	Episode	e Day 2, 2012	4	C0 C0	(PPM) (DDM)	0.37	NA NA	0.37	0.20
BOU	8	Episode	Day 2, 2012	5	CO	(PPM)	0.30	NA	0.30	0.28
BOU	8	Episode	e Day 2, 2012	7	CO	(PPM)	0.36	NA	0.36	0.66
BOU	8	Episode	e Day 2, 2012	8	CO	(PPM)	0.38	NA	0.38	0.91
BOU	8	Episode	e Day 2, 2012	9	CO	(PPM)	0.41	NA	0.41	1.41
BOU	8	Episode	e Day 2, 2012	10	CO	(PPM)	0.46	NA	0.46	1.76
BOU	8	Episode	2 Day 2, 2012	12	C0 C0	(PPM) (DDM)	0.51	NA NA	0.51	1.91
BOU	8	Episode	Day 2, 2012	13	CO	(PPM)	0.50	NA	0.60	2.03
BOU	8	Episode	e Day 2, 2012	14	CO	(PPM)	0.63	NA	0.63	2.13
BOU	8	Episode	e Day 2, 2012	15	CO	(PPM)	0.71	NA	0.71	2.04
BOU	8	Episode	e Day 2, 2012	16	CO	(PPM)	0.80	NA	0.80	2.01
BOU	8	Episode	e Day 2, 2012	17	CO	(PPM)	0.82	NA	0.82	1.65
BOU	8	Episode	2 Day 2, 2012 2 Day 2 2012	10	C0 C0	(PPM) (DDM)	0.80	NA NA	0.80	1.42
BOU	8	Episode	Day 2, 2012	20	CO	(PPM)	0.75	NA	0.75	2.10
BOU	8	Episode	Day 2, 2012	21	CO	(PPM)	0.72	NA	0.72	2.11
BOU	8	Episode	e Day 2, 2012	22	CO	(PPM)	0.66	NA	0.66	2.06
BOU	8	Episode	e Day 2, 2012	23	CO	(PPM)	0.51	NA	0.51	1.88
BOU	8	Episode	2 Day 3, 2012	0	C0 C0	(PPM) (DDM)	0.40	NA NA	0.40	1.63
BOU	8	Episode	Day 3, 2012	2	CO	(PPM)	0.35	NA	0.35	1 32
BOU	8	Episode	e Day 3, 2012	3	CO	(PPM)	0.28	NA	0.28	0.51
BOU	8	Episode	e Day 3, 2012	4	CO	(PPM)	0.26	NA	0.26	0.32
BOU	8	Episode	e Day 3, 2012	5	CO	(PPM)	0.25	NA	0.25	0.21
BOU	8	Episode	e Day 3, 2012	6	CO	(PPM)	0.27	NA	0.27	0.21
BOU	8	Episode	2 Day 3, 2012	/	CO	(PPM) (DDM)	0.35	NA NA	0.35	0.00
BOU	8	Episode	Day 3, 2012	9	CO	(PPM)	0.38	NA	0.40	1.31
BOU	8	Episode	e Day 3, 2012	10	CO	(PPM)	0.41	NA	0.41	1.40
BOU	8	Episode	e Day 3, 2012	11	CO	(PPM)	0.42	NA	0.42	1.51
BOU	8	Episode	e Day 3, 2012	12	CO	(PPM)	0.45	NA	0.45	1.61
BOU	8	Episode	e Day 3, 2012	13	CO	(PPM)	0.48	NA	0.48	1.72
BOU	8 0	Episode	2012 Day 3, 2012	14 1 F	00	(PDM)	-9.00	NA ND	-9.00	1.75 1.24
BOU	d R	Episode	2 Day 3, 2012	16	CO	(PPM)	-9.00	NA NA	-9.00	1.49
BOU	8	Episode	e Day 3, 2012	17	CO	(PPM)	-9.00	NA	-9.00	1.32
BOU	8	Episode	Day 3, 2012	18	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode	e Day 3, 2012	19	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode	e Day 3, 2012	20	CO	(PPM)	-9.00	NA	-9.00	1.34
BOU	8	Episode	2 Day 3, 2012	21	CO	(PPM)	-9.00	NA NA	-9.00	1.27
BOU	δ Ω	Episode	Day 3, 2012	22 22	00	(PPM)	-9.00	NA ND	-9.00 _9.00	1.20
GRDS	8	Episode	e Day 1, 2012	0	CO	(PPM)	0.00	NA	0.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2012 mob=868	.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
SITE AVG	DATE	HR	POL	LUTANT	2012 PREDICTED	2012 PREDICTED	2012 PREDICTED	1988 OBSERVED
PERIOD	DATE	IIIC	101	DOIMI	(UAM)	(CAL3QHC)	(UAM+CAL3)	OBOLICVED
					. ,	· ~ ·	· · ·	
GRDS 8	Episode Day 1, 2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS 8	Episode Day 1, 2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS 8	Episode Day 1, 2012 Episode Day 1, 2012	3	CO	(PPM)	0.00	INA NA	0.00	-9.00
GRDS 8	Episode Day 1, 2012 Episode Day 1, 2012	5	CO	(PPM) (DDM)	0.00	NA NΔ	0.00	-9.00
GRDS 8	Episode Day 1, 2012	6	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS 8	Episode Day 1, 2012	7	CO	(PPM)	-9.00	NA	-9.00	2.00
GRDS 8	Episode Day 1, 2012	8	CO	(PPM)	-9.00	NA	-9.00	2.25
GRDS 8	Episode Day 1, 2012	9	CO	(PPM)	-9.00	NA	-9.00	2.50
GRDS 8	Episode Day 1, 2012	10	CO	(PPM)	-9.00	NA	-9.00	2.75
GRDS 8	Episode Day 1, 2012	11	CO	(PPM)	-9.00	NA	-9.00	3.00
GRDS 8	Episode Day 1, 2012	12	CO	(PPM)	-9.00	NA	-9.00	3.13
GRDS 0 CPDS 8	Episode Day 1, 2012 Episode Day 1, 2012	14	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2 75
GRDS 8	Episode Day 1, 2012 Episode Day 1, 2012	15	CO	(PPM)	-9.00	NA	-9.00	2.50
GRDS 8	Episode Day 1, 2012	16	CO	(PPM)	-9.00	NA	-9.00	2.25
GRDS 8	Episode Day 1, 2012	17	CO	(PPM)	-9.00	NA	-9.00	2.13
GRDS 8	Episode Day 1, 2012	18	CO	(PPM)	-9.00	NA	-9.00	2.00
GRDS 8	Episode Day 1, 2012	19	CO	(PPM)	-9.00	NA	-9.00	1.88
GRDS 8	Episode Day 1, 2012	20	CO	(PPM)	-9.00	NA	-9.00	1.88
GRDS 8	Episode Day 1, 2012	21	CO	(PPM)	-9.00	NA	-9.00	2.00
GRDS 8	Episode Day 1, 2012 Episode Day 1, 2012	22	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.38
GRDS 0	Episode Day 1, 2012 Episode Day 2, 2012	23 0	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.50
GRDS 8	Episode Day 2, 2012	1	CO	(PPM)	-9.00	NA	-9.00	2.04
GRDS 8	Episode Day 2, 2012	2	CO	(PPM)	-9.00	NA	-9.00	1.87
GRDS 8	Episode Day 2, 2012	3	CO	(PPM)	0.46	NA	0.46	1.74
GRDS 8	Episode Day 2, 2012	4	CO	(PPM)	0.43	NA	0.43	1.62
GRDS 8	Episode Day 2, 2012	5	CO	(PPM)	0.41	NA	0.41	1.56
GRDS 8	Episode Day 2, 2012	6	CO	(PPM)	0.32	NA	0.32	1.72
GRDS 8	Episode Day 2, 2012 Episode Day 2, 2012	/	00 00	(PPM)	0.40	NA	0.40	3.39
GRDS 8	Episode Day 2, 2012 Episode Day 2 2012	9	CO	(PPM) (PPM)	0.44	NA NA	0.44	5.30
GRDS 8	Episode Day 2, 2012	10	CO	(PPM)	0.55	NA	0.55	6.22
GRDS 8	Episode Day 2, 2012	11	CO	(PPM)	0.61	NA	0.61	6.34
GRDS 8	Episode Day 2, 2012	12	CO	(PPM)	0.66	NA	0.66	6.42
GRDS 8	Episode Day 2, 2012	13	CO	(PPM)	0.69	NA	0.69	7.13
GRDS 8	Episode Day 2, 2012	14	CO	(PPM)	0.72	NA	0.72	6.71
GRDS 8	Episode Day 2, 2012	15	CO	(PPM)	0.77	NA	0.77	4.89
GRDS 8	Episode Day 2, 2012 Episode Day 2, 2012	10	CO	(PPM) (DDM)	0.90	NA NA	0.90	3.19
GRDS 8	Episode Day 2, 2012 Episode Day 2, 2012	18	CO	(PPM)	0.92	NA	0.92	5.34
GRDS 8	Episode Day 2, 2012	19	CO	(PPM)	0.90	NA	0.90	7.09
GRDS 8	Episode Day 2, 2012	20	CO	(PPM)	0.88	NA	0.88	8.34
GRDS 8	Episode Day 2, 2012	21	CO	(PPM)	0.86	NA	0.86	8.21
GRDS 8	Episode Day 2, 2012	22	CO	(PPM)	0.79	NA	0.79	8.32
GRDS 8	Episode Day 2, 2012	23	CO	(PPM)	0.63	NA	0.63	8.18
GRDS 8	Episode Day 3, 2012 Episode Day 2, 2012	1	CO	(PPM) (DDM)	0.47	NA NA	0.47	/./L 6.46
GRDS 8	Episode Day 3, 2012 Episode Day 3, 2012	2	CO	(PPM) (DDM)	0.40	NA NΔ	0.40	4 81
GRDS 8	Episode Day 3, 2012	3	CO	(PPM)	0.30	NA	0.30	3.06
GRDS 8	Episode Day 3, 2012	4	CO	(PPM)	0.28	NA	0.28	1.74
GRDS 8	Episode Day 3, 2012	5	CO	(PPM)	0.26	NA	0.26	0.95
GRDS 8	Episode Day 3, 2012	б	CO	(PPM)	0.27	NA	0.27	0.79
GRDS 8	Episode Day 3, 2012	7	CO	(PPM)	0.37	NA	0.37	1.62
GRDS 8	Episode Day 3, 2012	8	CO	(PPM)	0.40	NA	0.40	2.50
GRDS 8	Episode Day 3, 2012 Episode Day 3, 2012	10	CO	(PPM) (DDM)	0.43	NA NA	0.43	3.00
GRDS 8	Episode Day 3, 2012 Episode Day 3, 2012	11	CO	(PPM)	0.11	NA	0.11	3 25
GRDS 8	Episode Day 3, 2012	12	CO	(PPM)	0.49	NA	0.49	3.38
GRDS 8	Episode Day 3, 2012	13	CO	(PPM)	0.53	NA	0.53	3.50
GRDS 8	Episode Day 3, 2012	14	CO	(PPM)	-9.00	NA	-9.00	3.38
GRDS 8	Episode Day 3, 2012	15	CO	(PPM)	-9.00	NA	-9.00	2.38
GRDS 8	Episode Day 3, 2012	16	CO	(PPM)	-9.00	NA	-9.00	1.88
GRDS 8	Episode Day 3, 2012 Episode Day 2, 2012	10	00	(PPM)	-9.00	NA NA	-9.00	2.13
GRDS 8	Episode Day 3, 2012	19	CO	(PPM)	-9.00	NA ND	-9.00	2.50
GRDS 8	Episode Day 3, 2012	2.0	CO	(PPM)	-9.00	NA	-9.00	3.88
GRDS 8	Episode Day 3, 2012	21	CO	(PPM)	-9.00	NA	-9.00	4.50
GRDS 8	Episode Day 3, 2012	22	CO	(PPM)	-9.00	NA	-9.00	4.88
GRDS 8	Episode Day 3, 2012	23	CO	(PPM)	-9.00	NA	-9.00	5.25
ARV 8	Episode Day 1, 2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
ARV 8	Episode Day 1, 2012	1	0	(PPM)	0.00	NA	0.00	-9.00
ARV 8 ARV 8	Episode Day 1, 2012 Episode Day 1, 2012	∠ २	00 C0	(PPM)	0.00	NA NA	0.00	-9.00
111.0	- <u>-</u>	5	00	(= = + ¹ /	0.00	TNLT	0.00	2.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

				High:	2012 mob=	868.8tpd;	1.5;80	;I/M 240	0 w/newest 4my	yr exempt;	0010	1000
	SITE	AVG	ገልጥም			ЧР	DOI	.T.TITANT	2012 תידיי לתידפס	2012 DRFDICTFD	2012 PRFDICTFD	1988 Observed
	DIID	PERIOD	DAIE			1110	FOI		(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
		1 21(202							(0111)	(01120 giro)	(0111)01120)	
	ARV	8	Episode	Day 1,	2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
	ARV	8	Episode	Day 1,	2012	5	CO	(PPM)	0.00	NA	0.00	-9.00
	ARV	8	Episode	Day 1,	2012	6	CO	(PPM)	0.00	NA	0.00	-9.00
	ARV	8	Episode	Day I,	2012	7	CO	(PPM)	-9.00	NA	-9.00	2.01
	ARV	8	Episode	Day 1, Day 1	2012	8	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.20
	ARV	8	Episode	Day 1, Day 1.	2012	10	CO	(PPM)	-9.00	NA	-9.00	1.94
	ARV	8	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	NA	-9.00	1.98
	ARV	8	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	NA	-9.00	2.05
	ARV	8	Episode	Day 1,	2012	13	CO	(PPM)	-9.00	NA	-9.00	2.05
	ARV	8	Episode	Day 1,	2012	14	CO	(PPM)	-9.00	NA	-9.00	1.98
	ARV	8	Episode	Day I,	2012	15	CO	(PPM)	-9.00	NA	-9.00	1.83
	ARV	0 8	Episode	Day 1, Day 1	2012	10	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1 80
	ARV	8	Episode	Day 1, Day 1.	2012	18	CO	(PPM)	-9.00	NA	-9.00	2.05
	ARV	8	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	NA	-9.00	2.30
	ARV	8	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	NA	-9.00	2.68
	ARV	8	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	NA	-9.00	3.36
	ARV	8	Episode	Day 1,	2012	22	CO	(PPM)	-9.00	NA	-9.00	3.91
	ARV	8	Episode	Day 1,	2012	23	CO	(PPM)	-9.00	NA	-9.00	4.05
	ARV	8	Episode	Day 2, Day 2	2012	0	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	3.99
	ARV	8	Episode	Day 2, Day 2	2012	2	CO	(PPM)	-9.00	NA NA	-9.00	3.00
	ARV	8	Episode	Day 2,	2012	3	CO	(PPM)	1.42	NA	1.42	3.09
	ARV	8	Episode	Day 2,	2012	4	CO	(PPM)	1.27	NA	1.27	2.68
	ARV	8	Episode	Day 2,	2012	5	CO	(PPM)	1.16	NA	1.16	2.09
	ARV	8	Episode	Day 2,	2012	6	CO	(PPM)	0.87	NA	0.87	1.89
	ARV	8	Episode	Day 2,	2012	7	CO	(PPM)	0.66	NA	0.66	2.79
	ARV	8	Episode	Day 2,	2012	8	C0 C0	(PPM) (DDM)	0.59	NA NA	0.59	3.95
	ARV	8	Episode	Day 2, Day 2.	2012	10	CO	(PPM)	0.58	NA	0.58	4.98
	ARV	8	Episode	Dav 2,	2012	11	CO	(PPM)	0.61	NA	0.61	5.08
	ARV	8	Episode	Day 2,	2012	12	CO	(PPM)	0.68	NA	0.68	5.14
	ARV	8	Episode	Day 2,	2012	13	CO	(PPM)	0.77	NA	0.77	5.11
	ARV	8	Episode	Day 2,	2012	14	CO	(PPM)	0.86	NA	0.86	4.85
	ARV	8	Episode	Day 2,	2012	15	CO	(PPM)	0.96	NA	0.96	3.98
	ARV	8	Episode	Day 2, Day 2	2012	10	CO	(PPM) (DDM)	1.25	NA NA	1.25	3.25
	ARV	8	Episode	Day 2, Day 2.	2012	18	CO	(PPM)	1.45	NA	1.45	3.44
	ARV	8	Episode	Day 2,	2012	19	CO	(PPM)	1.41	NA	1.41	3.91
	ARV	8	Episode	Day 2,	2012	20	CO	(PPM)	1.35	NA	1.35	4.34
	ARV	8	Episode	Day 2,	2012	21	CO	(PPM)	1.27	NA	1.27	4.65
	ARV	8	Episode	Day 2,	2012	22	CO	(PPM)	1.18	NA	1.18	4.84
	ARV	8	Episode	Day 2,	2012	23	CO	(PPM)	1.04	NA	1.04	4.80
	ARV	8	Episode	Day 3, Day 3	2012	1	CO	(PPM)	0.71	NA NA	0.71	3 70
	ARV	8	Episode	Dav 3,	2012	2	CO	(PPM)	0.40	NA	0.40	3.06
	ARV	8	Episode	Day 3,	2012	3	CO	(PPM)	0.36	NA	0.36	2.43
	ARV	8	Episode	Day 3,	2012	4	CO	(PPM)	0.34	NA	0.34	1.86
	ARV	8	Episode	Day 3,	2012	5	CO	(PPM)	0.32	NA	0.32	1.49
	ARV	8	Episode	Day 3,	2012	6	CO	(PPM)	0.34	NA	0.34	1.45
	ARV	0 8	Episode	Day 3, Day 3	2012	7	CO	(PPM) (DDM)	0.40	NA NA	0.40	2.19
	ARV	8	Episode	Day 3.	2012	9	CO	(PPM)	0.57	NA	0.57	3.33
	ARV	8	Episode	Day 3,	2012	10	CO	(PPM)	0.62	NA	0.62	3.64
	ARV	8	Episode	Day 3,	2012	11	CO	(PPM)	0.68	NA	0.68	3.66
	ARV	8	Episode	Day 3,	2012	12	CO	(PPM)	0.74	NA	0.74	3.71
	ARV	8	Episode	Day 3,	2012	13	CO	(PPM)	0.82	NA	0.82	3.70
	ARV	8	Episode	Day 3,	2012	14	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	3.4⊥ 2.20
	ARV	8	Episode	Day 3, Day 3.	2012	16	CO	(PPM)	-9.00	NA	-9.00	1.69
	ARV	8	Episode	Day 3.	2012	17	CO	(PPM)	-9.00	NA	-9.00	1.83
	ARV	8	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	2.25
	ARV	8	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	NA	-9.00	2.72
	ARV	8	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	NA	-9.00	3.09
	ARV	8	Episode	Day 3,	2012	21	CO	(PPM)	-9.00	NA	-9.00	3.46
	ARV ADV	б Q	Episode	Day 3,	2012 2012	22	00	(PPM)	-9.00	NA NA	-9.00	3.89 4 01
	HI'D	о 8	Episode	Day 3, Dav 1	2012	∠ <i>3</i> ∩	CO	(PPM)	0.00	NA	0.00	-9.00
	HLD	8	Episode	Day 1.	2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
	HLD	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
	HLD	8	Episode	Day 1,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
	HLD	8	Episode	Day 1,	2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
	HLD	8	Episode	Day 1,	2012	5	CO	(PPM)	0.00	NA	0.00	-9.00
L	пцυ	d	Thread	υαγ Ι,		0	υJ	(PPM)	0.00	INA	0.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868	.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
	r	שיידע			uр	DOT	ד דוידי א אוידי	2012 תידים בתידפת	2012 תידיים תידים	2012 DEFDICTED	1988 OBGEBVED
DIL AVG	RIOD	DAIL			пк	POL	LUIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
								(/	((,	
HLD	8	Episode	Day 1,	2012	7	CO	(PPM)	-9.00	NA	-9.00	0.75
HLD	8	Episode	Day 1,	2012	8	CO	(PPM)	-9.00	NA	-9.00	0.71
HLD	8	Episode	Day I,	2012	10	CO	(PPM)	-9.00	NA	-9.00	0.66
HLD	8	Episode	Day 1,	2012	10	00	(PPM)	-9.00	NA	-9.00	0.62
нцр	0 8	Episode	Day 1, Day 1	2012	12	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	0.57
HLD	8	Episode	Day 1, Day 1	2012	13	CO	(PPM)	-9.00	NA	-9 00	0.32
HLD	8	Episode	Day 1, Day 1,	2012	14	CO	(PPM)	-9.00	NA	-9.00	0.19
HLD	8	Episode	Day 1,	2012	15	CO	(PPM)	-9.00	NA	-9.00	0.11
HLD	8	Episode	Day 1,	2012	16	CO	(PPM)	-9.00	NA	-9.00	0.14
HLD	8	Episode	Day 1,	2012	17	CO	(PPM)	-9.00	NA	-9.00	0.16
HLD	8	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	NA	-9.00	0.19
HLD	8	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	NA	-9.00	0.21
HLD	8	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	NA	-9.00	0.24
HLD	8	Episode	Day I,	2012	21	CO	(PPM)	-9.00	NA	-9.00	0.26
HLD	8	Episode	Day 1,	2012	22	CO	(PPM)	-9.00	NA NA	-9.00	0.30
нцр	o g	Episode	Day 1, Day 2	2012	23 0	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	0.31
HLD	8	Episode	Day 2, Day 2	2012	1	CO	(PPM)	-9.00	NA NA	-9.00	0.27
HLD	8	Episode	Day 2.	2012	2	CO	(PPM)	-9.00	NA	-9.00	0.21
HLD	8	Episode	Dav 2,	2012	3	CO	(PPM)	0.23	NA	0.23	0.20
HLD	8	Episode	Day 2,	2012	4	CO	(PPM)	0.23	NA	0.23	0.19
HLD	8	Episode	Day 2,	2012	5	CO	(PPM)	0.23	NA	0.23	0.17
HLD	8	Episode	Day 2,	2012	6	CO	(PPM)	0.23	NA	0.23	0.15
HLD	8	Episode	Day 2,	2012	7	CO	(PPM)	0.25	NA	0.25	0.14
HLD	8	Episode	Day 2,	2012	8	CO	(PPM)	0.25	NA	0.25	0.11
HLD	8	Episode	Day 2,	2012	10	CO	(PPM)	0.26	NA	0.26	0.09
HLD	8	Episode	Day 2,	2012	10	00	(PPM)	0.20	NA NA	0.26	0.07
HLD	8	Episode	Day 2, Day 2	2012	12	CO	(PPM) (DDM)	0.20	NA NΔ	0.20	0.05
HLD	8	Episode	Day 2, Day 2,	2012	13	CO	(PPM)	0.31	NA	0.31	0.02
HLD	8	Episode	Dav 2,	2012	14	CO	(PPM)	0.36	NA	0.36	0.01
HLD	8	Episode	Day 2,	2012	15	CO	(PPM)	0.44	NA	0.44	0.09
HLD	8	Episode	Day 2,	2012	16	CO	(PPM)	0.72	NA	0.72	0.59
HLD	8	Episode	Day 2,	2012	17	CO	(PPM)	1.10	NA	1.10	1.14
HLD	8	Episode	Day 2,	2012	18	CO	(PPM)	1.20	NA	1.20	1.34
HLD	8	Episode	Day 2,	2012	19	CO	(PPM)	1.22	NA	1.22	1.42
HLD	8	Episode	Day 2,	2012	20	CO	(PPM)	1.21	NA	1.21	1.49
нцр	o g	Episode	Day 2, Day 2	2012	21	CO	(PPM) (DDM)	1.10	NA NA	1.10	1.52
HLD	8	Episode	Day 2, Day 2	2012	23	CO	(PPM)	1 04	NA	1 04	1 52
HLD	8	Episode	Day 3,	2012	0	CO	(PPM)	0.75	NA	0.75	1.07
HLD	8	Episode	Day 3,	2012	1	CO	(PPM)	0.38	NA	0.38	0.57
HLD	8	Episode	Day 3,	2012	2	CO	(PPM)	0.27	NA	0.27	0.44
HLD	8	Episode	Day 3,	2012	3	CO	(PPM)	0.25	NA	0.25	0.41
HLD	8	Episode	Day 3,	2012	4	CO	(PPM)	0.24	NA	0.24	0.40
HLD	8	Episode	Day 3,	2012	5	CO	(PPM)	0.24	NA	0.24	0.40
HLD	8	Episode	Day 3,	2012	6	CO	(PPM)	0.24	NA	0.24	0.40
HLD	8	Episode	Day 3,	2012	/	00	(PPM)	0.32	NA NA	0.32	0.59
HLD	8	Episode	Day 3, Day 3	2012	9	CO	(PPM)	0.38	NA NA	0.38	0.79
HLD	8	Episode	Dav 3	2012	10	CO	(PPM)	0.47	NA	0.47	0.81
HLD	8	Episode	Day 3,	2012	11	CO	(PPM)	0.49	NA	0.49	0.75
HLD	8	Episode	Day 3,	2012	12	CO	(PPM)	0.53	NA	0.53	0.70
HLD	8	Episode	Day 3,	2012	13	CO	(PPM)	0.58	NA	0.58	0.66
HLD	8	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	NA	-9.00	0.62
HLD	8	Episode	Day 3,	2012	15	CO	(PPM)	-9.00	NA	-9.00	0.39
HLD	8	Episode	Day 3,	2012	10	CO	(PPM)	-9.00	NA	-9.00	0.22
HLD	8	Episode	Day 3,	2012	1 / 1 0	00	(PPM)	-9.00	NA	-9.00	0.17
нцр	o g	Episode	Day 3, Day 3	2012	19	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	0.20
П. П.	R	Episode	Dav 3,	2012	20	CO	(PPM)	-9.00	ND	-9.00	0 32
HLD	8	Episode	Day 3.	2012	21	CO	(PPM)	-9.00	NA	-9.00	0.36
HLD	8	Episode	Day 3,	2012	22	CO	(PPM)	-9.00	NA	-9.00	0.41
HLD	8	Episode	Day 3,	2012	23	CO	(PPM)	-9.00	NA	-9.00	0.64
AUR	8	Episode	Day 1,	2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
AUR	8	Episode	Day 1,	2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
AUR	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
AUR	8	Episode	Day 1,	∠U12 2012	3	00	(PPM)	0.00	NA	0.00	-9.00
AUR	8	Episode	Day 1,	∠U1∠ 2012	4	00	(PPM)	0.00	NA	0.00	-9.00
AUR	б Q	Episode	Day 1, Day 1	2012 2012	5	C0	(PPM)		NA NA		-9.00 _9.00
AUR	8	Episode	Dav 1	2012	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1.	2012	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 2012 mob	=868.8tpd;1.	5;80;	I/M 240	w/newest 4my	vr exempt;	0010	1000
SITE	AVG	DATE		HR	POL	TITTANT	2012 PREDICTED	2012 PREDICTED	ZUIZ PREDICTED	OBSERVED
STIE	PERIOD	DATE		IIIX	FOL	LIOIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
							(/	(<u>2</u>)	(,	
AUR	8	Episode	e Day 1, 2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 1, 2012	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 1, 2012	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 1, 2012	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
	8	Episode	Day 1, 2012	14	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
AUR	8	Episode	Day 1, 2012	16	CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	-9.00
AUR	8	Episode	Day 1, 2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 1, 2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 1, 2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 1, 2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 1, 2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 1, 2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
	8	Episode	2 Day I, 2012	∠3 0	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
AUR	8	Episode	Day 2, 2012	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	2 Day 2, 2012	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 2, 2012	3	CO	(PPM)	0.56	NA	0.56	-9.00
AUR	8	Episode	e Day 2, 2012	4	CO	(PPM)	0.53	NA	0.53	-9.00
AUR	8	Episode	e Day 2, 2012	5	CO	(PPM)	0.51	NA	0.51	-9.00
AUR	8	Episode	e Day 2, 2012	6	CO	(PPM)	0.48	NA	0.48	-9.00
AUR	8	Episode	e Day 2, 2012	7	CO	(PPM)	0.52	NA	0.52	-9.00
AUR	8	Episode	e Day 2, 2012	8	CO	(PPM)	0.55	NA	0.55	-9.00
AUR	0 8	Episode	2 Day 2, 2012	10	CO	(PPM) (DDM)	0.57	NA NA	0.57	-9.00
AUR	8	Episode	Day 2, 2012	11	CO	(PPM)	0.50	NA	0.50	-9 00
AUR	8	Episode	e Day 2, 2012	12	CO	(PPM)	0.61	NA	0.61	-9.00
AUR	8	Episode	e Day 2, 2012	13	CO	(PPM)	0.63	NA	0.63	-9.00
AUR	8	Episode	e Day 2, 2012	14	CO	(PPM)	0.66	NA	0.66	-9.00
AUR	8	Episode	e Day 2, 2012	15	CO	(PPM)	0.67	NA	0.67	-9.00
AUR	8	Episode	e Day 2, 2012	16	CO	(PPM)	0.85	NA	0.85	-9.00
AUR	8	Episode	e Day 2, 2012	17	CO	(PPM)	1.14	NA	1.14	-9.00
AUR	8	Episode	2 Day 2, 2012	18	C0 C0	(PPM)	1.49	NA NA	1.49	-9.00
AUR	8	Episode	Day 2, 2012	20	CO	(PPM) (DDM)	2 39	NA NA	2 39	-9.00
AUR	8	Episode	Day 2, 2012	20	CO	(PPM)	2.48	NA	2.48	-9.00
AUR	8	Episode	e Day 2, 2012	22	CO	(PPM)	2.50	NA	2.50	-9.00
AUR	8	Episode	e Day 2, 2012	23	CO	(PPM)	2.44	NA	2.44	-9.00
AUR	8	Episode	e Day 3, 2012	0	CO	(PPM)	2.20	NA	2.20	-9.00
AUR	8	Episode	e Day 3, 2012	1	CO	(PPM)	1.88	NA	1.88	-9.00
AUR	8	Episode	e Day 3, 2012	2	CO	(PPM)	1.52	NA	1.52	-9.00
AUR	8	Episode	2 Day 3, 2012	3	CO	(PPM) (DDM)	1.04	NA NA	1.04	-9.00
AUR	8	Episode	Day 3, 2012	5	CO	(PPM)	0.50	NA	0.50	-9.00
AUR	8	Episode	e Day 3, 2012	6	CO	(PPM)	0.40	NA	0.40	-9.00
AUR	8	Episode	e Day 3, 2012	7	CO	(PPM)	0.45	NA	0.45	-9.00
AUR	8	Episode	e Day 3, 2012	8	CO	(PPM)	0.47	NA	0.47	-9.00
AUR	8	Episode	e Day 3, 2012	9	CO	(PPM)	0.49	NA	0.49	-9.00
AUR	8	Episode	e Day 3, 2012	10	CO	(PPM)	0.53	NA	0.53	-9.00
AUR	8	Episode	e Day 3, 2012	11	CO	(PPM)	0.56	NA	0.56	-9.00
AUR	0 8	Episode	2 Day 3, 2012	13	CO	(PPM) (DDM)	0.60	NA NA	0.60	-9.00
AUR	8	Episode	Day 3, 2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 3, 2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 3, 2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 3, 2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 3, 2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 3, 2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode	e Day 3, 2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	o g	Episode	Day 3, 2012	21	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
AUR	8	Episode	Day 3, 2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
AURS	8	Episode	e Day 1, 2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode	e Day 1, 2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode	e Day 1, 2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode	e Day 1, 2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode	e Day 1, 2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode	e Day 1, 2012	5	CO	(PPM)	0.00	NA	0.00	-9.00
AUKS	б Д	Episode	Day 1, 2012	0 7	CO	(PPM)	_9 00	NA ND	-9 00	-9.00
AURS	8	Episode	Dav 1, 2012	, 8	CO	(PPM)	-9.00	NA	-9.00	1.09
AURS	8	Episode	e Day 1, 2012	9	CO	(PPM)	-9.00	NA	-9.00	1.21
AURS	8	Episode	e Day 1, 2012	10	CO	(PPM)	-9.00	NA	-9.00	1.32
AURS	8	Episode	e Day 1, 2012	11	CO	(PPM)	-9.00	NA	-9.00	1.46
AURS	8	Episode	e Day 1, 2012	12	CO	(PPM)	-9.00	NA	-9.00	1.51

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2012 mob=868.	8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
STTE AVC	הסתב		ЧP	POT.	ד.ד.דיד.אייד	2012 DREDICTED	2012 PREDICTED	2012 PREDICTED	1988 Observed
PERIO	DAIL		III	FOL	LIOIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
						(==== ,	((,	
AURS	8 Episod	e Day 1, 2012	13	CO	(PPM)	-9.00	NA	-9.00	1.54
AURS	8 Episod	e Day 1, 2012	14	CO	(PPM)	-9.00	NA	-9.00	1.31
AURS	8 Episod	e Day 1, 2012	15	CO	(PPM)	-9.00	NA	-9.00	1.10
AURS	s Episod	e Day 1, 2012	10	CO	(PPM)	-9.00	NA	-9.00	1.07
AURS	8 Episod	e Day 1, 2012	18	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1.34
AURS	s Episod 8 Enigod	e Day 1, 2012 e Day 1, 2012	19	CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	1 34
AURS	8 Episod	e Day 1, 2012	20	CO	(PPM)	-9.00	NA	-9.00	1.35
AURS	8 Episod	e Day 1, 2012	21	CO	(PPM)	-9.00	NA	-9.00	1.34
AURS	8 Episod	e Day 1, 2012	22	CO	(PPM)	-9.00	NA	-9.00	1.38
AURS	8 Episod	e Day 1, 2012	23	CO	(PPM)	-9.00	NA	-9.00	1.42
AURS	8 Episod	e Day 2, 2012	0	CO	(PPM)	-9.00	NA	-9.00	1.38
AURS	8 Episod	e Day 2, 2012	T	CO	(PPM)	-9.00	NA	-9.00	0.98
AURS	8 Episod	e Day 2, 2012	2	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	0.81
AURS	s Episod 8 Episod	e Day 2, 2012 e Day 2, 2012	4	CO	(PPM)	0.39	NA NA	0.39	0.09
AURS	8 Episod	e Day 2, 2012	5	CO	(PPM)	0.37	NA	0.37	0.63
AURS	8 Episod	e Day 2, 2012	6	CO	(PPM)	0.36	NA	0.36	0.85
AURS	8 Episod	e Day 2, 2012	7	CO	(PPM)	0.43	NA	0.43	1.23
AURS	8 Episod	e Day 2, 2012	8	CO	(PPM)	0.46	NA	0.46	1.46
AURS	8 Episod	e Day 2, 2012	9	CO	(PPM)	0.47	NA	0.47	1.69
AURS	8 Episod	e Day 2, 2012	10	CO	(PPM)	0.48	NA	0.48	1.91
AURS	s Episod	e Day 2, 2012	12	CO	(PPM)	0.49	NA NA	0.49	2.21
AURS	s Episod 8 Enigod	e Day 2, 2012 e Day 2, 2012	13	CO	(PPM) (DDM)	0.51	NA NA	0.51	2.40
AURS	8 Episod	e Day 2, 2012	14	CO	(PPM)	0.59	NA	0.59	2.53
AURS	8 Episod	e Day 2, 2012	15	CO	(PPM)	0.62	NA	0.62	2.36
AURS	8 Episod	e Day 2, 2012	16	CO	(PPM)	0.98	NA	0.98	2.69
AURS	8 Episod	e Day 2, 2012	17	CO	(PPM)	1.65	NA	1.65	3.80
AURS	8 Episod	e Day 2, 2012	18	CO	(PPM)	2.39	NA	2.39	4.24
AURS	8 Episod	e Day 2, 2012	19	CO	(PPM)	2.83	NA	2.83	4.28
AURS	s Episod	e Day 2, 2012	∠0 21	CO	(PPM)	2.88	NA NA	2.88	4.20
AURS	s Episod 8 Enisod	e Day 2, 2012 e Day 2, 2012	∠⊥ 22	CO	(PPM) (PPM)	2.00 2.85	NA NA	2.00	4.10
AURS	8 Episod	e Day 2, 2012	23	CO	(PPM)	2.03	NA	2.03	4.01
AURS	8 Episod	e Day 3, 2012	0	CO	(PPM)	2.33	NA	2.33	3.45
AURS	8 Episod	e Day 3, 2012	1	CO	(PPM)	1.66	NA	1.66	2.11
AURS	8 Episod	e Day 3, 2012	2	CO	(PPM)	0.92	NA	0.92	1.48
AURS	8 Episod	e Day 3, 2012	3	CO	(PPM)	0.47	NA	0.47	1.16
AURS	8 Episod	e Day 3, 2012	4	CO	(PPM)	0.39	NA	0.39	0.98
AURS	s Episod 8 Enigod	e Day 3, 2012 e Day 3, 2012	5	CO	(PPM) (DDM)	0.35	NA NA	0.35	1 36
AURS	8 Episod	e Day 3, 2012	7	CO	(PPM)	0.42	NA	0.42	2.06
AURS	8 Episod	e Day 3, 2012	8	CO	(PPM)	0.44	NA	0.44	2.59
AURS	8 Episod	e Day 3, 2012	9	CO	(PPM)	0.47	NA	0.47	2.94
AURS	8 Episod	e Day 3, 2012	10	CO	(PPM)	0.50	NA	0.50	2.99
AURS	8 Episod	e Day 3, 2012	11	CO	(PPM)	0.52	NA	0.52	3.04
AURS	8 Episod	e Day 3, 2012	12	CO	(PPM)	0.56	NA	0.56	3.04
AURS	B Episod	a Day 3, 2012	14	CO	(PPM)	-9.00	NA NA	-9.00	2.99
AURS	8 Episod	e Day 3, 2012	15	CO	(PPM)	-9.00	NA	-9.00	1.65
AURS	8 Episod	e Day 3, 2012	16	CO	(PPM)	-9.00	NA	-9.00	1.25
AURS	8 Episod	e Day 3, 2012	17	CO	(PPM)	-9.00	NA	-9.00	1.26
AURS	8 Episod	e Day 3, 2012	18	CO	(PPM)	-9.00	NA	-9.00	1.64
AURS	8 Episod	e Day 3, 2012	19	CO	(PPM)	-9.00	NA	-9.00	1.86
AURS	8 Episod	e Day 3, 2012	20	CO	(PPM)	-9.00	NA	-9.00	2.15
AURS	s Episod	a Day 3, 2012	21	CO	(PPM)	-9.00	NA NA	-9.00	2.30
AURS	8 Episod	e Day 3, 2012	22	CO	(DDM)	-9.00	NΔ	-9.00	2.45
PLM	8 Episod	e Day 1, 2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	8 Episod	e Day 1, 2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	8 Episod	e Day 1, 2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	8 Episod	e Day 1, 2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	8 Episod	e Day 1, 2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	s Episod	e Day 1, 2012	5	00	(PPM)	0.00	NA	0.00	-9.00
PIM PT,M	s Ebiaoq	e Day 1, 2012	7	CO	(PPM)	-9 00	NA NA	-9 00	-9.00
PLM	B Episod	e Day 1, 2012	, 8	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 Episod	e Day 1, 2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 Episod	e Day 1, 2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 Episod	e Day 1, 2012	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	B Episod	e Day 1, 2012	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	s Episod	e Day 1, 2012	13	0	(PPM)	-9.00	NA	-9.00	-9.00
PLM PT,M	s rbisod 8 Episod	e Day 1, 2012 e Day 1, 2012	14 15	CO	(PPM)	-9.00 -9.00	NA NA	-9.00 -9.00	-9.00
	F-200			0	\~~··/	2.00	11177	2.00	2.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

				High: 2	012 mob=868.8t	tpd;1.5	;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
	SITE	AVG	DATE			HR	POLI	LUTANT	PREDICTED	2012 PREDICTED	2012 PREDICTED	OBSERVED
		PERIOD							(UAM)	(CAL3QHC)	(UAM+CAL3)	
	DIM	0	Eniado	Dorr 1	2012	16	00	(DDM)	0.00	NTA	0.00	0.00
	DT.M	0 8	Episode	Day 1, Day 1	2012	17	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
-	PLM	8	Episode	Day 1, Day 1,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
	PLM	8	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	PLM	8	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	PLM	8	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
	PLM	8	Episode	Day 1,	2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
	PLM	8	Episode	Day 1,	2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
	DT.M	0 8	Episode	Day 2, Day 2	2012	1	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
	PLM	8	Episode	Day 2, Day 2,	2012	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
	PLM	8	Episode	Day 2,	2012	3	CO	(PPM)	0.73	NA	0.73	-9.00
1	PLM	8	Episode	Day 2,	2012	4	CO	(PPM)	0.68	NA	0.68	-9.00
1	PLM	8	Episode	Day 2,	2012	5	CO	(PPM)	0.65	NA	0.65	-9.00
	PLM	8	Episode	Day 2,	2012	6	CO	(PPM)	0.59	NA	0.59	-9.00
	РЬМ	8	Episode	Day 2,	2012	/	00	(PPM)	0.65	NA	0.65	-9.00
	DT.M	0 8	Episode	Day 2, Day 2	2012	0 9	CO	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
	PLM	8	Episode	Day 2, Day 2,	2012	10	CO	(PPM)	0.72	NA	0.72	-9.00
	PLM	8	Episode	Day 2,	2012	11	CO	(PPM)	0.75	NA	0.75	-9.00
1	PLM	8	Episode	Day 2,	2012	12	CO	(PPM)	0.77	NA	0.77	-9.00
1	PLM	8	Episode	Day 2,	2012	13	CO	(PPM)	0.80	NA	0.80	-9.00
	PLM	8	Episode	Day 2,	2012	14	CO	(PPM)	0.84	NA	0.84	-9.00
	PLM	8	Episode	Day 2,	2012	15	CO	(PPM)	0.83	NA	0.83	-9.00
	DT.M	0 8	Episode	Day 2, Day 2	2012	17	CO	(PPM) (DDM)	1.09	NA NA	1.09	-9.00
	PLM	8	Episode	Day 2, Day 2,	2012	18	CO	(PPM)	2.01	NA	2.01	-9.00
	PLM	8	Episode	Day 2,	2012	19	CO	(PPM)	2.69	NA	2.69	-9.00
1	PLM	8	Episode	Day 2,	2012	20	CO	(PPM)	2.86	NA	2.86	-9.00
1	PLM	8	Episode	Day 2,	2012	21	CO	(PPM)	2.91	NA	2.91	-9.00
1	PLM	8	Episode	Day 2,	2012	22	CO	(PPM)	2.92	NA	2.92	-9.00
	PLM	8	Episode	Day 2,	2012	23	CO	(PPM)	2.84	NA	2.84	-9.00
-		8	Episode	Day 3, Day 3	2012	1	CO	(PPM)	2.52	NA	2.52	-9.00
	PLM	8	Episode	Day 3,	2012	2	CO	(PPM)	1.53	NA	1.53	-9.00
	PLM	8	Episode	Day 3,	2012	3	CO	(PPM)	0.83	NA	0.83	-9.00
1	PLM	8	Episode	Day 3,	2012	4	CO	(PPM)	0.62	NA	0.62	-9.00
1	PLM	8	Episode	Day 3,	2012	5	CO	(PPM)	0.54	NA	0.54	-9.00
	PLM	8	Episode	Day 3,	2012	6	CO	(PPM)	0.47	NA	0.47	-9.00
-	Р ЦМ РТ.М	8 8	Episode	Day 3, Day 3	2012	/ 8	CO	(PPM) (DDM)	0.50	NA NA	0.50	-9.00
	PLM	8	Episode	Day 3, Day 3,	2012	9	CO	(PPM)	0.63	NA	0.63	-9.00
	PLM	8	Episode	Day 3,	2012	10	CO	(PPM)	0.67	NA	0.67	-9.00
1	PLM	8	Episode	Day 3,	2012	11	CO	(PPM)	0.73	NA	0.73	-9.00
1	PLM	8	Episode	Day 3,	2012	12	CO	(PPM)	0.79	NA	0.79	-9.00
	PLM	8	Episode	Day 3,	2012	14	CO	(PPM)	0.86	NA	0.86	-9.00
	РЪМ рт.м	8	Episode	Day 3, Day 3	2012	14 15	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
-	PLM	8	Episode	Day 3, Day 3,	2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
	PLM	8	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	PLM	8	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	PLM	8	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
	РЬМ рім	8	Episode	Day 3,	2012	20	C0	(PPM)	-9.00	NA	-9.00	-9.00
	г пы рт W	ъ В	Epicode	Day 3, Day 3	2012 2012	⊿⊥ 22	C0 C0	(PPM) (DDM)	-9.00 _9.00	NA NA	-9.00 _9.00	-9.00
	PLM	8	Episode	Day 3.	2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
i	BTN	8	Episode	Day 1,	2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
1	BTN	8	Episode	Day 1,	2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
1	BTN	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
	BTN	8	Episode	Day 1,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
	NI LO MTTO	8 0	Episode	Day 1,	∠∪⊥∠ 2012	4 5	CO	(PPM)	0.00	NA N7	0.00	-9.00
	BTN	o R	Episode	Day 1, Dav 1	2012	5	CO	(PPM)	0.00	NΔ	0.00	-9.00
	BTN	8	Episode	Day 1,	2012	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	BTN	8	Episode	Day 1,	2012	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	BTN	8	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	BTN	8	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
	BLUN	8	Episode	Day 1,	2012		C0	(PPM)	-9.00	NA	-9.00	-9.00
	BTN	В В	Episode	Day 1, Dav 1	2012	⊥∠ 13	CO	(PPM)	-9.00	INA NA	-9.00	-9.00
1	BTN	8	Episode	Day 1. Day 1.	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
i	BTN	8	Episode	Day 1,	2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	BTN	8	Episode	Day 1,	2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	BTN	8	Episode	Day 1,	2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
]]	BTN	8	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

				High: 2	012 mob=868.8	tpd;1.5	;80;	I/M 240	w/newest 4my	r exempt;	0010	1000
5	SITE	AVG	DATE			HR	POLI	LUTANT	PREDICTED	2012 PREDICTED	PREDICTED	OBSERVED
		PERIOD							(UAM)	(CAL3QHC)	(UAM+CAL3)	
	דאידיכ	0	Enicodo	Dorr 1	2012	10	00	(DDM)	0.00	NT 7	0.00	0.00
1	אניב אידיב	0 8	Episode	Day 1, Day 1	2012	20	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
F	3TN	8	Episode	Day 1, Day 1,	2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
E	BTN	8	Episode	Day 1,	2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
E	BTN	8	Episode	Day 1,	2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
E	BTN	8	Episode	Day 2,	2012	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
E	BTN	8	Episode	Day 2,	2012	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
L L	3.T.N	8	Episode	Day 2,	2012	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
L F	ST N	8	Episode	Day 2, Day 2.	2012	4	CO	(PPM)	0.40	NA	0.40	-9.00
E	BTN	8	Episode	Day 2,	2012	5	CO	(PPM)	0.39	NA	0.39	-9.00
E	BTN	8	Episode	Day 2,	2012	6	CO	(PPM)	0.40	NA	0.40	-9.00
E	3TN	8	Episode	Day 2,	2012	7	CO	(PPM)	0.42	NA	0.42	-9.00
E	BTN	8	Episode	Day 2,	2012	8	CO	(PPM)	0.43	NA	0.43	-9.00
	3'I'N ⊇TTIN	8	Episode	Day 2, Day 2	2012	9 10	CO CO	(PPM) (DDM)	0.43	NA NA	0.43	-9.00
F	STN STN	8	Episode	Day 2, Day 2.	2012	11	CO	(PPM)	0.49	NA	0.49	-9.00
E	BTN	8	Episode	Day 2,	2012	12	CO	(PPM)	0.54	NA	0.54	-9.00
E	BTN	8	Episode	Day 2,	2012	13	CO	(PPM)	0.59	NA	0.59	-9.00
E	BTN	8	Episode	Day 2,	2012	14	CO	(PPM)	0.65	NA	0.65	-9.00
E	BTN	8	Episode	Day 2,	2012	15	CO	(PPM)	0.70	NA	0.70	-9.00
1	או בכ זאידי ב	8 Q	Episode	Day 2, Day 2	2012	10 17	CO	(PPM) (DDM)	0.80	NA NA	0.80	-9.00
L F	ST N	8	Episode	Day 2, Day 2.	2012	18	CO	(PPM)	1.02	NA	1.02	-9.00
E	BTN	8	Episode	Day 2,	2012	19	CO	(PPM)	1.08	NA	1.08	-9.00
E	BTN	8	Episode	Day 2,	2012	20	CO	(PPM)	1.08	NA	1.08	-9.00
E	BTN	8	Episode	Day 2,	2012	21	CO	(PPM)	1.09	NA	1.09	-9.00
H	3'I'N	8	Episode	Day 2,	2012	22	CO	(PPM)	1.17	NA	1.17	-9.00
E E	STIN STIN	8	Episode	Day 2, Day 3	2012	∠3 0	CO	(PPM) (PPM)	1.20	NA NA	1.20	-9.00
E	BTN	8	Episode	Day 3,	2012	1	CO	(PPM)	1.16	NA	1.16	-9.00
E	BTN	8	Episode	Day 3,	2012	2	CO	(PPM)	1.05	NA	1.05	-9.00
E	BTN	8	Episode	Day 3,	2012	3	CO	(PPM)	0.94	NA	0.94	-9.00
E	3'I'N	8	Episode	Day 3,	2012	4	CO	(PPM)	0.89	NA	0.89	-9.00
I I	STIN ST'N	о 8	Episode	Day 3, Day 3.	2012	5	CO	(PPM)	0.83	NA NA	0.83	-9.00
E	BTN	8	Episode	Day 3,	2012	7	CO	(PPM)	0.54	NA	0.54	-9.00
E	BTN	8	Episode	Day 3,	2012	8	CO	(PPM)	0.45	NA	0.45	-9.00
E	BTN	8	Episode	Day 3,	2012	9	CO	(PPM)	0.40	NA	0.40	-9.00
	3'I'N M'I'C	8	Episode	Day 3,	2012	10 11	CO	(PPM)	0.37	NA NA	0.37	-9.00
F	3TN	8	Episode	Day 3, Day 3,	2012	12	CO	(PPM)	0.35	NA	0.35	-9.00
E	3TN	8	Episode	Day 3,	2012	13	CO	(PPM)	0.36	NA	0.36	-9.00
E	BTN	8	Episode	Day 3,	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
E	BTN	8	Episode	Day 3,	2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	או ב כ זאידי ב	8	Episode	Day 3,	2012	10 17	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
F	3TN	8	Episode	Day 3, Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
E	BTN	8	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
E	3TN	8	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
E	BTN	8	Episode	Day 3,	2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
	3'I'IN TATTIC	8	Episode	Day 3,	2012	22	C0 C0	(PPM)	-9.00	NA NA	-9.00	-9.00
t	J 1	8	Episode	Day 3, Day 1.	2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
τ	J_1	8	Episode	Day 1,	2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
τ	J_1	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
Ţ	J_1	8	Episode	Day 1,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
	J_⊥ ⊤ 1	8	Episode	Day 1, Day 1	2012	4	CO	(PPM)	0.00	NA NA	0.00	-9.00
T)_⊥ ⊺ 1	8	Episode	Day 1, Day 1.	2012	6	CO	(PPM)	0.00	NA	0.00	-9.00
t	J_1	8	Episode	Day 1,	2012	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
τ	J_1	8	Episode	Day 1,	2012	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
τ	J_1	8	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
U U	J_1	8	Episode	Day 1,	2012	10 11	C0	(PPM)	-9.00	NA	-9.00	-9.00
L T	י_⊥ ⊺ 1	ъ В	Episode	Day 1, Dav 1	2012	⊥⊥ 12	CO	(PPM)	-9.00	NA NA	-9.00 -9.00	-9.00
t 1	J_1	8	Episode	Day 1,	2012	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
t	J_1	8	Episode	Day 1,	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
τ	J_1	8	Episode	Day 1,	2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
U U	J_1	8	Episode	Day 1,	2012	⊥6 17	C0	(PPM)	-9.00	NA	-9.00	-9.00
	י_⊥ ד 1	8 8	Episode	Day I, Dav 1	2012	⊥/ 18	CO	(PPM)	-9.00 -9.00	NA NA	-9.00 -9.00	-9.00
τ	J_1	8	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
t	J_1	8	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
τ	J_1	8	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

SITE AVG PREIDD DATK PRE PREIDTO <		Higl	h: 2012 mob=868.8	tpd;1.5	;80;	I/M 240	w/newest 4my	r exempt;	2012	1099
PERIOD (TMA) (EAL.001C) (TMA+CL2) U_1 8 Bpinode By 1, 2012 22 CO (FWN) 9.00 BA -9.00 -9.00 U_1 8 Bpinode By 2, 2012 23 CO (FWN) -9.00 BA -9.00 -9.00 U_1 8 Bpinode By 2, 2012 1 CO (FWN) -9.00 BA -9.00 </td <td>SITE AVG</td> <td>DATE</td> <td></td> <td>HR</td> <td>POLI</td> <td>LUTANT</td> <td>PREDICTED</td> <td>PREDICTED</td> <td>PREDICTED</td> <td>OBSERVED</td>	SITE AVG	DATE		HR	POLI	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
L 6 R belonde Bay L 212 22 CO (PMI) -P.00 NA -9.00 -0.00 U_1 8 Rejinde Bay L 2012 1 CO (PMI) -P.00 NA -9.00 -0.00 U_1 8 Rejinde Bay L 2012 1 CO (PMI) -P.00 NA -9.00 -9.00 U_1 8 Rejinde Bay L 2012 1 CO (PMI) -0.00 NA -9.00 -9.00 U_1 8 Rejinde Bay L 2012 7 CO (PMI) 0.67 NA 0.77 -9.00 U_1 8 Rejinde Bay L 2012 7 CO (PMI) 0.76 NA 0.77 -9.00 U_1 8 Rejinde Bay L 2012 12 CO (PMI) 0.77 NA 0.77 -9.00 U_1 8 Rejinde Bay L 2012 12 12 CO (PMI) 0.11	PERIOD						(UAM)	(CAL3QHC)	(UAM+CAL3)	
Circl. B Delade Delade <thdelade< th=""></thdelade<>	TT 1 8	Enicode Dav	1 2012	22	CO	(DDM)	-9.00	ND	-9.00	-9 00
U_1 8 District Distris <thdistris< th=""> <thdistrict< t<="" td=""><td>U 1 8</td><td>Episode Day</td><td>1, 2012</td><td>23</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>NA</td><td>-9.00</td><td>-9.00</td></thdistrict<></thdistris<>	U 1 8	Episode Day	1, 2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1 8 Depictede Day A 2012 1 CC0 [PRN] -0.00 NA -0.00 -0.00 U_1 8 Depicede Day A 2012 2 CO [PRN] -0.70 NA -0.70 -0.00 U_1 8 Depicede Day A 2012 5 CO [PRN] 0.70 NA -0.70 -0.00 U_1 8 Epicade Day A 2012 6 CO [PRN] 0.67 NA 0.67 -0.00 U_1 8 Epicade Day A 2012 6 CO [PRN] 0.61 NA 0.67 -0.00 U_1 8 Epicade Day A 2012 12 CO [PRN] 0.77 NA 0.77 -0.00 U_1 8 Epicade Day A 2012 13 CO [PRN] 0.85 NA 0.17 -0.00 U_1 8 Epicade Day A 2012 13 CO [PRN] 1.85 NA <td>U_1 8</td> <td>Episode Day</td> <td>2, 2012</td> <td>0</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>NA</td> <td>-9.00</td> <td>-9.00</td>	U_1 8	Episode Day	2, 2012	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1 B Epidode Bay 2, 2012 2 CO (100)	U_1 8	Episode Day	2, 2012	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
		Episode Day	2, 2012	2	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
U_1 8 Disade Day 2, 2012 5 CC DPRM 0.67 NA 0.67 PA U_1 8 Disade Day 2, 2012 6 CC (DPM) 0.67 NA 0.67 9.00 U_1 8 Disade Day 2, 2012 7 CC (DPM) 0.77 NA 0.719 -9.00 U_1 8 Disade Day 2, 2012 10 CC (DPM) 0.72 NA 0.79 -9.00 U_1 8 Disade Day 2, 2012 11 CC (DPM) 0.81 NA 0.91 NA 0.79 -9.00 U_1 8 Disade Day 2, 2012 13 CC (PPM) 0.81 NA 1.04 NA 1.04 -9.00 U_1 8 Disade Day 2, 2012 15 CC (PPM) 1.51 NA 1.51 -9.00 U_1 8 Disade Day 2, 2012 12 CC (PPM) 3.52 NA 3.52 -9.00 <tr< td=""><td>U_1 8</td><td>Episode Day</td><td>2, 2012</td><td>4</td><td>CO</td><td>(PPM)</td><td>0.74</td><td>NA NA</td><td>0.74</td><td>-9.00</td></tr<>	U_1 8	Episode Day	2, 2012	4	CO	(PPM)	0.74	NA NA	0.74	-9.00
U_L B Episode Day 2, 2012 C C (C) (PPM) 0.62 NA 0.62 -9.00 U_L B Episode Day 2, 2012 C C (C) (PPM) 0.715 NA 0.726 -9.00 U_L B Episode Day 2, 2012 10 C (C) (PPM) 0.795 NA 0.79 -9.00 U_L B Episode Day 2, 2012 11 C (C) (PPM) 0.81 NA 0.81 -9.00 U_L B Episode Day 2, 2012 11 C (C) (PPM) 0.81 NA 0.81 -9.00 U_L B Episode Day 2, 2012 14 C (C) (PPM) 1.04 NA 1.01 -9.00 U_L B Episode Day 2, 2012 15 C (C) (PPM) 1.04 NA 1.04 -9.00 U_L B Episode Day 2, 2012 10 C (C) (PPM) 3.01 NA 3.03 -9.00 U_L B Episode Day 2, 2012 201 C (C) (PPM) 3.04 NA <	U_1 8	Episode Day	2, 2012	5	CO	(PPM)	0.67	NA	0.67	-9.00
U_1 8 pisode by: 2, 2012 7 CCO (PPH) 0.71 NA 0.71 -79.00 U_1 8 pisode by: 2, 2012 10 CCO (PPH) 0.79 NA 0.79 -9.00 U_1 8 pisode by: 2, 2012 11 CCO (PPH) 0.81 NA 0.79 -9.00 U_1 8 pisode by: 2, 2012 11 CCO (PPH) 0.11 NA 0.85 -9.00 U_1 8 pisode by: 2, 2012 13 CCO (PPH) 0.101 NA 0.85 -9.00 U_1 8 pisode by: 2, 2012 15 CCO (PPH) 1.04 NA 1.04 -9.00 U_1 8 pisode by: 2, 2012 15 CCO (PPH) 3.84 NA 3.79 -9.00 U_1 8 pisode by: 2, 2012 201 CCO (PPH) 3.84 NA 3.79 -9.00 U_1 8 pisode by: 3,	U_1 8	Episode Day	2, 2012	б	CO	(PPM)	0.62	NA	0.62	-9.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U_1 8	Episode Day	2, 2012	7	CO	(PPM)	0.71	NA	0.71	-9.00
Ull B pisode Day 2, 2012 10 CO (PMH) 0.79 NA 0.79 9.00 Ull B pisode Day 2, 2012 11 CO (PMH) 0.81 NA 0.85 -9.00 Ull B pisode Day 2, 2012 12 CO (PMH) 0.81 NA 0.85 -9.00 Ull B pisode Day 2, 2012 15 CO (PMH) 1.01 NA 1.04 -9.00 Ull B pisode Day 2, 2012 15 CO (PMH) 1.52 NA 1.52 -9.00 Ull B pisode Day 2, 2012 15 CO (PMH) 1.52 NA 3.73 -9.00 Ull B pisode Day 2, 2012 22 CO (PMH) 3.75 NA 3.73 -9.00 Ull B pisode Day 2, 2012 22 CO (PMH) 3.75 NA 3.73 -9.00 Ull B pisode Day 3, 2012 1 CO (PMH) 3.75 NA 3.73 -9.00	U_1 8	Episode Day	2, 2012	8 9	CO	(PPM) (PPM)	0.78	NA NA	0.78	-9.00
U_1 B Epicode Day 2, 2012 11 CO (PMM) 0.81 NA 0.81 -9.00 U_1 B Epicode Day 2, 2012 13 CO (PMM) 0.85 NA 0.85 NA <td< td=""><td>U_1 8</td><td>Episode Day</td><td>2, 2012</td><td>10</td><td>CO</td><td>(PPM)</td><td>0.79</td><td>NA</td><td>0.79</td><td>-9.00</td></td<>	U_1 8	Episode Day	2, 2012	10	CO	(PPM)	0.79	NA	0.79	-9.00
U_1 B block Day 2, 2012 12 CO (PPM) 0.85 NA 0.85 -9.00 U_1 B bplock Day 2, 2012 14 CO (PPM) 1.01 NA 1.05 9.00 U_1 B bplock Day 2, 2012 14 CO (PPM) 1.04 NA 1.04 9.00 U_1 B bplock Day 2, 2012 15 CO (PPM) 1.51 NA 1.52 9.00 U_1 B bplock Day 2, 2012 16 CO (PPM) 3.52 NA 3.53 -9.00 U_1 B bplock Day 2, 2012 16 CO (PPM) 3.54 NA 3.54 -9.00 U_1 B bplock Day 2, 2012 22 CO (PPM) 3.63 NA 3.63 -9.00 U_1 B bplock Day 2, 2012 22 CO (PPM) 3.03 NA 3.63 -9.00 U_1 B bplock Day 3, 2012 2 CO (PPM) 3.05 NA 1.05 -9.00 U_1 B bplock Day 3, 2012 2 CO (PPM) 0.75 NA 0.75 -9.00 U_1 B bplock Day 3, 2012 2 CO (PPM) 0.	U_1 8	Episode Day	2, 2012	11	CO	(PPM)	0.81	NA	0.81	-9.00
U_1 8 Ppinode Pay 2, 2012 1.4 CO (FFM) 0.51 NA 1.61 -9.00 U_1 8 Ppisode Pay 2, 2012 1.6 CO (FFM) 1.04 NA 1.04 -9.00 U_1 8 Ppisode Pay 2, 2012 1.6 CO (FFM) 1.52 NA 1.52 -9.00 U_1 8 Ppisode Pay 2, 2012 1.8 CO (FFM) 3.52 NA 3.52 -9.00 U_1 8 Ppisode Pay 2, 2012 2.0 CO (FFM) 3.64 NA 3.64 -9.00 U_1 8 Ppisode Pay 2, 2012 2.1 CO (FFM) 3.65 NA 3.63 -9.00 U_1 8 Ppisode Pay 3, 2012 2.1 CO (FFM) 3.65 NA 3.63 -9.00 U_1 8 Ppisode Pay 3, 2012 1.0 CO (FFM) 1.05 NA 0.75 -9.00 U_1 8 Ppisode Pay 3, 2012 1.0 CO (FFM) 0.656 NA 0.65	U_1 8	Episode Day	2, 2012	12	CO	(PPM)	0.85	NA	0.85	-9.00
U_1 8 ppisode Day 2, 2012 15 CO (PPM) 1.04 NA 1.04 -9.00 U_1 8 Dpisode Day 2, 2012 17 CO (PPM) 2.51 NA 1.52 -9.00 U_1 8 Dpisode Day 2, 2012 18 CO (PPM) 3.549 NA 3.529 -9.00 U_1 8 Dpisode Day 2, 2012 12 CO (PPM) 3.549 NA 3.549 -9.00 U_1 8 Dpisode Day 2, 2012 21 CO (PPM) 3.631 NA 3.64 -9.00 U_1 8 Dpisode Day 3, 2012 21 CO (PPM) 3.631 NA 3.65 -9.00 U_1 8 Dpisode Day 3, 2012 2 CO (PPM) 3.631 NA 3.65 -9.00 U_1 8 Dpisode Day 3, 2012 2 CO (PPM) 0.655 NA 0.65 -9.00 U_1 8 Dpisode D	U_1 8	Episode Day	2, 2012	14	CO	(PPM)	1.01	NA NA	1.01	-9.00
U_1 8 prisode Day 2, 2012 16 CO (PPM) 1.52 NA 1.52 -9.00 U_1 8 Dpisode Day 2, 2012 18 CO (PPM) 3.55 NA 2.51 NA 3.52 -9.00 U_1 8 Dpisode Day 2, 2012 2012 CO (PPM) 3.65 NA 3.57 -9.00 U_1 8 Dpisode Day 2, 2012 22 CO (PPM) 3.63 NA 3.63 -9.00 U_1 8 Dpisode Day 3, 2012 1 CO (PPM) 2.005 NA 2.05 -9.00 U_1 8 Dpisode Day 3, 2012 4 CO (PPM) 0.75 NA 0.75 -9.00 U_1 8 Dpisode Day 3, 2012 5 CO (PPM) 0.55 NA 0.55 -9.00 U_1 <td>U_1 8</td> <td>Episode Day</td> <td>2, 2012</td> <td>15</td> <td>CO</td> <td>(PPM)</td> <td>1.04</td> <td>NA</td> <td>1.04</td> <td>-9.00</td>	U_1 8	Episode Day	2, 2012	15	CO	(PPM)	1.04	NA	1.04	-9.00
U_1 8 Bpisede Day 2, 2012 17 CO (PPM) 2.51 NA 3.59 NA 3.59 -9.00 U_1 8 Dpisode Day 2, 2012 30 CO (PPM) 3.54 NA 3.54 -9.00 U_1 8 Dpisode Day 2, 2012 2012 CO (PPM) 3.54 NA 3.64 -9.00 U_1 8 Dpisode Day 2, 2012 2012 CO (PPM) 3.63 NA 3.64 -9.00 U_1 8 Dpisode Day 2, 2012 2012 CO (PPM) 3.63 NA 3.63 -9.00 U_1 8 Dpisode Day 3, 2012 2 CO (PPM) 1.05 NA 2.65 NA 0.65 -9.00 U_1 8 Dpisode Day 3, 2012 5 CO (PPM) 0.65 NA 0.65 -9.00 U_1 8 Dpisode Day 3, 2012 7 CO (PPM) 0.55 NA 0.65 -9.00	U_1 8	Episode Day	2, 2012	16	CO	(PPM)	1.52	NA	1.52	-9.00
U_1 B	U_1 8	Episode Day	2, 2012	17	CO	(PPM)	2.51	NA	2.51	-9.00
Ull 8 Epieode Day 2, 2012 20 CO (PFW) 3.84 NA 3.84 -9.00 Ull 8 Epieode Day 2, 2012 21 CO (PFW) 3.85 NA 3.85 -9.00 Ull 8 Epieode Day 2, 2012 22 CO (PFW) 3.63 NA 3.63 -9.00 Ull 8 Epieode Day 2, 2012 22 CO (PFW) 3.03 NA 3.63 -9.00 Ull 8 Epieode Day 3, 2012 2 CO (PFW) 3.05 NA 0.65 -9.00 Ull 8 Epieode Day 3, 2012 5 CO (PFW) 0.75 NA 0.65 -9.00 Ull 8 Epieode Day 3, 2012 5 CO (PFW) 0.75 NA 0.75 -9.00 Ull 8 Epieode Day 3, 2012 10 CO (PFW) 0.75 NA 0.75 -9.00 Ull 8 Epieode Day 3, 201	U_1 8	Episode Day	2, 2012	18 19	CO	(PPM) (PPM)	3.5∠ 3.79	NA NA	3.54	-9.00
	U_1 8	Episode Day	2, 2012	20	CO	(PPM)	3.84	NA	3.84	-9.00
U_1 B Episode Day 2, 2012 22 CO (PPM) 3.63 NA 3.79 -9.00 U_1 B Episode Day 3, 2012 23 CC (PPM) 3.63 NA 3.63 NA <td< td=""><td>U_1 8</td><td>Episode Day</td><td>2, 2012</td><td>21</td><td>CO</td><td>(PPM)</td><td>3.85</td><td>NA</td><td>3.85</td><td>-9.00</td></td<>	U_1 8	Episode Day	2, 2012	21	CO	(PPM)	3.85	NA	3.85	-9.00
U_1 6 Bpinode Day 3, 2012 2 CO C (FR) 3:003 RA 3:003 F3:003 U_1 8 Epinode Day 3, 2012 1 C (C) (FR) 1:05 NA	U_1 8	Episode Day	2, 2012	22	CO	(PPM)	3.79	NA	3.79	-9.00
U_1 B Epicode Day 3, 2012 1 CC (PPM) 2.08 NA 2.08 -9.00 U_1 B Epicode Day 3, 2012 2 CC (PPM) 1.05 NA 0.65 NA 0.65 NA 0.58 NA 0.56 NA 0		Episode Day Episode Day	2, 2012 3 2012	∠3 0	CO	(PPM) (PPM)	3.03	NA NA	3.03	-9.00
U_1 8 Episode Day 3, 2012 2 CO (PPM) 1.05 NA 1.05 -9.00 U_1 8 Episode Day 3, 2012 4 CO (PPM) 0.75 NA 0.75 -9.00 U_1 8 Episode Day 3, 2012 6 CO (PPM) 0.58 NA 0.75 -9.00 U_1 8 Episode Day 3, 2012 6 CO (PPM) 0.56 NA 0.75 -9.00 U_1 8 Episode Day 3, 2012 8 CO (PPM) 0.75 NA 0.75 -9.00 U_1 8 Episode Day 3, 2012 12 CO (PPM) 0.91 NA 0.81 -9.00 U_1 8 Episode Day 3, 2012 11 CO (PPM) -9.01 NA 1.23 -9.00 U_1 8 Episode Day 3, 2012 13 CO (PPM) -9.00 NA -9.00 -9.00 NA -9.00 NA -9.00	U_1 8	Episode Day	3, 2012	1	CO	(PPM)	2.08	NA	2.08	-9.00
U_1 8 Episode Day 3, 2012 3 CO (PPR) 0.75 NA 0.75 S U_1 8 Episode Day 3, 2012 5 CO (PPR) 0.65 NA 0.65 -9.00 U_1 8 Episode Day 3, 2012 5 CO (PPR) 0.58 NA 0.65 -9.00 U_1 8 Episode Day 3, 2012 7 CO (PPR) 0.95 NA 0.65 -9.00 U_1 8 Episode Day 3, 2012 10 CO (PPR) 0.91 NA 0.91 -9.00 U_1 8 Episode Day 3, 2012 11 CO (PPR) 1.03 NA 1.03 -9.00 U_1 8 Episode Day 3, 2012 14 CO (PPR) -9.00 NA -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.0	U_1 8	Episode Day	3, 2012	2	CO	(PPM)	1.05	NA	1.05	-9.00
U_1 8 Disorde Day 5, 2012 F CO (PFM) 0.88 NA 0.68 73.00 U_1 8 Disorde Day 3, 2012 6 CO (PFM) 0.85 NA 0.65 3.00 U_1 8 Disorde Day 3, 2012 7 CO (PFM) 0.85 NA 0.85 -3.00 U_1 8 Epicade Day 3, 2012 9 CO (PPM) 0.91 NA 0.91 -9.00 U_1 8 Epicade Day 3, 2012 11 CO (PPM) 0.91 NA 1.03 NA 1.03 -9.00 U_1 8 Epicade Day 3, 2012 13 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Epicade Day 3, 2012 15 CO (PPM) -9.00 NA -9.00 -9.00 NA -9.00 -9.00 NA -9.00 NA -9.00 -9.00 NA -9.00 NA -9.00 -9.00	U_1 8	Episode Day	3, 2012	3	CO	(PPM)	0.75	NA	0.75	-9.00
U_1 8 Episode Day 3, 2012 6 CO (PPM) 0.55 NA 0.56 -9.00 U_1 8 Episode Day 3, 2012 7 CO (PPM) 0.75 NA 0.75 -9.00 U_1 8 Episode Day 3, 2012 9 CO (PPM) 0.91 NA 0.91 -9.00 U_1 8 Episode Day 3, 2012 10 CO (PPM) 0.91 NA 0.91 -9.00 U_1 8 Episode Day 3, 2012 12 CO (PPM) 1.03 NA 1.03 -9.00 U_1 8 Episode Day 3, 2012 14 CO (PPM) 1.24 NA 1.24 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 NA -9.00 -9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	U_1 8	Episode Day	3, 2012	4 5	CO	(PPM)	0.58	NA NA	0.58	-9.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U_1 8	Episode Day	3, 2012	6	CO	(PPM)	0.56	NA	0.56	-9.00
U_L 8 Episode Day 3, 2012 8 CO (PPM) 0.85 NA 0.85 -9.00 U_L 8 Episode Day 3, 2012 10 CO (PPM) 0.91 NA 0.91 -9.00 U_L 8 Episode Day 3, 2012 11 CO (PPM) 0.13 NA 1.03 -9.00 U_L 8 Episode Day 3, 2012 12 CO (PPM) 1.13 NA 1.13 -9.00 U_L 8 Episode Day 3, 2012 14 CO (PPM) 1.13 NA 1.13 -9.00 U_L 8 Episode Day 3, 2012 14 CO (PPM) -9.00 NA -9.00 -9.00 U_L 8 Episode Day 3, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 U_L 8 Episode Day 3, 2012 20 CO (PPM) -9.00 NA -9.00 U_L 8 Episode Day 3, 2012	U_1 8	Episode Day	3, 2012	7	CO	(PPM)	0.75	NA	0.75	-9.00
U_1 8 Episode Day 3, 2012 10 CO CO Depisod Depisod <thdepisod< th=""> <thdepisod< th=""></thdepisod<></thdepisod<>	U_1 8	Episode Day	3, 2012	8	CO	(PPM)	0.85	NA NA	0.85	-9.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U 1 8	Episode Day	3, 2012	10	CO	(PPM)	0.91	NA	0.91	-9.00
U_18Episode Day 3, 201212CCO(PPM)1.13NA1.13 -9.00 U_18Episode Day 3, 201214CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201215CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201216CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201217CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201210CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201220CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201221CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201222CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201223CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 3, 201223CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 1, 201221CO(PPM) -9.00 NA -9.00 -9.00 U_18Episode Day 1, 20121CO(PPM) -9.00 NA -9.00 -9.00 F_A8Episode Day	U_1 8	Episode Day	3, 2012	11	CO	(PPM)	1.03	NA	1.03	-9.00
U_1 8 Episode Day 3, 2012 13 CO (PM) 1.24 NA 1.24 -9.00 U_1 8 Episode Day 3, 2012 15 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 15 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 18 CO<(PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 20 CO<(PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 21 CO<(PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 22 CO<(PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 1, 2012 CO<(PPM) -9.00 </td <td>U_1 8</td> <td>Episode Day</td> <td>3, 2012</td> <td>12</td> <td>CO</td> <td>(PPM)</td> <td>1.13</td> <td>NA</td> <td>1.13</td> <td>-9.00</td>	U_1 8	Episode Day	3, 2012	12	CO	(PPM)	1.13	NA	1.13	-9.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Episode Day	3, 2012 3, 2012	13 14	CO	(PPM) (DDM)	4	NA NA	-9 00	-9.00
U_1 8 Episode Day 3, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 17 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 18 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 1, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 2012 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8	U 1 8	Episode Day	3, 2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1 8 Episode Day 3, 2012 17 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 18 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 1 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 2 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 2 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 2 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 4 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 5 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 4 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 5 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 7 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 7 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 7 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 8 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 13 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 14 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 14 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 13 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 2 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day	U_1 8	Episode Day	3, 2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1 8 Episode Day 3, 2012 18 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 1 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 2 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 3 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 4 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 5 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 4 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 4 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 7 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 8 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 9 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 9 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM)	U_1 8	Episode Day	3, 2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1 8 Episode Day 3, 2012 20 CO (FM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 21 CO (FM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 22 CO (FM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 3, 2012 23 CO (FM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (FM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 1 CO (FM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 3 CO (FM) 0.00 NA 0.00 -9.00 F_A Episode Day 1, 2012 6 CO (FM) 0.00 NA -9.00 -9.00 F_A Episode Day 1, 2012 7		Episode Day	3, 2012 3, 2012	18 19	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
U1 8 Episode Day 3, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 U1 8 Episode Day 3, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 2 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 2 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 5 CO (PPM) 0.00 NA 0.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 <td< td=""><td>U 1 8</td><td>Episode Day</td><td>3, 2012</td><td>20</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>NA</td><td>-9.00</td><td>-9.00</td></td<>	U 1 8	Episode Day	3, 2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_1 8 Episode Day 3, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 U_1 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 1 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 2 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 3 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 3 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 5 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 5 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 6 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 7 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 8 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 9 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 1 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 1 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 14 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 17 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 18 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM	U_1 8	Episode Day	3, 2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U_1 8	Episode Day	3, 2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A8Episode Day 1, 20121CO(PM)0.00NA0.00-9.00F_A8Episode Day 1, 20122CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20123CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20124CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20124CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20125CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20127CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 20129CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201210CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201210CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201211CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201211CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201212CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201213CO(PPM)-9.00NA-9.00-	U_1 8 F A 8	Episode Day	3, 2012 1 2012	23 0	CO	(PPM) (PPM)	-9.00	NA NA	-9.00	-9.00
F_A8Episode Day1, 20122CO(PPM)0.00NA0.00 -9.00 F_A8Episode Day1, 20123CO(PPM)0.00NA0.00 -9.00 F_A8Episode Day1, 20124CO(PPM)0.00NA0.00 -9.00 F_A8Episode Day1, 20125CO(PPM)0.00NA0.00 -9.00 F_A8Episode Day1, 20126CO(PPM) 0.00 NA0.00 -9.00 F_A8Episode Day1, 20127CO(PPM) -9.00 NA -9.00 -9.00 F_A8Episode Day1, 20129CO(PPM) -9.00 NA -9.00 -9.00 F_A8Episode Day1, 201210CO(PPM) -9.00 NA -9.00 -9.00 F_A8Episode Day1, 201210CO(PPM) -9.00 NA -9.00 -9.00 F_A8Episode Day1, 201211CO(PPM) -9.00 NA -9.00 -9.00 F_A8Episode Day1, 201212CO(PPM) -9.00 NA -9.00 -9.00 F_A8Episode Day1, 201213CO(PPM) -9.00 NA -9.00 -9.00 F_A8Episode Day1, 201216CO(PPM) -9.00 NA <th< td=""><td>F_A 8</td><td>Episode Day</td><td>1, 2012</td><td>1</td><td>CO</td><td>(PPM)</td><td>0.00</td><td>NA</td><td>0.00</td><td>-9.00</td></th<>	F_A 8	Episode Day	1, 2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
F_A8Episode Day 1, 20123CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20124CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20125CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20126CO(PPM)0.00NA0.00-9.00F_A8Episode Day 1, 20127CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 20129CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201210CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201211CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201211CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201212CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201213CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201214CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201214CO(PPM)-9.00NA-9.00-9.00F_A8Episode Day 1, 201216CO(PPM)-9.00NA-9.00 <td>F_A 8</td> <td>Episode Day</td> <td>1, 2012</td> <td>2</td> <td>CO</td> <td>(PPM)</td> <td>0.00</td> <td>NA</td> <td>0.00</td> <td>-9.00</td>	F_A 8	Episode Day	1, 2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
F_A 8 Episode Day 1, 2012 5 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 6 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 7 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 7 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 9 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 13 CO (PPM) -9.00 NA -9.00 -9.00	F_A 8	Episode Day	1, 2012	3	CO	(PPM)	0.00	NA NA	0.00	-9.00
F_A 8 Episode Day 1, 2012 6 CO (PPM) 0.00 NA 0.00 -9.00 F_A 8 Episode Day 1, 2012 7 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 8 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 9 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 13 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 15 CO (PPM) -9.00 NA -9.00 -9.00 <td>FA 8</td> <td>Episode Day</td> <td>1, 2012</td> <td>5</td> <td>CO</td> <td>(PPM)</td> <td>0.00</td> <td>NA</td> <td>0.00</td> <td>-9.00</td>	FA 8	Episode Day	1, 2012	5	CO	(PPM)	0.00	NA	0.00	-9.00
F_A 8Episode Day 1, 20127CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 20128CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 20129CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201210CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201211CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201212CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201213CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201214CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201216CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201216CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201216CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201217CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201210CO(PPM) -9.00 NA -9.00 -9.00 F_A	F_A 8	Episode Day	1, 2012	6	CO	(PPM)	0.00	NA	0.00	-9.00
F_A 8Episode Day 1, 20128CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 20129CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201210CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201211CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201212CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201213CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201214CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201215CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201216CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201217CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201219CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201220CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201221CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201221CO(PPM) </td <td>F_A 8</td> <td>Episode Day</td> <td>1, 2012</td> <td>7</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>NA</td> <td>-9.00</td> <td>-9.00</td>	F_A 8	Episode Day	1, 2012	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 10 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 13 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 14 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 15 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 17 CO (PPM) -9.00 NA -9.00 -9.	F_A 8	Episode Day	1, 2012	8	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 11 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 12 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 13 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 14 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 14 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 15 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 19 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM)<	FA 8	Episode Day	1, 2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8Episode Day 1, 201212CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201213CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201214CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201214CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201215CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201216CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201217CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201219CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201220CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201221CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201221CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201221CO(PPM) -9.00 NA -9.00 -9.00 F_A 8Episode Day 1, 201222CO(PPM) -9.00 NA -9.00 -9.00	F_A 8	Episode Day	1, 2012	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8Episode Day 1, 201213CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201214CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201215CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201216CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201216CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201217CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201219CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201220CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201221CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201221CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201222CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201223CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201223CO(PPM)-9.00NA-9.00-9.00 F_A 8Episode Day 1, 201223CO(PPM)	F_A 8	Episode Day	1, 2012	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 14 CO (FFM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 15 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 17 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 18 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 19 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 23 CO (PPM)<	Р <u>А</u> 8 БЛ	Episode Day	1, 2012 1, 2012	⊥3 14	C0 C0	(PPM) (ddm)	-9.00 _9.00	NA NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 16 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 17 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 17 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 18 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 19 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) </td <td>FA 8</td> <td>Episode Day</td> <td>1, 2012</td> <td>15</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>NA</td> <td>-9.00</td> <td>-9.00</td>	FA 8	Episode Day	1, 2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 17 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 18 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 19 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) <td>F_A 8</td> <td>Episode Day</td> <td>1, 2012</td> <td>16</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>NA</td> <td>-9.00</td> <td>-9.00</td>	F_A 8	Episode Day	1, 2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 18 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 19 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 2, 2012 0 CO (PPM) <td>F_A 8</td> <td>Episode Day</td> <td>1, 2012</td> <td>17</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>NA</td> <td>-9.00</td> <td>-9.00</td>	F_A 8	Episode Day	1, 2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 19 CO (FPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 20 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 2, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 2, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00	F_A 8	Episode Day	1, 2012 1, 2012	18	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 21 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 2, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00	FA 8	Episode Day	1, 2012	2.0	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 22 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F_A 8 Episode Day 2, 2012 0 CO (PPM) -9.00 NA -9.00 -9.00	F_A 8	Episode Day	1, 2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A 8 Episode Day 1, 2012 23 CO (PPM) -9.00 NA -9.00 -9.00 F A 8 Episode Day 2, 2012 0 CO (DPM) -9.00 NA -9.00 -9.00	F_A 8	Episode Day	1, 2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
	FA 8	Episode Day Episode Dav	2, 2012	23	CO	(PPM)	-9.00 -9.00	NA NA	-9.00 -9.00	-9.00 -9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 2	2012 mob=868.8	Stpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	2012	1000
SITE AV	7G	DATE			HR	POL	LUTANT	PREDICTED	PREDICTED	2012 PREDICTED	OBSERVED
PE	RIOD	21112				101		(UAM)	(CAL3QHC)	(UAM+CAL3)	0000111120
F_A	8	Episode	Day 2,	2012	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A E A	8	Episode	Day 2, Day 2	2012	2	C0 C0	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
F_A F A	8	Episode	Day 2, Day 2	2012	4	CO	(PPM) (PPM)	0.51	NA NA	0.51	-9.00
F A	8	Episode	Day 2.	2012	5	CO	(PPM)	0.46	NA	0.46	-9.00
F_A	8	Episode	Day 2,	2012	6	CO	(PPM)	0.37	NA	0.37	-9.00
F_A	8	Episode	Day 2,	2012	7	CO	(PPM)	0.45	NA	0.45	-9.00
F_A	8	Episode	Day 2,	2012	8	CO	(PPM)	0.49	NA	0.49	-9.00
F_A	8	Episode	Day 2,	2012	9	CO	(PPM)	0.54	NA	0.54	-9.00
F_A	8	Episode	Day 2,	2012	10	CO	(PPM)	0.58	NA	0.58	-9.00
F_A	8	Episode	Day 2,	2012		CO	(PPM)	0.61	NA	0.61	-9.00
F_A F A	0 8	Episode	Day 2, Day 2	2012	13	CO	(PPM) (PPM)	0.64	NA NA	0.64	-9.00
F A	8	Episode	Day 2.	2012	14	CO	(PPM)	0.67	NA	0.67	-9.00
F_A	8	Episode	Day 2,	2012	15	CO	(PPM)	0.65	NA	0.65	-9.00
F_A	8	Episode	Day 2,	2012	16	CO	(PPM)	0.79	NA	0.79	-9.00
F_A	8	Episode	Day 2,	2012	17	CO	(PPM)	0.84	NA	0.84	-9.00
F_A	8	Episode	Day 2,	2012	18	CO	(PPM)	0.86	NA	0.86	-9.00
F_A	8	Episode	Day 2,	2012	19	CO	(PPM)	0.89	NA	0.89	-9.00
F_A E A	8	Episode	Day 2,	2012	∠0 21	C0 C0	(PPM) (DDM)	0.91	NA NA	0.91	-9.00
F_A F A	8	Episode	Day 2, Day 2	2012	22	CO	(PPM) (PPM)	0.91	NA NA	0.91	-9.00
F A	8	Episode	Day 2.	2012	23	CO	(PPM)	0.76	NA	0.76	-9.00
F_A	8	Episode	Day 3,	2012	0	CO	(PPM)	0.57	NA	0.57	-9.00
F_A	8	Episode	Day 3,	2012	1	CO	(PPM)	0.48	NA	0.48	-9.00
F_A	8	Episode	Day 3,	2012	2	CO	(PPM)	0.42	NA	0.42	-9.00
F_A	8	Episode	Day 3,	2012	3	CO	(PPM)	0.36	NA	0.36	-9.00
F_A	8	Episode	Day 3,	2012	4	CO	(PPM)	0.31	NA	0.31	-9.00
F_A E A	8	Episode	Day 3, Day 3	2012	5	CO	(PPM) (DDM)	0.29	NA NA	0.29	-9.00
F A	8	Episode	Day 3, Day 3.	2012	7	CO	(PPM)	0.40	NA	0.40	-9.00
F A	8	Episode	Dav 3,	2012	8	CO	(PPM)	0.44	NA	0.44	-9.00
F_A	8	Episode	Day 3,	2012	9	CO	(PPM)	0.47	NA	0.47	-9.00
F_A	8	Episode	Day 3,	2012	10	CO	(PPM)	0.47	NA	0.47	-9.00
F_A	8	Episode	Day 3,	2012	11	CO	(PPM)	0.49	NA	0.49	-9.00
F_A	8	Episode	Day 3,	2012	12	CO	(PPM)	0.51	NA	0.51	-9.00
F_A	8	Episode	Day 3,	2012	13 14	00	(PPM)	0.56	NA	0.56	-9.00
F_A F A	0 8	Episode	Day 3, Day 3	2012	15	CO	(PPM) (PPM)	-9.00	NA NA	-9.00	-9.00
F A	8	Episode	Day 3, Dav 3,	2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 3,	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A	8	Episode	Day 3,	2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
F_A E A	8	Episode	Day 3,	2012	21	C0 C0	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
F_A F A	8	Episode	Day 3, Day 3	2012	22	CO	(PPM) (DDM)	-9.00	NΑ	-9.00	-9.00
H U	8	Episode	Day 1,	2012	0	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8	Episode	Day 1,	2012	1	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8	Episode	Day 1,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
H_U	8	Episode	Day 1,	2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
H_U H_T	8	Episode	Day 1, Day 1	2012	5	C0 C0	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
н п	8	Episode	Day 1, Day 1.	2012	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
H U	8	Episode	Day 1,	2012	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day I, Day 1	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
н_U н тт	ຽ ຊ	Ebisode	Day 1, Day 1	2012 2012	14 15	C0 C0	(PPM)	-9.00 _9.00	NA NA	-9.00 _9.00	-9.00
н U	8	Episode	Day 1.	2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U u u	ъ С	Episode	Day 1,	∠U1∠ 2012	∠∠ วว	00	(PPM)	-9.00	NA NA	-9.00	-9.00
о_п и и	o R	Episode	Day 1, Day 2	2012	2.2 ∩	CO	(PPM)	-9.00	ΔM	-9.00	-9.00
H U	8	Episode	Day 2.	2012	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
H U	8	Episode	Day 2,	2012	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 2,	2012	3	CO	(PPM)	0.37	NA	0.37	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High:	2012 mob=868.8	tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	2012	1000
SITE AVG	;	DATE			HR	POL	LUTANT	2012 PREDICTED	PREDICTED	2012 PREDICTED	OBSERVED
PER	IOD							(UAM)	(CAL3QHC)	(UAM+CAL3)	
H_U	8	Episode	Day 2,	2012	4	CO	(PPM)	0.36	NA	0.36	-9.00
H_U	8	Episode	Day 2,	2012	5	CO	(PPM)	0.35	NA	0.35	-9.00
H_U	8	Episode	Day 2,	2012	6	CO	(PPM)	0.33	NA	0.33	-9.00
н_U н II	0 8	Episode	Day 2, Day 2	2012	8	CO	(PPM) (PPM)	0.37	NA NA	0.37	-9.00
H U	8	Episode	Day 2, Day 2,	2012	9	CO	(PPM)	0.40	NA	0.40	-9.00
H_U	8	Episode	Day 2,	2012	10	CO	(PPM)	0.40	NA	0.40	-9.00
H_U	8	Episode	Day 2,	2012	11	CO	(PPM)	0.41	NA	0.41	-9.00
H_U	8	Episode	Day 2,	2012	12	CO	(PPM)	0.42	NA	0.42	-9.00
н_0 н п	8	Episode	Day 2, Day 2	2012	14	CO	(PPM) (DDM)	0.40	NA NA	0.40	-9.00
H U	8	Episode	Day 2, Dav 2,	2012	15	CO	(PPM)	0.55	NA	0.55	-9.00
H_U	8	Episode	Day 2,	2012	16	CO	(PPM)	1.12	NA	1.12	-9.00
H_U	8	Episode	Day 2,	2012	17	CO	(PPM)	1.63	NA	1.63	-9.00
H_U	8	Episode	Day 2,	2012	18	CO	(PPM)	1.81	NA	1.81	-9.00
H_U H_U	8 Q	Episode	Day 2, Day 2	2012	20	CO	(PPM) (DDM)	1.87	NA NA	1.87	-9.00
H U	8	Episode	Day 2, Day 2,	2012	21	CO	(PPM)	1.85	NA	1.85	-9.00
H_U	8	Episode	Day 2,	2012	22	CO	(PPM)	1.78	NA	1.78	-9.00
H_U	8	Episode	Day 2,	2012	23	CO	(PPM)	1.59	NA	1.59	-9.00
H_U	8	Episode	Day 3,	2012	0	CO	(PPM)	1.12	NA	1.12	-9.00
H_U H_U	8 Q	Episode	Day 3, Day 3	2012	1 2	CO	(PPM) (DDM)	0.61	NA NA	0.61	-9.00
H U	8	Episode	Day 3, Dav 3,	2012	3	CO	(PPM)	0.35	NA	0.35	-9.00
H_U	8	Episode	Day 3,	2012	4	CO	(PPM)	0.33	NA	0.33	-9.00
H_U	8	Episode	Day 3,	2012	5	CO	(PPM)	0.32	NA	0.32	-9.00
H_U	8	Episode	Day 3,	2012	6	CO	(PPM)	0.32	NA	0.32	-9.00
H_U H_U	8 Q	Episode	Day 3, Day 3	2012	2 2	CO	(PPM) (DDM)	0.41	NA NA	0.41	-9.00
H U	8	Episode	Day 3, Day 3,	2012	9	CO	(PPM)	0.46	NA	0.46	-9.00
H_U	8	Episode	Day 3,	2012	10	CO	(PPM)	0.51	NA	0.51	-9.00
H_U	8	Episode	Day 3,	2012	11	CO	(PPM)	0.55	NA	0.55	-9.00
H_U	8	Episode	Day 3,	2012	12	CO	(PPM)	0.59	NA	0.59	-9.00
н_0 н п	8	Episode	Day 3, Day 3	2012	14	CO	(PPM) (DDM)	-9 00	NA NA	-9 00	-9.00
H U	8	Episode	Day 3, Day 3,	2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 3,	2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 3,	2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 3,	2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
н п	8	Episode	Day 3, Day 3.	2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 3,	2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 3,	2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
H_U	8	Episode	Day 3,	2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
	8	Episode	Day 1, Day 1	2012	1	CO	(PPM) (PPM)	0.00	NA NA	0.00	-9.00
U A	8	Episode	Day 1,	2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	8	Episode	Day 1,	2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	8	Episode	Day 1,	2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
U_A	8	Episode	Day 1,	2012	5	CO	(PPM)	0.00	NA	0.00	-9.00
U A	8	Episode	Day 1, Day 1.	2012	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1, Day 1	2012	11 12	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
U A	8	Episode	Day 1, Day 1.	2012	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
Δ_U_A	8 R	Episode	Day 1, Day 1	2012	⊥/ 18	CO	(PPM)	-9.00 _9.00	NA NA	-9.00 _9.00	-9.00 _9 00
Ŭ_A	8	Episode	Day 1.	2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 1,	2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
Δ_U_A	8 R	Episode	Day 1, Dav 2	2012	∠3 0	CO	(PPM)	-9.00	NA NA	-9.00 -9.00	-9.00
Ŭ_A	8	Episode	Day 2,	2012	ĩ	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 2,	2012	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A	8	Episode	Day 2,	2012	3	CO	(PPM)	0.25	NA	0.25	-9.00
U_A	8	Episode	Day 2,	2012	4	CO	(PPM)	0.24	NA	0.24	-9.00
U A	8 8	Episode	Day 2, Day 2.	2012	5 6	CO	(PPM)	0.24	NA NA	0.24	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2012 mol	p=868.8tpd;1.	5;80;	I/M 240	w/newest 4my	r exempt;	2010	1000
SITE AVG	DATT		ЧP	POT.	Τ.ΤΙͲΔΝͲ	2012 DREDICTED	2012 PRFDICTFD	2012 PREDICTED	1988 Observed
PERIOI	DAIL		IIIC	FOL	DOIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
						(==== ,	(<u>c</u> /	(,	
U_A 8	3 Episode	e Day 2, 2012	7	CO	(PPM)	0.27	NA	0.27	-9.00
U_A 8	B Episode	e Day 2, 2012	8	CO	(PPM)	0.28	NA	0.28	-9.00
A_U	B Episode	e Day 2, 2012	9	CO	(PPM)	0.28	NA	0.28	-9.00
A_U_A	S Episode	e Day 2, 2012	10	CO	(PPM)	0.28	NA	0.28	-9.00
	S Episode S Episode	e Day 2, 2012 e Day 2, 2012	12	CO	(PPM) (DDM)	0.29	NA NA	0.29	-9.00
	B Episode	- Day 2, 2012	13	CO	(PPM)	0.34	NA	0.34	-9.00
U A 8	B Episode	e Day 2, 2012	14	CO	(PPM)	0.39	NA	0.39	-9.00
U_A 8	B Episode	e Day 2, 2012	15	CO	(PPM)	0.48	NA	0.48	-9.00
U_A 8	B Episode	e Day 2, 2012	16	CO	(PPM)	0.80	NA	0.80	-9.00
U_A 8	B Episode	e Day 2, 2012	17	CO	(PPM)	1.18	NA	1.18	-9.00
U_A 8	Episod	e Day 2, 2012	18	CO	(PPM)	1.32	NA NA	1.32	-9.00
	S Episode	= Day 2, 2012 = Day 2, 2012	20	CO	(PPM)	1 33	NA	1 33	-9.00
U A 8	B Episode	e Day 2, 2012	21	CO	(PPM)	1.31	NA	1.31	-9.00
J_A 8	3 Episode	e Day 2, 2012	22	CO	(PPM)	1.26	NA	1.26	-9.00
U_A 8	B Episode	e Day 2, 2012	23	CO	(PPM)	1.15	NA	1.15	-9.00
U_A 8	B Episode	e Day 3, 2012	0	CO	(PPM)	0.82	NA	0.82	-9.00
A_U_A	S Episode	e Day 3, 2012	1	CO	(PPM)	0.44	NA	0.44	-9.00
	S Episode S Episode	e Day 3, 2012 e Day 3, 2012	2	CO	(PPM) (DDM)	0.30	NA NA	0.30	-9.00
U A S	B Episode	a Day 3, 2012	4	CO	(PPM)	0.26	NA	0.26	-9.00
U A 8	B Episode	e Day 3, 2012	5	CO	(PPM)	0.25	NA	0.25	-9.00
J_A 8	3 Episode	e Day 3, 2012	6	CO	(PPM)	0.26	NA	0.26	-9.00
U_A 8	B Episode	e Day 3, 2012	7	CO	(PPM)	0.34	NA	0.34	-9.00
U_A 8	B Episode	e Day 3, 2012	8	CO	(PPM)	0.38	NA	0.38	-9.00
	S Episode	e Day 3, 2012	9 10	C0 C0	(PPM)	0.43	NA NA	0.43	-9.00
	S Episode	= Day 3, 2012 = Day 3, 2012	10	CO	(PPM) (PPM)	0.47	NA NA	0.47	-9.00
U A 8	B Episode	e Day 3, 2012	12	CO	(PPM)	0.54	NA	0.54	-9.00
U_A 8	B Episode	e Day 3, 2012	13	CO	(PPM)	0.59	NA	0.59	-9.00
U_A 8	B Episode	e Day 3, 2012	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A 8	B Episode	e Day 3, 2012	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A 8	S Episode	e Day 3, 2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
	B Episode	2 Day 3, 2012 2 Day 3, 2012	1/ 18	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
U A U	B Episode	e Day 3, 2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A 8	B Episode	e Day 3, 2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A 8	B Episode	e Day 3, 2012	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
U_A 8	B Episode	e Day 3, 2012	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
L L L	B Episode	e Day 3, 2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
	B Episode	2 Day 1, 2012 2 Day 1 2012	0	CO	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
PI 8	B Episode	e Day 1, 2012	2	CO	(PPM)	0.00	NA	0.00	-9.00
P_I 8	B Episode	e Day 1, 2012	3	CO	(PPM)	0.00	NA	0.00	-9.00
P_I 8	B Episode	e Day 1, 2012	4	CO	(PPM)	0.00	NA	0.00	-9.00
P_I 8	B Episode	e Day 1, 2012	5	CO	(PPM)	0.00	NA	0.00	-9.00
P_I 8	S Episode	e Day 1, 2012	6	CO	(PPM)	0.00	NA	0.00	-9.00
	S Episode	e Day 1, 2012 e Day 1, 2012	8	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
PI 8	B Episode	e Day 1, 2012	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	3 Episode	e Day 1, 2012	10	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	B Episode	e Day 1, 2012	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	B Episode	e Day 1, 2012	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode	e Day 1, 2012 2 Day 1, 2012	13	C0 C0	(PPM)	-9.00	NA NA	-9.00	-9.00
	S Episode	= Day 1, 2012 = Day 1 2012	14	CO	(PPM) (PPM)	-9.00	NA NA	-9.00	-9.00
PI 8	B Episode	e Day 1, 2012	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	B Episode	e Day 1, 2012	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	B Episode	e Day 1, 2012	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	B Episode	e Day 1, 2012	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	S Episode	e Day 1, 2012	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
	S Episode	= Day 1, 2012 P Day 1, 2012	∠⊥ 22	CO	(PPM)	-9.00 -9.00	INA NA	-9.00	-9.00
PI 8	B Episode	e Day 1, 2012	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	B Episode	e Day 2, 2012	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	B Episode	e Day 2, 2012	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	B Episode	e Day 2, 2012	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I 8	S Episode	e Day 2, 2012	3	CO	(PPM)	0.45	NA	0.45	-9.00
	S Epicod	= Day 2, 2012 = Day 2, 2012	4 5	C0 C0	(PPM) (DDM)	0.43 0.40	INA NA	0.43 0.42	-9.00
	Episode	a Day 2, 2012 a Day 2, 2012	6	CO	(PPM)	0.41	NA	0.41	-9.00
P_I 8	B Episode	e Day 2, 2012	7	CO	(PPM)	0.49	NA	0.49	-9.00
P_I 8	B Episode	e Day 2, 2012	8	CO	(PPM)	0.53	NA	0.53	-9.00
P_I 8	B Episode	e Day 2, 2012	9	CO	(PPM)	0.54	NA	0.54	-9.00
Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

High: 2012 mob=868.8tpd;1.5;80;I/M 240 w/newest 4myr exempt;										
			-	-			2012 -	2012	2012	1988
SITE AVG		DATE		HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PER	IOD						(UAM)	(CAL3QHC)	(UAM+CAL3)	
ΡI	8	Episode	Day 2, 2012	10	CO	(PPM)	0.55	NA	0.55	-9.00
P I	8	Episode	Day 2, 2012	11	CO	(PPM)	0.56	NA	0.56	-9.00
PI	8	Episode	Day 2, 2012	12	CO	(PPM)	0.58	NA	0.58	-9.00
PI	8	Episode	Day 2, 2012	13	CO	(PPM)	0.61	NA	0.61	-9.00
P I	8	Episode	Day 2, 2012	14	CO	(PPM)	0.63	NA	0.63	-9.00
PI	8	Episode	Day 2, 2012	15	CO	(PPM)	0.63	NA	0.63	-9.00
PI	8	Episode	Day 2, 2012	16	CO	(PPM)	0.91	NA	0.91	-9.00
P I	8	Episode	Day 2, 2012	17	CO	(PPM)	1.47	NA	1.47	-9.00
P I	8	Episode	Day 2, 2012	18	CO	(PPM)	2.18	NA	2.18	-9.00
РТ	8	Episode	Day 2, 2012	19	CO	(PPM)	2.51	NA	2.51	-9.00
 Р Т	8	Episode	Day 2, 2012	20	CO	(PPM)	2.58	NA	2.58	-9.00
Р Т	8	Episode	Day 2, 2012	21	CO	(PPM)	2.50	NA	2.50	-9 00
Р Т	8	Episode	Day 2, 2012	22	CO	(PPM)	2.00	NA	2.00	-9 00
 р т	8	Episode	Day 2 2012	23	CO	(PPM)	2 49	NA	2 49	-9.00
	8	Episode	Day 3 2012	20	CO	(PPM)	2.15	NA	2.15	-9 00
Р Т	8	Episode	Day 3 2012	1	CO	(PPM)	1 59	NA	1 59	-9.00
рт	8 8	Episode	Day 3 2012	2	CO	(DDM)	0.88	NΔ	0.88	-9 00
	8	Episode	Day 3 2012	3	CO	(DDM)	0.00	NΔ	0.00	-9 00
	8	Episode	Day 3 2012	4	CO	(DDM)	0.32	NΔ	0.52	-9 00
	8	Episode	Day 3, 2012	5	CO	(DDM)	0.13	NΔ	0.15	-9 00
г р т	8	Episode	Day 3, 2012	5	CO	(PPM)	0.36	NA NA	0.36	-9.00
г р т	8	Episode	Day 3, 2012 Day 3, 2012	7	CO	(DDM)	0.30	NΔ	0.30	-9.00
	8	Episode	Day 3, 2012	, 8	CO	(DDM)	0.10	N7	0.10	-9 00
г р т	8	Episode	Day 3, 2012	9	CO	(PPM)	0.50	NA NA	0.50	-9.00
г р т	8	Episode	Day 3, 2012 Day 3, 2012	10	CO	(DDM)	0.55	NΔ	0.55	-9.00
г р т	0 0	Episode	Day 3, 2012	11	CO	(PPM)	0.55	NA NA	0.55	-9.00
	0	Episode	Day 3, 2012	12	CO	(PPM)	0.03	INA NA	0.03	-9.00
г р т	8	Episode	Day 3, 2012	13	CO	(PPM)	0.00	NA NA	0.00	-9.00
г р т	0	Episode	Day 3, 2012	14	CO	(PPM)	_0.04	NA NA	_0.04	-9.00
	0	Episode	Day 3, 2012	15	CO	(PPM)	-9.00	INA NA	-9.00	-9.00
г р т	8	Episode	Day 3, 2012	16	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
г р т	0 0	Episode	Day 3, 2012	17	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
г р т	8	Episode	Day 3, 2012	18	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
г р т	8	Episode	Day 3, 2012	19	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
г р т	0	Episode	Day 3, 2012	20	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
	0	Episode	Day 3, 2012	20	CO	(PPM)	-9.00	INA NA	-9.00	-9.00
	0	Episode	Day 3, 2012	21	CO	(PPM)	-9.00	INA NA	-9.00	-9.00
	0	Episode	Day 3, 2012	22	C0 C0	(PPM)	-9.00	INA NA	-9.00	-9.00
P_1 NOTE ·	0	rpisode	Day 3, 2012	23	CO	(PPM)	-9.00	INA	-9.00	-9.00
	c ~~	nort ann	oard for ATT 9-br of	A 071 20		1,000				
	5 IU	port app	cars for CMI 2010	g CALSQ	aro M	LUCS OT				
SINCE 8-II	1_L 1_L	r avora	erayes for UALSQHC I	CSUILS	are N	01				
cummed an	1 = 11 1 = 1	averay	r running averaged	inc are	ut od					
	u ull	en 0-110u	I I I I I I I I I I I I I I I I I I I	re comp	uceu.					

MET A7, 08-30-99 EI, 01-11-94 PT, 09-09-99 CAL, 08-30-99 UAM High: 2012 mob=868.8tpd;1.5;80;I/M 240 w/newest 4myr exempt;

TIME AND MAGNITUDE OF MAXIMUM CONCENTRATION FOR 8-HR AVERAGING PERIOD:

station	max concentration	hour of maximum	hour of maximum
CMD	18 7	(Perrorm: Beacb)	(11041 01 44,7)
WEV	20.7	19	10
CPC	10 4	49	0
NTU	10.4	49	22
NJH	11.3	47	22
TIV	0.0	U	U
TCMD	0.0	0	0
ENG	3.7	47	22
BOU	2.1	38	13
GRDS	8.3	45	20
ARV	5.1	37	12
HLD	1.6	47	22
AUR	0.0	0	0
AURS	4.3	44	19
PLM	0.0	0	0
BTN	0.0	0	0
U_1	0.0	0	0
F_A	0.0	0	0
H_U	0.0	0	0
U A	0.0	0	0
P_I	0.0	0	0
station	may concentration	hour of maximum	hour of maximum
station	max concentration	hour of maximum	hour of maximum
Station	max concentration (2012 predicted)	hour of maximum (perform. stats)	hour of maximum (hour of day)
Station CMP	<pre>max concentration (2012 predicted) 7.9 4 1</pre>	hour of maximum (perform. stats) 48 50	hour of maximum (hour of day) 23
Station CMP WBY CDC	max concentration (2012 predicted) 7.9 4.1	hour of maximum (perform. stats) 48 50	hour of maximum (hour of day) 23 1 22
Station CMP WBY CRG NUU	max concentration (2012 predicted) 7.9 4.1 4.0	hour of maximum (perform. stats) 48 50 48 47	hour of maximum (hour of day) 23 1 23 22
station CMP WBY CRG NJH	max concentration (2012 predicted) 7.9 4.1 4.0 3.4	hour of maximum (perform. stats) 48 50 48 47	hour of maximum (hour of day) 23 1 23 22 22
Station CMP WBY CRG NJH TIV	max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3	hour of maximum (perform. stats) 48 50 48 47 47 47	hour of maximum (hour of day) 23 1 23 22 22 22
station CMP WBY CRG NJH TIV ICMP ENC	<pre>max concentration (2012 predicted)</pre>	hour of maximum (perform. stats) 48 50 48 47 47 47 47	hour of maximum (hour of day) 23 1 23 22 22 22 22 10
station CMP WBY CRG NJH TIV ICMP ENG ENG	max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 42	hour of maximum (hour of day) 23 1 23 22 22 22 22 19
station CMP WBY CRG NJH TIV ICMP ENG BOU GDD2	max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 44 42	hour of maximum (hour of day) 23 1 23 22 22 22 22 19 17
station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS	<pre>max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 </pre>	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 47 42 42 42	hour of maximum (hour of day) 23 1 23 22 22 22 22 19 17 17
station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV	max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 47 42 42 42 43	hour of maximum (hour of day) 23 1 23 22 22 22 22 19 17 17 17 18
station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD	max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 47 42 42 42 43 44	hour of maximum (hour of day) 23 1 23 22 22 22 19 17 17 18 19
station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD AUR	max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2 2.5	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 42 42 42 43 44 47	hour of maximum (hour of day) 23 1 23 22 22 22 19 17 17 17 18 19 22
station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD AUR AURS	max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2 2.5 2.9	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 47 42 42 42 42 42 42 42 42 5	hour of maximum (hour of day) 23 1 23 22 22 22 22 19 17 17 17 18 19 22 20
station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD AUR AURS PLM	<pre>max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2 2.5 2.9 2.9</pre>	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 42 42 42 42 43 44 47 45 47	hour of maximum (hour of day) 23 1 23 22 22 22 22 19 17 17 17 18 19 22 20 20 22
station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD AURS PLM BTN	<pre>max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2 2.5 2.9 2.9 1.3</pre>	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 42 42 42 42 43 44 47 5 47 45 47 48	hour of maximum (hour of day) 23 1 23 22 22 22 19 17 17 18 19 22 20 22 20 22 23
Station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD AUR AURS PLM BTN U_1	<pre>max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2 2.5 2.9 2.9 1.3 3.9</pre>	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 42 42 42 43 44 47 45 47 48 46	hour of maximum (hour of day) 23 1 23 22 22 22 22 19 17 17 17 18 19 22 20 22 20 22 23 21
Station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD AUR AUR AUR AURS PLM BTN U_1 F_A	<pre>max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2 2.5 2.9 2.9 1.3 3.9 0.9</pre>	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 42 42 42 42 42 42 42 42 42 43 44 47 45 47 45 47 45 47 45	hour of maximum (hour of day) 23 1 23 22 22 22 22 19 17 17 17 18 19 22 20 22 20 22 23 21 20
Station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD AURS PLM BTN U_1 F_A H_U	<pre>max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2 2.5 2.9 2.9 1.3 3.9 0.9 1.9</pre>	hour of maximum (perform. stats) 48 50 48 47 47 47 47 47 42 42 42 42 43 44 47 45 47 45 47 48 46 45 45	hour of maximum (hour of day) 23 1 23 22 22 22 22 22 19 17 17 17 18 19 22 20 22 20 22 23 21 20 20 20
Station CMP WBY CRG NJH TIV ICMP ENG BOU GRDS ARV HLD AURS PLM BTN U_1 F_A H_U U_A	<pre>max concentration (2012 predicted) 7.9 4.1 4.0 3.4 7.3 9.0 1.6 0.8 0.9 1.4 1.2 2.5 2.9 1.3 3.9 0.9 1.3</pre>	hour of maximum (perform. stats) 48 50 48 47 47 47 47 42 42 42 42 43 44 47 45 47 45 47 48 46 45 45 44	hour of maximum (hour of day) 23 1 23 22 22 22 22 19 17 17 18 19 22 20 22 20 22 23 21 20 20 20 19

NOTE: The "performance statistics hour" refers to a unique hour for the entire simulation that is used to determine when the maximum concentration occurred. It is based on the system where HOUR 1 is ALWAYS the period from "midnight to lam" on the FIRST day of the simulation; if there are three calendar days in the simulation; this hour counter increments from 1 to 72.

The "hour of day" refers to the actual hour of the day where HOUR 0 is the period from "midnight to lam;" this hour counter increments from 0 to 23 for each day.

MET A7, 08-30-99 EI, 01-11-94 PT, 09-09-99 CAL, 08-30-99 UAM High: 2012 mob=868.8tpd;1.5;80;I/M 240 w/newest 4myr exempt;

TIME AND MAGNITUDE OF MAXIMUM CONCENTRATION FOR 1-HR AVERAGING PERIOD:

station	max concentration	hour of maximum	hour of maximum
CMP	(1988 Observed) 50.5	(periorm: scacs) 42	(nour or day) 17
WBY	13.4	43	18
CRG	16.3	44	19
NJH	22.9	42	17
TIV	0.0	0	0
ICMP	0.0	0	0
ENG	9.4	42	17

BOU	6.5	44	19
GRDS	16.6	33	8
ARV	11.0	33	8
HLD	4.4	42	17
AUR	0.0	0	0
AURS	11.2	42	17
PLM	0.0	0	0
BTN	0.0	0	0
U_1	0.0	0	0
F_A	0.0	0	0
H_U	0.0	0	0
U_A	0.0	0	0
P_I	0.0	0	0
station	max concentration	hour of maximum	hour of maximum
	(2012 predicted)	(perform. stats)	(hour of day)
CMP	14.7	43	18
WBY	5.2	48	23
CRG	5.3	43	18
NJH	6.4	44	19
TIV	14.4	43	18
ICMP	15.9	42	17
ENG	3.8	41	16
BOU	1.5	40	15
GRDS	1.6	41	16
ARV	2.9	41	16
HLD	3.2	42	17
AUR	4.1	44	19
AURS	6.2	43	18
PLM	5.9	44	19
BTN	1.7	48	23
U_1	8.6	43	18
F_A	1.8	41	16
H_U	4.4	42	17
U_A	3.3	42	17
P_I	6.0	43	18

NOTE: The "performance statistics hour" refers to a unique hour for the entire simulation that is used to determine when the maximum concentration occurred. It is based on the system where HOUR 1 is ALWAYS the period from "midnight to lam" on the FIRST day of the simulation; if there are three calendar days in the simulation; this hour counter increments from 1 to 72.

The "hour of day" refers to the actual hour of the day where HOUR 0 is the period from "midnight to lam;" this hour counter increments from 0 to 23 for each day.

Appendix G – Urban Airshed Modeling: High Episode 2013 Results (Run O)

Maximum 8-hr Average Carbon Monoxide Concentration Estimates (ppm) from the Urban Airshed Model for Denver Colorado 2013 Projection for the "High" Episode (05DEC88) Control Strategy: 1.7%oxyFuels; 80%RemoteSensing;4yrExempt I/M240 On-Road Mobile Emission Inventory Total = 867 tons/day

																_				
1.3	1.2	\ 7	1.5	1.7	1.6	2	2.8	3.6	3.4	2.6	2.0	1.5	1.4	1.4	1.5	1.5	1.4	1.0	1.0	0.8
1.1	1.9	2.4	1.9	2.1	2.2	3.2	3.2	3.8	3.6	2.7	1.9	1.5	1.4	1.4	1.5	1.6	1.4	1.0	1.0	0.9
1.2	1.6	1.7	¥	2.1	2.1	3.2	3.5	4.1	3.6	2.6	2.0	1.6	1.4	1.4	1.5	1.7	1.5	1.1	0.9	0.9
1.2	1.6	1.7	2.0		2.8	3.8	4.1	▲ WE 4.2	L F .9	2.8	2.0	1.7	1.5	1.4	1.6	1.7	1.7	1.2	1.1	1.0
1.2	1.5	1.5	1.7	2.2	2.3			4.2	3.6	2.8	2.1	1.8	1.6	1.5	1.6	1.8	1.6	1.2	1.0	0.9
1.4 ▲ AR	1.6 V	1.6	2.0	3.0	3.1	5.0	4.5	4.1	4.2	3.1	2.3	2.1	1.7	1.6	1.9	1.9	1.8	1.3	1.0	1.0
1.5	2.2	ß	2.6	3.8	3.8	1	4.9	4.1	3.7		2.7	2.3	1.9	1.7	1.9	2.0	1.8	1.3	1.0	1.0
1.7	2.0	2.7	3.5	4.2	4.8		5.7	4.8	3.7	3.5	-3.0	3	2.8	2.3	2.5	2.4	1.9	1.4	1.1	1.0
1.6	2.0	2.8	3.3	4.3	7.0	7.4	4.7	3.8	2.9	3.0	2.8	2.7	2.5	2.2	2.4	2.3	2.1	1.5	1.1	1.1
1.8	2.4	3.3	3.2	CRG 5.1	7.9	▲ CA 8.3	MP 4.6	3.7	2.7	3.0	2.9	2.6	2.7	2.5	2.8	2.5	2.1	1.6	N2	1.2
2.3	2.6	3.3	2.9	4.1	1 5.7	7.1	4.2	3.6	NJH 2.9	3.2	2.8	2.8	2.7	2.4	3.1	2.7	2.2	1.7	1.2	1.2
2.1	2.6	3.0	2.5	3.3	Ŵ	4.6	3.8	3.9	2.8	3.1	2.9	2.6	2.6	2.4	3.4	3.1	2.3	1.7	1.2	1.3
1.3	1.8	1.9	1.8	2.1	2.3	N ⁸	2.8	2.9	2.8	3.1	2.6	2.7	2.7	2.7	3.5	3.2	2.6	1.9	1.3	1.4
1.1	1.6	1.9	1.6	1.8	1.8	2.7	28	2.9	2.5	2.7	2.3	2.5	2.3	2.7	2.9	2.8	2.5	2.0	1.5	1.5
1.0	1.5	1.5	1.3	1.5	1.5	2.3	2.3	2.2	K	2.6	2.2	2.6	2.6	2.8	3.0	2.6	2.5	1.9	1.5	1.5
1.0	1.4	1.5	1.1	1.3	1.6	end₽	2.1	2.0	1.9	2.3	2.3	2.4	2.8	J₽	2.5	2.4	2.4	1.9	1.4	1.4
0.8	1.4	1.3	1.1	1.2	1.5	1.8	1.7	1.5	1.4	K 1	2.3	2.4	2.4	2.6	2.2	2.3	2.2	1.8	1.4	1.3
1.0	1.5	1.1	0.9	1.1	1.4	1.6	1.5	1.4	1.3	1.9	2.9	2.4	2.1	1.9	2.1	2.2	1.9	1.6	1.3	1.2
1.3	1.0	0.9	0.9	1.4	1.2	1.5	1.4	1.1	1.1	1.4	∦ 7	2.1	1.9	1.7	1.7	2.0	1.6	1.5	1.3	1.1
1.0	0.8	0.7	0.8	1.1	1.0	1.3	1.4	1.3	1.3	1.5	2.8	2.4	2.2	2.0	1.7	2.3	1.6	1.2	1.2	1.0
0.8	1.0	0.9	0.8	1.1	0.9	1.2	1.4	1.2	1.1	1.3	1.5	2.5	2.1	1.8	1.4	1.4	1.1	1.0	1.0	0.9

One Grid is One Square Mile

The value in each grid cell shows the maximum CO 8-hr running average for the entire simulation

URBAN AIRHSED MODEL OUTPUT - RUNNING 8-HOUR AVERAGES FOR ENTIRE DOMAIN FILENAME: c:\den_co\graphix\o\tmap8_o.max UAM Level 1 CO SIP for Denver, Colorado Episode code processed: o Base episode code: a (05DEC88) O: 2013 mobile=867.2 tpd 1sept99 13aoxy17.prn 2013 mob=867.2tpd;1.7;80;I/M 240 w/newest 4myr exempt;27aug99PTS MET A7: DWMZ=12,UAMZ=5,DB=40-225,SimDrainJet,ModEC, 11-01-93 $\langle \rangle$ QA Check - select files used in 2nd day of simulation: c:\den_co\inputs\o\ar_02.b??, 09-01-99 (EI year: 2013) c:\den_co\inputs\o\pt_02.bin, 01-11-94 c:\den_co\inputs\a\uw_a2.bin, 11-01-93 c:\den_co\outputs\o\avg_o2.out, 09-01-99 TMAP run dated: 09:07:44 09-02-99 8-Hr Averaging Period Time, magnitude, and location of max/min predicted concentration Ending time 600. UAM Maximum 8-hr average: 2.11 cell (21,47) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ _____ Ending time 700. UAM Maximum 8-hr average: 2.02 cell (21,47) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 800. UAM Maximum 8-hr average: 1.95 cell (21,47) UAM Minimum 8-hr average: 0.16 cell (9,44) _____ Ending time 900. UAM Maximum 8-hr average: 1.72 cell (21,47) UAM Minimum 8-hr average: 0.16 cell (9,44) _____ Ending time 1000. UAM Maximum 8-hr average: 1.46 cell (21,47) UAM Minimum 8-hr average: 0.18 cell (9,44) Ending time 1100. UAM Maximum 8-hr average: 1.38 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) _____ Ending time 1200. UAM Maximum 8-hr average: 1.40 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) _____ Ending time 1300. UAM Maximum 8-hr average: 1.44 cell (23,45) UAM Minimum 8-hr average: 0.18 cell (28,16) _____ Ending time 1400. UAM Maximum 8-hr average: 1.51 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (3,37)

Ending time 1500. UAM Maximum 8-hr average: 1.64 cell (23,43) UAM Minimum 8-hr average: 0.19 cell (3,37) _____ Ending time 1600. UAM Maximum 8-hr average: 1.67 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (3,37) Ending time 1700. UAM Maximum 8-hr average: 2.70 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (3,37) _____ Ending time 1800. UAM Maximum 8-hr average: 4.79 cell (23,42) UAM Minimum 8-hr average: 0.18 cell (27,11) _____ Ending time 1900. UAM Maximum 8-hr average: 6.63 cell (23,42) UAM Minimum 8-hr average: 0.18 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) х Υ Predicted (ppm) 23 42 6.633 22 43 6.336 23 43 6.456 _____ Ending time 2000. UAM Maximum 8-hr average: 7.70 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Predicted (ppm) 7.079 Х Υ 23 42 7.308 2.2 43 7.695 23 43 _____ Ending time 2100. UAM Maximum 8-hr average: 7.97 cell (23,43) UAM Minimum 8-hr average: 0.17 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Х Predicted (ppm) Υ 23 42 7.095 22 43 7.582 23 43 7.965 22 44 6.073 23 6.428 44 23 45 6.593 _____ Ending time 2200. UAM Maximum 8-hr average: 8.16 cell (23,43) UAM Minimum 8-hr average: 0.17 cell (28,15)

Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Х Υ Predicted (ppm) 23 42 7.064 22 43 7.753 23 43 8.157 22 44 6.462 23 44 6.831 23 7.107 45 Ending time 2300. UAM Maximum 8-hr average: 8.32 cell (23,43) UAM Minimum 8-hr average: 0.17 cell (28,15) Predicted UAM concentration for select grid cells: 8-hr ave (Only grid cells with a concentration > 6.0 ppm are printed.) 8-hr averaging period. Predicted (ppm) Χ Y 23 6.980 42 22 7.879 43 8.324 6.790 23 43 22 44 7.170 23 44 7.463 23 45 _ _ _ _ _ Ending time Ο. UAM Maximum 8-hr average: 8.28 cell (23,43) UAM Minimum 8-hr average: 0.16 cell (28,16) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Predicted (ppm) Х Υ 23 42 6.711 22 43 7.848 23 43 8.285 22 44 7.020 23 44 7.382 23 45 7.721 Ending time 100. 8-hr average: 7.36 cell (23,45) UAM Maximum UAM Minimum 8-hr average: 0.17 cell (28,16) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Predicted (ppm) Х Y 43 6.914 7.283 2.2 23 43 2.2 44 6.680 23 44 6.966 23 45 7.363 Ending time 200. UAM Maximum 8-hr average: 6.43 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) Predicted UAM concentration for select grid cells: 8-hr averaging period. (Only grid cells with a concentration > 6.0 ppm are printed.) Х Y Predicted (ppm) 23 44 6.020 23 45 6.434

Ending time 300. 8-hr average: 5.39 cell (23,45) UAM Maximum UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 400. UAM Maximum 8-hr average: 4.15 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 500. UAM Maximum 8-hr average: 3.29 cell (25,49) UAM Minimum 8-hr average: 0.17 cell (9,44) Ending time 600. UAM Maximum 8-hr average: 2.71 cell (25,50) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ _____ Ending time 700. UAM Maximum 8-hr average: 2.29 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 800. UAM Maximum 8-hr average: 2.29 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) _____ Ending time 900. UAM Maximum 8-hr average: 2.06 cell (23,45) UAM Minimum 8-hr average: 0.17 cell (9,44) Ending time 1000. UAM Maximum 8-hr average: 2.04 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (16,28) _____ Ending time 1100. UAM Maximum 8-hr average: 2.20 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (16,28) _____ Ending time 1200. UAM Maximum 8-hr average: 2.30 cell (23,43) UAM Minimum 8-hr average: 0.18 cell (16,28)

File: ar_o_tot.qa0

Daily em	CO: TOTAL INVENTORY	or each so EMISSIONS CODE: O	urce FOR	category CATEGORY	as input AM	to the P I RUNN	e Urban Airs BEFORE HRLY AFTER HRLY S ING SUBTOTAI	hed Mode SCALARS CALARS <i>F</i> BEFORE	el APPLIED APPLIED SCALARS	= = =	185.641949 185.641955 185.641949	TONS/ TONS/ TONS/	DAY DAY DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	PM	P 1 2 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	249.026747 249.026747 434.668697	TONS/ TONS/ TONS/	′DAY ′DAY ′DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	OF	P 1 7 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	432.477055 432.390563 867.145751	TONS/ TONS/ TONS/	'DAY 'DAY 'DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	R	R 1 7 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	0.333074 0.333074 867.478826	TONS/ TONS/ TONS/	DAY DAY DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	HL	I 1 7 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	0.370857 0.370857 867.849683	TONS/ TONS/ TONS/	'DAY 'DAY 'DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	A	C 1 7 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	24.383800 24.554486 892.233483	TONS/ TONS/ TONS/	'DAY 'DAY 'DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	AC	S 1 7 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	7.770000 7.824390 900.003483	TONS/ TONS/ TONS/	DAY DAY DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	A	G 1	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	0.254016 0.254016 900.257499	TONS/ TONS/ TONS/	'DAY 'DAY 'DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	CS	T 1 2 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	8.098400 8.098400 908.355899	TONS/ TONS/ TONS/	'DAY 'DAY 'DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	IN	D 1 2 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	23.655000 23.655000 932.010899	TONS/ TONS/ TONS/	'DAY 'DAY 'DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	LT	C 1	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	131.261000 131.261002 1063.271899	TONS/ TONS/ TONS/	'DAY 'DAY 'DAY
	CO: TOTAL INVENTORY	EMISSIONS CODE: O	FOR	CATEGORY	F	P 1 2 RUNN	BEFORE HRLY AFTER HRLY S ING SUBTOTAI	SCALARS SCALARS A BEFORE	APPLIED APPLIED SCALARS	= = =	9.515282 9.515282 1072.787181	TONS/ TONS/ TONS/	DAY DAY DAY
CDPHE//	APCD/Iech	ınıcai Servic	es Pi	rogram		Janu	ary 4, 2000						

CO: TOTAL EMISSIONS INVENTORY CODE: O	FOR CATEGORY	STV	BEFORE HRLY SCALARS APPLIED AFTER HRLY SCALARS APPLIED INNING SUBTOTAL BEFORE SCALARS) = = } =	= 16.25106 = 16.25106 = 1089.03824	B TONS/DAY B TONS/DAY D TONS/DAY
CO: TOTAL EMISSIONS INVENTORY CODE: O	FOR CATEGORY	SFR	BEFORE HRLY SCALARS APPLIED AFTER HRLY SCALARS APPLIED NNING SUBTOTAL BEFORE SCALARS) = = 5 =	= 5.52076 = 5.52120 = 1094.55901	5 TONS/DAY 5 TONS/DAY 4 TONS/DAY
CO: TOTAL EMISSIONS INVENTORY CODE: O	FOR CATEGORY	NG	BEFORE HRLY SCALARS APPLIED AFTER HRLY SCALARS APPLIED) =	= 10.02350 = 10.02350) TONS/DAY) TONS/DAY
		RU	NNING SUBTOTAL BEFORE SCALARS	5 =	= 1104.582514	1 TONS/DAY
CO: TOTAL EMISSIONS	FOR CATEGORY	MIN	BEFORE HRLY SCALARS APPLIED) =	= 21.07590) TONS/DAY
INVENTORY CODE: O		RU	AFTER HRLY SCALARS APPLIED INNING SUBTOTAL BEFORE SCALARS	= 5 =	= 21.07758	TONS/DAY TONS/DAY
CO: TOTAL EMISSIONS	FOR CATEGORY	MJA	BEFORE HRLY SCALARS APPLIED) =	= 0.00000) TONS/DAY
INVENTORY CODE: O		RU	AFTER HRLY SCALARS APPLIED INNING SUBTOTAL BEFORE SCALARS	= 3 =	= 0.00000	1 TONS/DAY
QA check of	CO EMISSIONS total	in UAM	I binary file (NOTES: 1. hourl	y s	scalars applied	; 2. MJE excluded)
				=	= 1125.79913 = 36475278.4	3 TONS/DAY 4 GRAM-MOLES/DAY
CO: TOTAL EMISSIONS	FROM ALL CATEGORIE:	******* S TNCLII	**************************************	* * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
INVENTORY CODE: 0	TROM ALL CATEGORIE	5 INCLO	DING ELEVATED FOINIS			
			BEFORE HRLY SCALARS APPLIED AFTER HRLY SCALARS APPLIED) = = =	= 1151.223314 = 1151.364033	4 TONS/DAY 3 TONS/DAY

* * * * *

* * * * *

File: ar_omax.qa(Maximum emission) rate	and corr	responding	g UAM grid	d cel	ll for	each	source	Ca	atego	ory
CATEGORY=	AMP:	MAXIMUM	VALUE=	0.988000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	PMP:	MAXIMUM	VALUE=	2.090000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	OFP:	MAXIMUM	VALUE=	2.840000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	RR:	MAXIMUM	VALUE=	0.029800	TPD	@GRID	CELL	(X,Y):	(22,	47)
CATEGORY=	HLI:	MAXIMUM	VALUE=	0.008990	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	AC:	MAXIMUM	VALUE=	3.130000	TPD	@GRID	CELL	(X,Y):	(39,	50)
CATEGORY=	ACS:	MAXIMUM	VALUE=	1.110000	TPD	@GRID	CELL	(X,Y):	(28,	44)
CATEGORY=	AG:	MAXIMUM	VALUE=	0.000147	TPD	@GRID	CELL	(X,Y):	(7,	69)
CATEGORY=	CST:	MAXIMUM	VALUE=	0.021200	TPD	@GRID	CELL	(X,Y):	(З,	26)
CATEGORY=	IND:	MAXIMUM	VALUE=	0.415000	TPD	@GRID	CELL	(X,Y):	(8,	61)
CATEGORY=	LTC:	MAXIMUM	VALUE=	0.598000	TPD	@GRID	CELL	(X,Y):	(8,	61)
CATEGORY=	FP:	MAXIMUM	VALUE=	0.051600	TPD	@GRID	CELL	(X,Y):	(24,	42)
CATEGORY=	STV:	MAXIMUM	VALUE=	0.125000	TPD	@GRID	CELL	(X,Y):	(17,	35)
CATEGORY=	SFR:	MAXIMUM	VALUE=	0.034000	TPD	@GRID	CELL	(X,Y):	(23,	42)
CATEGORY=	NG:	MAXIMUM	VALUE=	0.220000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	MIN:	MAXIMUM	VALUE=	2.560000	TPD	@GRID	CELL	(X,Y):	(28,	67)
CATEGORY=	MJA:	MAXIMUM	VALUE=	0.000000	TPD	@GRID	CELL	(X,Y):	(28,	67)
CATEGORY=	MJE:	MAXIMUM	VALUE=	5.950000	TPD	@GRID	CELL	(X,Y):	(24,	47)
CATEGORY=	TOT:	MAXIMUM	VALUE=	7.470000	TPD	@GRID	CELL	(X,Y):	(23,	43)
CATEGORY=	SUM:	MAXIMUM	VALUE=	7.467039	TPD	@GRID	CELL	(X,Y):	(23,	43)

Air Quality Modeling Results for the Denver Carbon Monoxide Maintenance Plan UAM and CAL3QHC Estimates at Monitoring Sites and Roadway Intersections

The attached report is one of several files generated by a the Colorado Department of Public Health and Environment's postprocessing batch program "DPLOT.BTM." This particular report, which presents 1-hour and 8-hour average UAM and CAL3QHC estimates for each monitoring site and roadway intersection, was generated by the FORTRAN program "P_STATS." Strings of text at the beginning of the report uniquely identify the modeling scenario. These IDs (see example on page 2) are auto-built by DPLOT.BTM. Automated title generation for each modeling run streamlines postprocessing while enhancing QA procedures.

P_STATS reads SAI's DPLOT format data files which contain hourly concentration estimates from the Urban Airshed Model and observed concentrations from various monitoring sites. In addition, P_STATS reads another set of DPLOT format files containing hourly concentration estimates from the CAL3QHC model. While there are UAM estimates for every monitoring site and roadway intersection, CAL3QHC estimates are available only at intersections where refined modeling was performed. Please note that all "observed" values are from the historic episode on which the modeling is based. The "DATE" column indicates the year of the MODELED estimates; all observed estimates are for the base year (e.g., 1988 for the "high" and "2nd-high" episodes).

A "-9.00" entry indicates that values were not generated. "NA" is used for all 8-hour CAL3QHC entries because 8-hour average values are not computed; instead, hourly CAL3QHC and UAM estimates are summed before 8-hour average UAM/CAL3QHC values are computed. A key to site abbreviations follows:

Monitoring Sites	Description
СМР	CAMP
WBY	Welby
CRG	Carriage
TIV	Tivoli
FED	Roof of Federal Bldg (downtown) - inlet 72 meters above ground
NJH	NJH-E
PLM	Palmer School (inlet on top of 2 story bldg)
ARV	Arvada
ENG	Englewood
BOU	Boulder (Marine St)
GRDS	Boulder Grandys Special Study Site
HLD	Highland
AUR	Aurora
AURS	Aurora Special Study Site
BTN	Brighton
Intersections	
ICMP	Broadway & Champa (CAMP intersection)
U 1	University & 1 st
FA	Foothills & Arapahoe (Boulder)
H U	Hampden & University
ŪĀ	University & Arapahoe
P_I	Parker & Iliff

High: 2013 mob=867.2tpd;1.7;80;I/M 240 w/newest 4myr exempt; MET A7, 09-01-99 EI, 01-11-94 PT, 09-09-99 CAL, 09-01-99 UAM

	High: 2013 mob=867.2tpd;1.7;80;I/M 240 w/newest 4myr exempt;												
SITE A	AVG PERIOD	DATE		HR	POLI	LUTANT	2013 PREDICTED (UAM)	2013 PREDICTED (CAL3QHC)	2013 PREDICTED (UAM+CAL3)	1988 OBSERVED			
CMP	1	Episode Day 1,	2013	0	CO	(PPM)	-9.00	-9.00	-9.00	2.50			
CMP	1	Episode Day 1,	2013	1	CO	(PPM)	-9.00	-9.00	-9.00	1.80			
CMP	1	Episode Day 1,	2013	2	CO	(PPM)	-9.00	-9.00	-9.00	1.50			
CMP	1	Episode Day 1,	2013	3	CO	(PPM)	-9.00	-9.00	-9.00	2.70			
CMP	1	Episode Day 1,	2013	4	CO	(PPM)	-9.00	-9.00	-9.00	3.00			
CMP	1	Episode Day 1,	2013	5	CO	(PPM)	-9.00	-9.00	-9.00	1.80			
CMP	1	Episode Day 1,	2013	6	CO	(PPM)	-9.00	-9.00	-9.00	1.50			
CMP	1	Episode Day 1,	2013	7	CO	(PPM)	-9.00	-9.00	-9.00	1.50			
CMP	1	Episode Day 1,	2013	8	CO	(PPM)	-9.00	-9.00	-9.00	1.40			
CMP	1	Episode Day 1,	2013	9	CO	(PPM)	-9.00	-9.00	-9.00	1.30			
CMP	1	Episode Day 1,	2013	10	CO	(PPM)	-9.00	-9.00	-9.00	1.30			
CMP	1	Episode Day 1,	2013	11	CO	(PPM)	-9.00	-9.00	-9.00	1.80			
CMP	Ţ	Episode Day 1,	2013	12	CO	(PPM)	-9.00	-9.00	-9.00	2.10			
CMP	1	Episode Day I,	2013	13	CO	(PPM)	-9.00	-9.00	-9.00	1.60			
CMP	1	Episode Day I,	2013	14	00	(PPM)	-9.00	-9.00	-9.00	1.60			
CMP	1	Episode Day 1, Episode Day 1	2013	16	CO CO	(PPM)	-9.00	-9.00	-9.00	2.00			
CMP	1	Episode Day 1, Episode Day 1	2013	17	CO	(PPM)	-9.00	-9.00	-9.00	7 60			
CMP	1	Episode Day 1, Episode Day 1	2013	18	CO	(PPM)	-9.00	-9.00	-9.00	6.80			
CMP	1	Episode Day 1, Episode Day 1	2013	10	CO	(PPM)	-9.00	-9.00	-9.00	3 60			
CMP	1	Episode Day 1,	2013	20	CO	(PPM)	-9.00	-9 00	-9 00	1 30			
CMP	1	Episode Day 1,	2013	21	CO	(PPM)	-9.00	-9.00	-9.00	1.20			
CMP	1	Episode Day 1,	2013	22	CO	(PPM)	1.29	-9.00	1.29	1.00			
CMP	1	Episode Day 1,	2013	23	CO	(PPM)	1.81	-9.00	1.81	1.60			
CMP	1	Episode Day 2,	2013	0	CO	(PPM)	2.17	-9.00	2.17	1.50			
CMP	1	Episode Day 2,	2013	1	CO	(PPM)	1.76	-9.00	1.76	0.80			
CMP	1	Episode Day 2,	2013	2	CO	(PPM)	0.89	-9.00	0.89	0.00			
CMP	1	Episode Day 2,	2013	3	CO	(PPM)	0.78	-9.00	0.78	0.00			
CMP	1	Episode Day 2,	2013	4	CO	(PPM)	0.80	-9.00	0.80	0.00			
CMP	1	Episode Day 2,	2013	5	CO	(PPM)	0.74	-9.00	0.74	0.30			
CMP	1	Episode Day 2,	2013	6	CO	(PPM)	0.95	-9.00	0.95	0.80			
CMP	1	Episode Day 2,	2013	.7	CO	(PPM)	2.91	-9.00	2.91	4.10			
CMP	1	Episode Day 2,	2013	8	00	(PPM)	1 1 2	-9.00	1.03	5.40			
CMP	1	Episode Day 2, Episode Day 2	2013	10	CO	(PPM)	1.12	-9.00	1.12	2.90			
CMP	1	Episode Day 2, Episode Day 2	2013	11	CO	(PPM) (DDM)	1 26	-9.00	1 26	4 50			
CMP	1	Episode Day 2,	2013	12	CO	(PPM)	1.35	-9.00	1.35	4.00			
CMP	1	Episode Day 2,	2013	13	CO	(PPM)	1.46	-9.00	1.46	4.30			
CMP	1	Episode Day 2,	2013	14	CO	(PPM)	1.89	-9.00	1.89	4.50			
CMP	1	Episode Day 2,	2013	15	CO	(PPM)	3.03	-9.00	3.03	7.00			
CMP	1	Episode Day 2,	2013	16	CO	(PPM)	8.78	-9.00	8.78	45.00			
CMP	1	Episode Day 2,	2013	17	CO	(PPM)	13.85	-9.00	13.85	50.50			
CMP	1	Episode Day 2,	2013	18	CO	(PPM)	14.65	-9.00	14.65	30.00			
CMP	1	Episode Day 2,	2013	19	CO	(PPM)	11.12	-9.00	11.12	3.90			
CMP	1	Episode Day 2,	2013	20	CO	(PPM)	4.55	-9.00	4.55	2.10			
CMP	1	Episode Day 2,	2013	21	CO	(PPM)	3.47	-9.00	3.47	2.30			
CMP	1	Episode Day 2,	2013	22	00	(PPM)	3.58	-9.00	3.58	3.80			
CMP	1	Episode Day 2, Episode Day 3	2013	23 0	CO	(PPM) (DDM)	2 31	-9.00	2 21	4.00			
CMP	1	Episode Day 3,	2013	1	CO	(PPM)	1 61	-9 00	1 61	2 60			
CMP	1	Episode Day 3.	2013	2	CO	(PPM)	1.04	-9.00	1.04	1.10			
CMP	1	Episode Day 3,	2013	3	CO	(PPM)	0.58	-9.00	0.58	0.80			
CMP	1	Episode Day 3,	2013	4	CO	(PPM)	0.62	-9.00	0.62	1.10			
CMP	1	Episode Day 3,	2013	5	CO	(PPM)	1.20	-9.00	1.20	2.40			
CMP	1	Episode Day 3,	2013	6	CO	(PPM)	2.16	-9.00	2.16	5.10			
CMP	1	Episode Day 3,	2013	7	CO	(PPM)	4.74	-9.00	4.74	9.30			
CMP	1	Episode Day 3,	2013	8	CO	(PPM)	2.56	-9.00	2.56	10.70			
CMP	1	Episode Day 3,	2013	9	CO	(PPM)	2.37	-9.00	2.37	7.20			
CMP	1	Episode Day 3,	2013	10	CO	(PPM)	2.15	-9.00	2.15	5.10			
CMP	1	Episode Day 3,	2013	10	00	(PPM)	1.46	-9.00	1.46	3.60			
CMP	1	Episode Day 3,	∠U13 2012	12	CO	(PPM)	-9.00	-9.00	-9.00	2.50			
CMP	⊥ 1	Episode Day 3,	2013	11 11	00	(PPM)	-9.00	-9.00	-9.00	2.00			
CMD	⊥ 1	Episode Day 3,	2013	⊥4 15	CO	(PPM)	-9.00	-9.00	-9.00	2.40			
CMD	⊥ 1	Episode Day 3,	2013	16	CO	(DDM)	_9.00	_9.00	_9 00	10 10			
CMP	1	Episode Day 3,	2013	17	CO	(PPM)	-9.00	-9.00	-9.00	12.90			
CMP	1	Episode Day 3	2013	18	CO	(PPM)	-9.00	-9.00	-9.00	5.30			
CMP	1	Episode Dav 3	2013	19	C.O	(PPM)	-9.00	-9.00	-9.00	3.90			
CMP	1	Episode Day 3,	2013	20	CO	(PPM)	-9.00	-9.00	-9.00	5.30			
CMP	1	Episode Day 3,	2013	21	CO	(PPM)	-9.00	-9.00	-9.00	4.00			
CMP	1	Episode Day 3,	2013	22	CO	(PPM)	-9.00	-9.00	-9.00	2.90			
CMP	1	Episode Day 3,	2013	23	CO	(PPM)	-9.00	-9.00	-9.00	4.50			

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2	tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0010	1000
	האיניב	uр		2013 הפיים למיים	2013 הפיים במשפת	2013 DBEDICTED	1988 OBGEBVED
PERIOD	DAIE	пк	POLLOIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
				(==== ,	(<u>2</u>)	(,	
WBY 1	Episode Day 1, 2013	0	CO (PPM)	-9.00	-9.00	-9.00	4.00
WBY 1	Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	4.50
WBY 1	Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	3.00
WBY 1	Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	3.00
WBI I	Episode Day 1, 2013 Episode Day 1, 2013	4 5	CO (PPM)	-9.00	-9.00	-9.00	1.30
WBY 1	Episode Day 1, 2013	6	CO (PPM)	-9.00	-9.00	-9.00	1.30
WBY 1	Episode Day 1, 2013	7	CO (PPM)	-9.00	-9.00	-9.00	1.70
WBY 1	Episode Day 1, 2013	8	CO (PPM)	-9.00	-9.00	-9.00	1.60
WBY 1	Episode Day 1, 2013	9	CO (PPM)	-9.00	-9.00	-9.00	1.20
WBY 1	Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	1.00
WBY 1	Episode Day 1, 2013	11	CO (PPM)	-9.00	-9.00	-9.00	1.00
WBI 1	Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	0.80
WBI 1	Episode Day 1, 2013 Episode Day 1 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.30
WBY 1	Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	0.40
WBY 1	Episode Day 1, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	0.80
WBY 1	Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	4.30
WBY 1	Episode Day 1, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	5.40
WBY 1	Episode Day 1, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	3.00
WBY 1	Episode Day 1, 2013 Episode Day 1, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	4.60
WBI 1	Episode Day 1, 2013 Episode Day 1, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	1 50
WBY 1	Episode Day 1, 2013	23	CO (PPM)	1.36	-9.00	1.36	1.90
WBY 1	Episode Day 2, 2013	0	CO (PPM)	1.52	-9.00	1.52	4.30
WBY 1	Episode Day 2, 2013	1	CO (PPM)	1.42	-9.00	1.42	3.40
WBY 1	Episode Day 2, 2013	2	CO (PPM)	1.33	-9.00	1.33	2.20
WBY 1	Episode Day 2, 2013	3	CO (PPM)	1.14	-9.00	1.14	1.60
WBY 1	Episode Day 2, 2013	4	CO (PPM)	0.90	-9.00	0.90	1.40
WBY 1	Episode Day 2, 2013 Episode Day 2, 2013	5	CO (PPM) CO (PPM)	0.84	-9.00	0.84	1.40
WBY 1	Episode Day 2, 2013	7	CO (PPM)	1.51	-9.00	1.51	5.70
WBY 1	Episode Day 2, 2013	8	CO (PPM)	1.00	-9.00	1.00	6.90
WBY 1	Episode Day 2, 2013	9	CO (PPM)	0.95	-9.00	0.95	4.90
WBY 1	Episode Day 2, 2013	10	CO (PPM)	1.08	-9.00	1.08	2.50
WBY 1	Episode Day 2, 2013	11	CO (PPM)	0.90	-9.00	0.90	1.40
WBY 1	Episode Day 2, 2013	12	CO (PPM)	0.75	-9.00	0.75	0.90
WBY 1	Episode Day 2, 2013 Episode Day 2, 2013	13 14	CO (PPM) CO (PPM)	0.61	-9.00	0.61	1 00
WBY 1	Episode Day 2, 2013	15	CO (PPM)	0.82	-9.00	0.82	1.20
WBY 1	Episode Day 2, 2013	16	CO (PPM)	1.56	-9.00	1.56	2.60
WBY 1	Episode Day 2, 2013	17	CO (PPM)	2.60	-9.00	2.60	9.50
WBY 1	Episode Day 2, 2013	18	CO (PPM)	3.64	-9.00	3.64	13.40
WBY 1	Episode Day 2, 2013	19	CO (PPM)	2.77	-9.00	2.77	9.40
WBY 1	Episode Day 2, 2013 Episode Day 2, 2013	20	CO (PPM)	3./3 5.11	-9.00	3./3 5.11	7.70
WBI 1	Episode Day 2, 2013 Episode Day 2 2013	21	CO (PPM)	5 16	-9.00	5.11	7 30
WBY 1	Episode Day 2, 2013	23	CO (PPM)	5.20	-9.00	5.20	8.50
WBY 1	Episode Day 3, 2013	0	CO (PPM)	4.46	-9.00	4.46	9.40
WBY 1	Episode Day 3, 2013	1	CO (PPM)	2.63	-9.00	2.63	7.30
WBY 1	Episode Day 3, 2013	2	CO (PPM)	1.34	-9.00	1.34	3.00
WBY 1	Episode Day 3, 2013	3	CO (PPM)	0.81	-9.00	0.81	1.70
WBI 1	Episode Day 3, 2013 Episode Day 3, 2013	5	CO (PPM)	0.05	-9.00	0.05	1 70
WBY 1	Episode Day 3, 2013	6	CO (PPM)	0.80	-9.00	0.80	2.80
WBY 1	Episode Day 3, 2013	7	CO (PPM)	1.04	-9.00	1.04	2.80
WBY 1	Episode Day 3, 2013	8	CO (PPM)	1.02	-9.00	1.02	-9.00
WBY 1	Episode Day 3, 2013	9	CO (PPM)	1.16	-9.00	1.16	3.60
WBY 1	Episode Day 3, 2013	10	CO (PPM)	1.15	-9.00	1.15	2.70
WBY 1	Episode Day 3, 2013 Episode Day 2, 2013	12	CO (PPM)	0.92	-9.00	0.92	0.60
WBI 1	Episode Day 3, 2013 Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	0.40
WBY 1	Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.30
WBY 1	Episode Day 3, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	0.30
WBY 1	Episode Day 3, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	0.80
WBY 1	Episode Day 3, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	1.60
WBY 1	Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	1.30
WBY 1	Episode Day 3, 2013 Episode Day 3, 2013	20 TA	CO (PPM)	-9.00 _9.00	-9.00	-9.00	3.1U 6 10
WBY 1	Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	6.00
WBY 1	Episode Day 3, 2013	22	CO (PPM)	-9.00	-9.00	-9.00	5.40
WBY 1	Episode Day 3, 2013	23	CO (PPM)	-9.00	-9.00	-9.00	4.40
CRG 1	Episode Day 1, 2013	0	CO (PPM)	-9.00	-9.00	-9.00	4.80
CRG 1	Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	4.50
CRG 1	Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	3.90

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2t	pd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0010	1000
		ир		2013 תידיי תידפת	2013 הפיים במשפת	2013 DBEDICTED	1988 OBGEBVED
PERIOD	DAIE	пк	POLLOIANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
1 21(10)				(0111)	(01111000110)	(0111)01120)	
CRG 1	Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	3.50
CRG 1	Episode Day 1, 2013	4	CO (PPM)	-9.00	-9.00	-9.00	1.30
CRG I	Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	0.90
CRG I	Episode Day 1, 2013	6 7	CO (PPM)	-9.00	-9.00	-9.00	1.70
CRG 1	Episode Day 1, 2013 Episode Day 1, 2013	8	CO (PPM)	-9.00	-9.00	-9.00	2.70
CRG 1	Episode Day 1, 2013	9	CO (PPM)	-9.00	-9.00	-9.00	1.30
CRG 1	Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	1.60
CRG 1	Episode Day 1, 2013	11	CO (PPM)	-9.00	-9.00	-9.00	1.10
CRG 1	Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	1.00
CRG 1	Episode Day 1, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	0.40
CRG 1	Episode Day 1, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.50
CRG I	Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	-9.00
CRG 1	Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	6.00
CRG 1	Episode Day 1, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	8.00
CRG 1	Episode Day 1, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	10.80
CRG 1	Episode Day 1, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	3.50
CRG 1	Episode Day 1, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	3.40
CRG 1	Episode Day 1, 2013	22	CO (PPM)	1.68	-9.00	1.68	3.50
CRG I	Episode Day 1, 2013	23	CO (PPM)	1.92	-9.00	1.92	3.30
CRG 1	Episode Day 2, 2013 Episode Day 2, 2013	1	CO (PPM)	2.20	-9.00	2.20	4 90
CRG 1	Episode Day 2, 2013	2	CO (PPM)	1.43	-9.00	1.43	3.50
CRG 1	Episode Day 2, 2013	3	CO (PPM)	0.75	-9.00	0.75	2.50
CRG 1	Episode Day 2, 2013	4	CO (PPM)	0.58	-9.00	0.58	2.60
CRG 1	Episode Day 2, 2013	5	CO (PPM)	0.63	-9.00	0.63	2.70
CRG 1	Episode Day 2, 2013	6	CO (PPM)	0.81	-9.00	0.81	5.80
CRG I	Episode Day 2, 2013	./	CO (PPM)	1.75	-9.00	1.75	10.10
CRG 1	Episode Day 2, 2013 Episode Day 2, 2013	8 9	CO (PPM) CO (PPM)	1.05	-9.00	1.05	4 00
CRG 1	Episode Day 2, 2013	10	CO (PPM)	0.79	-9.00	0.79	1.90
CRG 1	Episode Day 2, 2013	11	CO (PPM)	0.81	-9.00	0.81	1.20
CRG 1	Episode Day 2, 2013	12	CO (PPM)	1.08	-9.00	1.08	1.50
CRG 1	Episode Day 2, 2013	13	CO (PPM)	1.20	-9.00	1.20	1.30
CRG 1	Episode Day 2, 2013	14	CO (PPM)	1.37	-9.00	1.37	1.60
CRG 1	Episode Day 2, 2013	15	CO (PPM)	1.79	-9.00	1.79	0.80
CRG I	Episode Day 2, 2013 Episode Day 2, 2013	10	CO (PPM)	3.93	-9.00	3.93	0.4U 9.50
CRG 1	Episode Day 2, 2013 Episode Day 2, 2013	18	CO (PPM)	5.32	-9.00	5.32	13.70
CRG 1	Episode Day 2, 2013	19	CO (PPM)	5.10	-9.00	5.10	16.30
CRG 1	Episode Day 2, 2013	20	CO (PPM)	4.30	-9.00	4.30	12.80
CRG 1	Episode Day 2, 2013	21	CO (PPM)	3.36	-9.00	3.36	7.10
CRG 1	Episode Day 2, 2013	22	CO (PPM)	2.64	-9.00	2.64	4.90
CRG I	Episode Day 2, 2013	23	CO (PPM)	2.UI 1.65	-9.00	2.01	8.60
CRG 1	Episode Day 3, 2013	1	CO (PPM)	1 47	-9.00	1.05	4 30
CRG 1	Episode Day 3, 2013	2	CO (PPM)	1.13	-9.00	1.13	5.40
CRG 1	Episode Day 3, 2013	3	CO (PPM)	0.72	-9.00	0.72	3.90
CRG 1	Episode Day 3, 2013	4	CO (PPM)	0.56	-9.00	0.56	1.90
CRG 1	Episode Day 3, 2013	5	CO (PPM)	0.72	-9.00	0.72	3.00
CRG I	Episode Day 3, 2013	6	CO (PPM)	1.41	-9.00	1.41	3.10
CRG I	Episode Day 3, 2013 Episode Day 3, 2013	2 2	CO (PPM)	2.81 1.36	-9.00	2.81	5 10
CRG 1	Episode Day 3, 2013	9	CO (PPM)	1.23	-9.00	1.23	4.10
CRG 1	Episode Day 3, 2013	10	CO (PPM)	0.94	-9.00	0.94	1.50
CRG 1	Episode Day 3, 2013	11	CO (PPM)	0.84	-9.00	0.84	-9.00
CRG 1	Episode Day 3, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	0.70
CRG 1	Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	0.40
CRG 1	Episode Day 3, 2013	14 1 E	CO (PPM)	-9.00	-9.00	-9.00	0.30
	Episode Day 3, 2013 Episode Day 3, 2013	15 16	CO (PPM)	-9.00 _0 00	-9.00	-9.00	2 00
CRG 1	Episode Day 3, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	7.00
CRG 1	Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	9.50
CRG 1	Episode Day 3, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	12.40
CRG 1	Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	10.10
CRG 1	Episode Day 3, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	7.90
CRG 1	Episode Day 3, 2013	22	CO (PPM)	-9.00	-9.00	-9.00	7.40
NTH 1	Episode Day 1, 2013	⊿ <i>3</i> ∩	CO (PPM)	-9.00 _9.00	-9.00 _9.00	-9.00 _9.00	7.70 2.30
NJH 1	Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	1.50
NJH 1	Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	1.40
NJH 1	Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	1.30
NJH 1	Episode Day 1, 2013	4	CO (PPM)	-9.00	-9.00	-9.00	2.20
NJH 1	Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	2.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2	2tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0.01.0	1000
OTER AND				2013	2013	2013	1988
SITE AVG	DATE	HR	POLLUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
PERIOD				(UAM)	(CAL3QHC)	(UAM+CAL3)	
NTII 1	Enjardo Davi 1 2012	6	(MDD ()	0.00	0.00	0.00	2 90
NUH 1	Episode Day 1, 2013	07	CO (PPM)	-9.00	-9.00	-9.00	2.00
	Episode Day 1, 2013 Episode Day 1, 2013	8	CO (PPM)	-9.00	-9.00	-9.00	2 00
	Episode Day 1, 2013 Episode Day 1, 2013	9	CO (PPM)	-9.00	-9.00	-9.00	2.00
N.TH 1	Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	2.20
N.TH 1	Episode Day 1, 2013 Episode Day 1 2013	11	CO (PPM)	-9.00	-9.00	-9.00	1 60
NTH 1	Episode Day 1, 2013	12	CO (PPM)	-9 00	-9 00	-9 00	1 00
N.TH 1	Episode Day 1, 2013	13	CO (PPM)	-9.00	-9 00	-9.00	1 00
N.TH 1	Episode Day 1, 2013	14	CO (PPM)	-9 00	-9 00	-9 00	0 90
NJH 1	Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	1,10
N.TH 1	Episode Day 1, 2013	16	CO (PPM)	-9.00	-9 00	-9.00	2 90
NJH 1	Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	8.80
NJH 1	Episode Day 1, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	4.00
NJH 1	Episode Day 1, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	3.10
NJH 1	Episode Day 1, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	2.80
NJH 1	Episode Day 1, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	2.60
NJH 1	Episode Day 1, 2013	22	CO (PPM)	1.16	-9.00	1.16	2.40
NJH 1	Episode Day 1, 2013	23	CO (PPM)	1.30	-9.00	1.30	2.00
NJH 1	Episode Day 2, 2013	0	CO (PPM)	1.15	-9.00	1.15	2.30
NJH 1	Episode Day 2, 2013	1	CO (PPM)	0.70	-9.00	0.70	1.30
NJH 1	Episode Day 2, 2013	2	CO (PPM)	0.48	-9.00	0.48	1.20
NJH 1	Episode Day 2, 2013	3	CO (PPM)	0.47	-9.00	0.47	1.10
NJH 1	Episode Day 2, 2013	4	CO (PPM)	0.50	-9.00	0.50	0.90
NJH 1	Episode Day 2, 2013	5	CO (PPM)	0.51	-9.00	0.51	1.60
NJH 1	Episode Day 2, 2013	б	CO (PPM)	0.73	-9.00	0.73	3.30
NJH 1	Episode Day 2, 2013	7	CO (PPM)	1.86	-9.00	1.86	6.40
NJH 1	Episode Day 2, 2013	8	CO (PPM)	1.28	-9.00	1.28	6.10
NJH 1	Episode Day 2, 2013	9	CO (PPM)	0.95	-9.00	0.95	3.20
NJH 1	Episode Day 2, 2013	10	CO (PPM)	0.62	-9.00	0.62	2.80
NJH 1	Episode Day 2, 2013	11	CO (PPM)	0.64	-9.00	0.64	2.00
NJH 1	Episode Day 2, 2013	12	CO (PPM)	0.70	-9.00	0.70	2.00
NJH 1	Episode Day 2, 2013	13	CO (PPM)	0.75	-9.00	0.75	2.70
NJH 1	Episode Day 2, 2013	14	CO (PPM)	1.14	-9.00	1.14	3.20
NJH 1	Episode Day 2, 2013	15	CO (PPM)	1.72	-9.00	1.72	4.60
NJH 1	Episode Day 2, 2013	16	CO (PPM)	3.50	-9.00	3.50	19.70
NJH 1	Episode Day 2, 2013	17	CO (PPM)	4.57	-9.00	4.57	22.90
NJH 1	Episode Day 2, 2013	18	CO (PPM)	5.27	-9.00	5.27	19.70
NJH 1	Episode Day 2, 2013	19	CO (PPM)	6.38	-9.00	6.38	8.60
NJH 1	Episode Day 2, 2013	20	CO (PPM)	2.70	-9.00	2.70	6.20
NJH 1	Episode Day 2, 2013	21	CO (PPM)	1.30	-9.00	1.30	4.40
NJH 1	Episode Day 2, 2013	22	CO (PPM)	1.38	-9.00	1.38	4.10
	Episode Day 2, 2013 Episode Day 2, 2013	23 0	CO (PPM)	1.12	-9.00	1.12	3.20
	Episode Day 3, 2013	1	CO (PPM)	0.79	-9.00	0.79	2.30
	Episode Day 3, 2013 Episode Day 3, 2013	2	CO (PPM)	0.03	-9.00	0.03	1 30
	Episode Day 3, 2013 Episode Day 3, 2013	2	CO (PPM)	0.48	-9.00	0.48	1.30
N.TH 1	Episode Day 3, 2013	4	CO (PPM)	0.34	-9.00	0.34	0.00
N.TH 1	Episode Day 3, 2013 Episode Day 3, 2013	5	CO (PPM)	0.30	-9.00	0.30	1 60
NTH 1	Episode Day 3, 2013	5	CO (DDM)	0.10	-9.00	0.10	2 90
NTH 1	Episode Day 3, 2013	7	CO (PPM)	2 00	-9 00	2 00	7 00
NTH 1	Episode Day 3, 2013	, 8	CO (PPM)	1 26	-9 00	1 26	5 70
NJH 1	Episode Day 3, 2013	9	CO (PPM)	1.01	-9.00	1.01	4,90
NJH 1	Episode Day 3. 2013	10	CO (PPM)	0.86	-9.00	0.86	3.60
NJH 1	Episode Day 3, 2013	11	CO (PPM)	0.83	-9.00	0.83	1.30
NJH 1	Episode Day 3, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	1.10
NJH 1	Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
NJH 1	Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.60
NJH 1	Episode Day 3, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	0.80
NJH 1	Episode Day 3, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	4.40
NJH 1	Episode Day 3, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	6.60
NJH 1	Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	5.10
NJH 1	Episode Day 3, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	6.90
NJH 1	Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	5.50
NJH 1	Episode Day 3, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	4.00
NJH 1	Episode Day 3, 2013	22	CO (PPM)	-9.00	-9.00	-9.00	3.60
NJH 1	Episode Day 3, 2013	23	CO (PPM)	-9.00	-9.00	-9.00	2.40
TIV 1	Episode Day 1, 2013	0	CO (PPM)	-9.00	-9.00	-9.00	-9.00
TIV 1	Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	-9.00
TIV 1	Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	-9.00
TIV 1	Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	-9.00
TIV 1	Episode Day 1, 2013	4	CO (PPM)	-9.00	-9.00	-9.00	-9.00
TIV 1	Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	-9.00
TIV 1	Episode Day 1, 2013	6	CO (PPM)	-9.00	-9.00	-9.00	-9.00
TIV 1	Episode Day 1, 2013	7	CO (PPM)	-9.00	-9.00	-9.00	-9.00
	Episode Day 1, 2013	8	CO (PPM)	-9.00	-9.00	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.2	2tpd;1.7;	80;I/N	4 240 w	/newest 4myr	exempt;	0.01.0	1000
C T T T	7110				ידדיד א אדידי	2013	2013	2013	1988 ODCEDVED
SILL	AVG DFRIOD	DATE	HR	POLI	JUIANI	PREDICIED (IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
	IBRIOD					(OAN)	(CADSQUE)	(OANICALS)	
TIV	1	Episode Day 1, 2013	9	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TTV	1	Episode Day 1, 2013	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 2013	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 1, 2013	22	CO	(PPM)	1.41	-9.00	1.41	-9.00
TIV	1	Episode Day 1, 2013	23	CO	(PPM)	1.72	-9.00	1.72	-9.00
TTV	1	Episode Day 2, 2013	0	CO	(PPM)	2.07	-9.00	2.07	-9.00
	1	Episode Day 2, 2013	1	CO	(PPM)	1.70	-9.00	1.70	-9.00
	1	Episode Day 2, 2013 Episode Day 2 2013	2	CO	(PPM) (DDM)	0.88	-9.00	0.88	-9.00
TTV	1	Episode Day 2, 2013	4	CO	(PPM)	0.64	-9.00	0.64	-9.00
TIV	1	Episode Day 2, 2013	5	CO	(PPM)	0.69	-9.00	0.69	-9.00
TIV	1	Episode Day 2, 2013	6	CO	(PPM)	0.90	-9.00	0.90	-9.00
TIV	1	Episode Day 2, 2013	7	CO	(PPM)	2.56	-9.00	2.56	-9.00
TIV	1	Episode Day 2, 2013	8	CO	(PPM)	1.40	-9.00	1.40	-9.00
TIV	1	Episode Day 2, 2013	9	CO	(PPM)	0.99	-9.00	0.99	-9.00
TIV	1	Episode Day 2, 2013	10	CO	(PPM)	0.87	-9.00	0.87	-9.00
TIV	1	Episode Day 2, 2013	11	CO	(PPM)	1.13	-9.00	1.13	-9.00
	1	Episode Day 2, 2013	12	00	(PPM)	1.51	-9.00	1.51	-9.00
	1	Episode Day 2, 2013 Episode Day 2, 2013	14	CO	(PPM)	1.04	-9.00	1.04	-9.00
	1	Episode Day 2, 2013 Episode Day 2, 2013	15	CO	(PPM)	2.87	-9.00	2.87	-9.00
TIV	1	Episode Day 2, 2013	16	CO	(PPM)	8.89	-9.00	8.89	-9.00
TIV	1	Episode Day 2, 2013	17	CO	(PPM)	14.28	-9.00	14.28	-9.00
TIV	1	Episode Day 2, 2013	18	CO	(PPM)	14.36	-9.00	14.36	-9.00
TIV	1	Episode Day 2, 2013	19	CO	(PPM)	8.32	-9.00	8.32	-9.00
TIV	1	Episode Day 2, 2013	20	CO	(PPM)	3.84	-9.00	3.84	-9.00
TIV	1	Episode Day 2, 2013	21	CO	(PPM)	3.05	-9.00	3.05	-9.00
TIV	1	Episode Day 2, 2013	22	CO	(PPM)	2.83	-9.00	2.83	-9.00
	1	Episode Day 2, 2013	∠3	CO	(PPM)	2.05	-9.00	2.05	-9.00
	1	Episode Day 3, 2013 Episode Day 3, 2013	1	CO	(PPM) (DDM)	2.00	-9.00	1 49	-9.00
TIV	1	Episode Day 3, 2013	2	CO	(PPM)	1.03	-9.00	1.03	-9.00
TIV	1	Episode Day 3, 2013	3	CO	(PPM)	0.58	-9.00	0.58	-9.00
TIV	1	Episode Day 3, 2013	4	CO	(PPM)	0.58	-9.00	0.58	-9.00
TIV	1	Episode Day 3, 2013	5	CO	(PPM)	1.19	-9.00	1.19	-9.00
TIV	1	Episode Day 3, 2013	6	CO	(PPM)	2.29	-9.00	2.29	-9.00
TIV	1	Episode Day 3, 2013	7	CO	(PPM)	4.97	-9.00	4.97	-9.00
TIV	1	Episode Day 3, 2013	8	CO	(PPM)	2.65	-9.00	2.65	-9.00
TTV	1	Episode Day 3, 2013	9	CO	(PPM)	2.22	-9.00	2.22	-9.00
	1	Episode Day 3, 2013	10	CO	(PPM)	1.51 1.12	-9.00	1.51	-9.00
	⊥ 1	Episode Day 3, 2013	12	CO	(PPM)	-9 NN	-9.00	_9 NN	-9.00
TTV	1	Episode Day 3, 2013	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 3, 2013	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 3, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 3, 2013	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 3, 2013	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 3, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TIV	1	Episode Day 3, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
TTV	1	Episode Day 3, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
L L V דיד זי	1	Episode Day 3, 2013 Episode Day 2 2012	∠⊥ 20	00	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 3, 2013 Episode Day 3, 2013	22	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
ICMP	1	Episode Day 1, 2013	0	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1	Episode Day 1, 2013	ĩ	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1	Episode Day 1, 2013	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1	Episode Day 1, 2013	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1	Episode Day 1, 2013	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1	Episode Day 1, 2013	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1	Episode Day 1, 2013	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1	Episode Day 1, 2013	./	00	(PPM)	-9.00	-9.00	-9.00	-9.00
TCMP	⊥ 1	Episode Day 1, 2013 Episode Day 1, 2012	8 Q	00	(PPM)	-9.00 _9.00	-9.00	-9.00	-9.00
TCMP	1	Episode Day 1, 2013	ر 1 ∩	CO	(DDM)	-9.00	-9.00	-9.00	_9 00
ICMP	1	Episode Day 1, 2013	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867	.2tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;		1000
		IID		2013	2013	2013	1988
SITE AVG	DATE	HR	POLLUTANT	PREDICTED (IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
FERIO				(OAH)	(CALISQUE)	(OAMICALS)	
ICMP	1 Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 1, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 1, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 1, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 1, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 1, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 1, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	I Episode Day I, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP .	I Episode Day I, 2013	22	CO (PPM)	1.29	-9.00	1.29	-9.00
ICMP .	1 Episode Day 1, 2013	23	CO (PPM)	1.81 2.17	-9.00	1.81	-9.00
T CMD	1 Episode Day 2, 2013	1	CO (PPM)	2.17	-9.00	2.17	-9.00
TCMP	1 Episode Day 2, 2013	2	CO (PPM)	0.89	-9 00	0.89	-9.00
ICMP	1 Episode Day 2, 2013	3	CO (PPM)	0.78	-9.00	0.78	-9.00
ICMP	1 Episode Day 2, 2013	4	CO (PPM)	0.80	-9.00	0.80	-9.00
ICMP	1 Episode Day 2, 2013	5	CO (PPM)	0.74	-9.00	0.74	-9.00
ICMP	1 Episode Day 2, 2013	б	CO (PPM)	0.95	-9.00	0.95	-9.00
ICMP	1 Episode Day 2, 2013	7	CO (PPM)	2.91	-9.00	2.91	-9.00
ICMP	1 Episode Day 2, 2013	8	CO (PPM)	1.63	-9.00	1.63	-9.00
ICMP	1 Episode Day 2, 2013	9	CO (PPM)	1.12	-9.00	1.12	-9.00
ICMP	1 Episode Day 2, 2013	10	CO (PPM)	0.98	-9.00	0.98	-9.00
ICMP	1 Episode Day 2, 2013	11	CO (PPM)	1.26	-9.00	1.26	-9.00
ICMP .	I Episode Day 2, 2013	12	CO (PPM)	1.35	-9.00	1.35	-9.00
ICMP	I Episode Day 2, 2013	13	CO (PPM)	1.46	-9.00	1.40	-9.00
ICMP .	1 Episode Day 2, 2013	14	CO (PPM)	1.89	1 20	3./3 / /1	-9.00
TCMP	1 Episode Day 2, 2013	15	CO (PPM)	3.03 8.78	2.88	11 66	-9.00
TCMP	1 Episode Day 2, 2013	17	CO (PPM)	13.85	2.00	15.92	-9.00
ICMP	1 Episode Day 2, 2013	18	CO (PPM)	14.65	1.15	15.80	-9.00
ICMP	1 Episode Day 2, 2013	19	CO (PPM)	11.12	0.35	11.47	-9.00
ICMP	1 Episode Day 2, 2013	20	CO (PPM)	4.55	0.35	4.90	-9.00
ICMP	1 Episode Day 2, 2013	21	CO (PPM)	3.47	0.00	3.47	-9.00
ICMP	1 Episode Day 2, 2013	22	CO (PPM)	3.58	0.46	4.04	-9.00
ICMP	1 Episode Day 2, 2013	23	CO (PPM)	3.34	0.12	3.46	-9.00
ICMP	1 Episode Day 3, 2013	0	CO (PPM)	2.31	-9.00	2.31	-9.00
ICMP	1 Episode Day 3, 2013	1	CO (PPM)	1.61	-9.00	1.61	-9.00
ICMP .	L Episode Day 3, 2013	2	CO (PPM)	1.04	-9.00	1.04	-9.00
ICMP .	1 Episode Day 3, 2013	3	CO (PPM)	0.58	-9.00	0.58	-9.00
TCMD	1 Episode Day 3, 2013	5	CO (PPM)	1 20	-9.00	1 20	-9.00
TCMP	1 Episode Day 3, 2013	6	CO (PPM)	2.16	-9.00	2.16	-9.00
ICMP	1 Episode Day 3, 2013	7	CO (PPM)	4.74	-9.00	4.74	-9.00
ICMP	1 Episode Day 3, 2013	8	CO (PPM)	2.56	-9.00	2.56	-9.00
ICMP	1 Episode Day 3, 2013	9	CO (PPM)	2.37	-9.00	2.37	-9.00
ICMP	1 Episode Day 3, 2013	10	CO (PPM)	2.15	-9.00	2.15	-9.00
ICMP	1 Episode Day 3, 2013	11	CO (PPM)	1.46	-9.00	1.46	-9.00
ICMP	1 Episode Day 3, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP .	L Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	L Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	-9.00
TCMP .	1 Episode Day 3, 2013	15	CO (PPM)	-9.00 _0 00	-9.00 _0 00	-9.00	-9.00
ICMP	1 Episode Day 3, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 3, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 3, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 3, 2013	22	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ICMP	1 Episode Day 3, 2013	23	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ENG	L Episode Day 1, 2013	0	CO (PPM)	-9.00	-9.00	-9.00	1.00
ENG	L Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	1.00
FNG	I Episode Day 1, 2013	2	CO (PPM)	-9.00 _0 00	-9.00 _0 00	-9.00	1 60
ENG	1 Episode Day 1, 2013	2 2	CO (DDM)	_9.00	_9.00 _9.00	-9.00	1 70
ENG	1 Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	1.70
ENG	1 Episode Day 1, 2013	6	CO (PPM)	-9.00	-9.00	-9.00	1.90
ENG	1 Episode Day 1, 2013	7	CO (PPM)	-9.00	-9.00	-9.00	1.80
ENG	1 Episode Day 1, 2013	8	CO (PPM)	-9.00	-9.00	-9.00	1.30
ENG	1 Episode Day 1, 2013	9	CO (PPM)	-9.00	-9.00	-9.00	1.00
ENG	1 Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	0.70
ENG	1 Episode Day 1, 2013	11	CO (PPM)	-9.00	-9.00	-9.00	0.50
ENG	1 Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	0.60
ENG	1 Episode Day 1, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	0.60
ENG	т вріsоde Day I, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.70

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867	7.2tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0010	1000
SITE AVG PERIO	DATE D	HR	POLLUTANT	2013 PREDICTED (UAM)	2013 PREDICTED (CAL3QHC)	2013 PREDICTED (UAM+CAL3)	1988 OBSERVED
ENG	1 Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	0.70
ENG	1 Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	1.50
ENG	1 Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	4.40
ENG	1 Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	2.40
ENG	1 Episode Day 1, 2013	20	CO (PPM)	-9.00	-9 00	-9.00	1 20
ENG	1 Episode Day 1, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	1.20
ENG	1 Episode Day 1, 2013	22	CO (PPM)	0.74	-9.00	0.74	1.70
ENG	1 Episode Day 1, 2013	23	CO (PPM)	0.46	-9.00	0.46	1.20
ENG	1 Episode Day 2, 2013	0	CO (PPM)	0.34	-9.00	0.34	0.70
ENG	1 Episode Day 2, 2013	1	CO (PPM)	0.32	-9.00	0.32	0.70
ENG	1 Episode Day 2, 2013	2	CO (PPM)	0.29	-9.00	0.29	0.50
ENG	1 Episode Day 2, 2013	3	CO (PPM)	0.28	-9.00	0.28	0.50
ENG	1 Episode Day 2, 2013	4	CO (PPM)	0.30	-9.00	0.30	0.50
ENG	1 Episode Day 2, 2013	5	CO (PPM)	0.33	-9.00	0.33	1.20
ENG	1 Episode Day 2, 2013	6	CO (PPM)	0.44	-9.00	0.44	2.40
ENG	1 Episode Day 2, 2013	7	CO (PPM)	1.00	-9.00	1.00	4.70
ENG	1 Episode Day 2, 2013	8	CO (PPM)	0.00	-9.00	0.60	4.10
ENG	1 Episode Day 2, 2013	10	CO (PPM)	0.30	-9.00	0.30	1.20
ENG	1 Episode Day 2, 2013	11	CO (PPM)	0.32	-9 00	0.32	0.70
ENG	1 Episode Day 2, 2013	12	CO (PPM)	0.51	-9.00	0.51	0.80
ENG	1 Episode Day 2, 2013	13	CO (PPM)	0.66	-9.00	0.66	1.10
ENG	1 Episode Day 2, 2013	14	CO (PPM)	0.82	-9.00	0.82	1.50
ENG	1 Episode Day 2, 2013	15	CO (PPM)	1.53	-9.00	1.53	2.90
ENG	1 Episode Day 2, 2013	16	CO (PPM)	3.81	-9.00	3.81	6.20
ENG	1 Episode Day 2, 2013	17	CO (PPM)	3.73	-9.00	3.73	9.40
ENG	1 Episode Day 2, 2013	18	CO (PPM)	1.39	-9.00	1.39	3.20
ENG	1 Episode Day 2, 2013	19	CO (PPM)	0.70	-9.00	0.70	1.90
ENG	1 Episode Day 2, 2013	20	CO (PPM)	0.45	-9.00	0.45	1.60
ENG	1 Episode Day 2, 2013	21	CO (PPM)	0.44	-9.00	0.44	1.00
FNG	1 Episode Day 2, 2013	22	CO (PPM)	0.44	-9.00	0.44	2.30
ENG	1 Episode Day 3, 2013	0	CO (PPM)	0.39	-9.00	0.39	1.50
ENG	1 Episode Day 3, 2013	1	CO (PPM)	0.35	-9.00	0.35	1.00
ENG	1 Episode Day 3, 2013	2	CO (PPM)	0.28	-9.00	0.28	0.60
ENG	1 Episode Day 3, 2013	3	CO (PPM)	0.26	-9.00	0.26	0.50
ENG	1 Episode Day 3, 2013	4	CO (PPM)	0.26	-9.00	0.26	0.50
ENG	1 Episode Day 3, 2013	5	CO (PPM)	0.28	-9.00	0.28	0.70
ENG	1 Episode Day 3, 2013	6	CO (PPM)	0.43	-9.00	0.43	1.80
ENG	1 Episode Day 3, 2013	7	CO (PPM)	1.25	-9.00	1.25	3.50
ENG	1 Episode Day 3, 2013	8	CO (PPM)	0.58	-9.00	0.58	-9.00
ENG	1 Episode Day 3, 2013	10	CO (PPM)	0.61	-9.00	0.01	2.00
FNG	1 Episode Day 3, 2013	11	CO (PPM)	0.02	-9.00	0.02	2.00
ENG	1 Episode Day 3, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	0.60
ENG	1 Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	0.60
ENG	1 Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.60
ENG	1 Episode Day 3, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	0.60
ENG	1 Episode Day 3, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	1.60
ENG	1 Episode Day 3, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	3.80
ENG	L Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	4.30
ENG	1 Episode Day 3, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	3.00
ENG	1 Episode Day 3, 2013	∠∪ 21	CO (PPM)	-9.00	-9.00 _0 00	-9.00	2.1U 1 40
ENG	1 Episode Day 3, 2013	∠⊥ 22	CO (DDM)	-9.00	-9.00	-9.00	1 10
ENG	1 Episode Day 3, 2013	23	CO (PPM)	-9.00	-9.00	-9.00	1.50
BOU	1 Episode Day 1, 2013	0	CO (PPM)	-9.00	-9.00	-9.00	0.40
BOU	1 Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	0.00
BOU	1 Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	0.30
BOU	1 Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	0.50
BOU	1 Episode Day 1, 2013	4	CO (PPM)	-9.00	-9.00	-9.00	1.00
BOU	L Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	0.90
BOU	1 Episode Day 1, 2013	6	CO (PPM)	-9.00	-9.00	-9.00	0.90
BOU	1 Episode Day 1, 2013	/	CO (PPM)	-9.00	-9.00	-9.00	1 00
BOU	1 Episode Day 1, 2013	Ö	CO (PPM)	-9.00	-9.00 _0 nn	-9.00	1.0U 2 70
BOII	1 Episode Day 1 2013	10	CO (DDM)	-9.00	-9.00	-9.00	1 60
BOU	1 Episode Day 1, 2013	11	CO (PPM)	-9.00	-9.00	-9.00	1.10
BOU	1 Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	0.70
BOU	1 Episode Day 1, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	0.60
BOU	1 Episode Day 1, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.80
BOU	1 Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	1.50
BOU	1 Episode Day 1, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	1.20
BOU	1 Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	0.40

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867	2.2tpd;1.7;	80;I/	M 240 w	/newest 4myr	exempt;	0.01.0	1.0.0.0
אזע אידרא	G	רארד	ЧP	DOT.	ד.דויד אוידי	2013 PREDICTED	2013 PREDICTED	2013 PREDICTED	1988 Observed
PEH	RIOD	DATE	IIIC	FOL	LUIANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
						(====)	(<u>x</u> ,	(,	
BOU	1	Episode Day 1, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	0.30
BOU	1	Episode Day 1, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	0.10
BOU	1	Episode Day 1, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	0.00
BOU	1	Episode Day 1, 2013	21	00	(PPM)	-9.00	-9.00	-9.00	0.00
BOU	1	Episode Day 1, 2013 Episode Day 1, 2013	22	CO	(PPM) (DDM)	0.97	-9.00	0.97	0.20
BOU	1	Episode Day 2, 2013	0	CO	(PPM)	0.25	-9.00	0.25	0.20
BOU	1	Episode Day 2, 2013	1	CO	(PPM)	0.23	-9.00	0.23	0.20
BOU	1	Episode Day 2, 2013	2	CO	(PPM)	0.23	-9.00	0.23	0.10
BOU	1	Episode Day 2, 2013	3	CO	(PPM)	0.23	-9.00	0.23	0.10
BOU	1	Episode Day 2, 2013	4	CO	(PPM)	0.24	-9.00	0.24	0.30
BOU	1	Episode Day 2, 2013	5	CO	(PPM)	0.30	-9.00	0.30	0.60
BOU	1	Episode Day 2, 2013 Episode Day 2, 2013	7	CO	(PPM) (DDM)	0.52	-9.00	0.52	2 60
BOU	1	Episode Day 2, 2013	8	CO	(PPM)	0.41	-9.00	0.41	2.20
BOU	1	Episode Day 2, 2013	9	CO	(PPM)	0.50	-9.00	0.50	4.20
BOU	1	Episode Day 2, 2013	10	CO	(PPM)	0.65	-9.00	0.65	2.90
BOU	1	Episode Day 2, 2013	11	CO	(PPM)	0.65	-9.00	0.65	1.30
BOU	1	Episode Day 2, 2013	12	CO	(PPM)	0.63	-9.00	0.63	1.40
BOU	1	Episode Day 2, 2013	13	CO	(PPM)	0.57	-9.00	0.57	1.20
BOU	1	Episode Day 2, 2013 Episode Day 2, 2013	14	C0	(PPM) (DDM)	0.78	-9.00	0./8	1.20
BOU	1	Episode Day 2, 2013 Episode Day 2 2013	16	CO	(PPM)	1 15	-9 00	1 15	2 00
BOU	1	Episode Day 2, 2013	17	CO	(PPM)	0.63	-9.00	0.63	1.30
BOU	1	Episode Day 2, 2013	18	CO	(PPM)	0.49	-9.00	0.49	1.10
BOU	1	Episode Day 2, 2013	19	CO	(PPM)	0.51	-9.00	0.51	6.50
BOU	1	Episode Day 2, 2013	20	CO	(PPM)	0.40	-9.00	0.40	1.60
BOU	1	Episode Day 2, 2013	21	CO	(PPM)	0.35	-9.00	0.35	1.30
BOU	1	Episode Day 2, 2013 Episode Day 2, 2013	22	C0	(PPM) (DDM)	0.28	-9.00	0.28	0.80
BOU	1	Episode Day 2, 2013 Episode Day 3, 2013	23	CO	(PPM)	0.20	-9.00	0.25	0.40
BOU	1	Episode Day 3, 2013	ı 1	CO	(PPM)	0.24	-9.00	0.24	0.00
BOU	1	Episode Day 3, 2013	2	CO	(PPM)	0.24	-9.00	0.24	0.00
BOU	1	Episode Day 3, 2013	3	CO	(PPM)	0.25	-9.00	0.25	0.00
BOU	1	Episode Day 3, 2013	4	CO	(PPM)	0.25	-9.00	0.25	0.10
BOU	1	Episode Day 3, 2013	5	CO	(PPM)	0.24	-9.00	0.24	0.40
BOU	1	Episode Day 3, 2013	6 7	C0 C0	(PPM) (DDM)	0.45	-9.00	0.45	0.80
BOU	1	Episode Day 3, 2013 Episode Day 3, 2013	8	CO	(PPM)	0.46	-9.00	0.46	2.30
BOU	1	Episode Day 3, 2013	9	CO	(PPM)	0.40	-9.00	0.40	2.90
BOU	1	Episode Day 3, 2013	10	CO	(PPM)	0.31	-9.00	0.31	0.70
BOU	1	Episode Day 3, 2013	11	CO	(PPM)	0.36	-9.00	0.36	0.90
BOU	1	Episode Day 3, 2013	12	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 3, 2013 Episode Day 2, 2012	14	C0	(PPM) (DDM)	-9.00	-9.00	-9.00	1.30
BOU	1	Episode Day 3, 2013 Episode Day 3, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	0.70
BOU	1	Episode Day 3, 2013	16	CO	(PPM)	-9.00	-9.00	-9.00	3.50
BOU	1	Episode Day 3, 2013	17	CO	(PPM)	-9.00	-9.00	-9.00	1.60
BOU	1	Episode Day 3, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 3, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	0.90
BOU	1	Episode Day 3, 2013	20	00	(PPM)	-9.00	-9.00	-9.00	0.80
BOU	1	Episode Day 3, 2013 Episode Day 3, 2013	21	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.80
BOU	1	Episode Day 3, 2013	23	CO	(PPM)	-9.00	-9.00	-9.00	0.70
GRDS	1	Episode Day 1, 2013	0	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2013	1	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2013	2	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2013	3	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2013 Episode Day 1, 2013	4	C0	(PPM) (DDM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2013 Episode Day 1, 2013	6	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode Day 1, 2013	7	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode Day 1, 2013	8	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode Day 1, 2013	9	CO	(PPM)	-9.00	-9.00	-9.00	4.00
GRDS	1	Episode Day 1, 2013	10	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode Day 1, 2013	11	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode Day 1, 2013	⊥∠ 1 2	00	(PPM)	-9.00	-9.00	-9.00	∠.UU 1 00
GRDS	1	Episode Day 1, 2013	14	CO	(PPM)	-9.00	-9.00	-9.00	1.00
GRDS	1	Episode Day 1, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2013	16	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2013	17	CO	(PPM)	-9.00	-9.00	-9.00	3.00
GRDS	1	Episode Day 1, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	2.00
GRDS	T	Episode Day I, 2013	∠∪	CO	(PHM)	-9.00	-9.00	-9.00	∠.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.	2tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;		
					2013	2013	2013	1988
SITE	AVG	DATE	HR	POLLUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
	PERIOD				(UAM)	(CAL3QHC)	(UAM+CAL3)	
CDDC	1	Enizada Davi 1 2012	01		0 00	0 00	0.00	2 00
GRDS	1	Episode Day 1, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 1, 2013	22	CO (PPM)	1.27	-9.00	1.27	4.00
GRDS	1	Episode Day 1, 2013	23	CO (PPM)	0.50	-9.00	0.50	0.80
GRDS	1	Episode Day 2, 2013	1	CO (PPM)	0.20	-9.00	0.20	0.50
GRDS	1	Episode Day 2, 2013 Episode Day 2 2013	2	CO (PPM)	0.24	-9.00	0.24	0.30
GRDS	1	Episode Day 2, 2013	2	CO (DDM)	0.21	-9.00	0.21	0.70
GRDS	1	Episode Day 2, 2013 Episode Day 2, 2013	4	CO (PDM)	0.21	-9 00	0.21	1 10
GRDS	1	Episode Day 2, 2013 Episode Day 2, 2013	5	CO (PPM)	0.20	-9 00	0.20	1 50
GRDS	1	Episode Day 2, 2013 Episode Day 2, 2013	6	CO (PPM)	0.50	-9 00	0.50	5 30
GRDS	1	Episode Day 2, 2013	7	CO (PPM)	1 14	-9 00	1 14	16 30
GRDS	1	Episode Day 2, 2013	, 8	CO (PPM)	0.53	-9.00	0.53	16.60
GRDS	1	Episode Day 2, 2013	9	CO (PPM)	0.58	-9.00	0.58	6.10
GRDS	1	Episode Day 2, 2013	10	CO (PPM)	0.76	-9.00	0.76	2.00
GRDS	1	Episode Day 2, 2013	11	CO (PPM)	0.74	-9.00	0.74	1.80
GRDS	1	Episode Day 2, 2013	12	CO (PPM)	0.63	-9.00	0.63	1.80
GRDS	1	Episode Day 2 2013	13	CO (PPM)	0.58	-9 00	0.58	-9 00
GRDS	1	Episode Day 2, 2013	14	CO (PPM)	0.81	-9.00	0.81	2 40
GRDS	1	Episode Day 2, 2013	15	CO (PPM)	1.56	-9.00	1.56	3,50
GRDS	1	Episode Day 2, 2013	16	CO (DDM)	1 57	-9.00	1 57	4 70
GRDS	1	Episode Day 2, 2013	17	CO (PPM)	0.81	-9.00	0.81	10 00
GRDS	1	Episode Day 2, 2013	18	CO (PPM)	0 62	-9 00	0 62	13,20
GRDS	1	Episode Day 2, 2013 Episode Day 2, 2013	19	CO (PDM)	0.02	-9 00	0.02	14 00
GRDS	1	Episode Day 2, 2013	20	CO (DDM)	0.01	-9.00	0.01	10 60
GRDS	1	Episode Day 2, 2013	21	CO (PPM)	0.1/	-9 00	0.17	7,30
GRDS	1	Episode Day 2, 2013	22	CO (DDM)	0.30	-9.00	0.30	3 30
GRDS	1	Episode Day 2, 2013 Episode Day 2, 2013	23	CO (PPM)	0.30	-9 00	0.30	2 30
GRDS	1	Episode Day 3, 2013	0	CO (PPM)	0.27	-9 00	0.27	1 00
GRDS	1	Episode Day 3, 2013	1	CO (DDM)	0.20	-9.00	0.20	0.00
GRDS	1	Episode Day 3, 2013 Episode Day 3, 2013	2	CO (PPM)	0.24	-9.00	0.24	0.00
GRDS	1	Episode Day 3, 2013	2	CO (DDM)	0.21	-9.00	0.21	0.00
CPDS	1	Episode Day 3, 2013	4	CO (DDM)	0.25	_9 00	0.25	0.00
GRDS	1	Episode Day 3, 2013		CO (PPM)	0.20	-9.00	0.20	1 00
GRDS	1	Episode Day 3, 2013	5	CO (PPM)	0.24	_9 00	0.24	2 00
CRDS	1	Episode Day 3, 2013	7	CO (PPM)	1 00	-9.00	1 00	2.00
CRDS	1	Episode Day 3, 2013	0	CO (PPM)	1.00	-9.00	0.52	9.00
CRDS	1	Episode Day 3, 2013	0	CO (PPM)	0.55	-9.00	0.55	4 00
CRDS	1	Episode Day 3, 2013	10	CO (PPM)	0.42	-9.00	0.42	1 00
GRDS	1	Episode Day 3, 2013	10	CO (PPM)	0.32	-9.00	0.32	1.00
GRDS	1	Episode Day 3, 2013	12	CO (PPM)	_9 00	-9.00	_9 00	1.00
CRDS	1	Episode Day 3, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	2.00
GRDS	1	Episode Day 3, 2013	14	CO (PPM)	-9.00	_9 00	-9.00	1 00
GRDS	1	Episode Day 3, 2013 Episode Day 3, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	1 00
GRDS	1	Episode Day 3, 2013	16	CO (PDM)	-9 00	-9 00	-9 00	4 00
GRDS	1	Episode Day 3, 2013	17	CO (DDM)	-9 00	-9.00	-9.00	6 00
GRDS	1	Episode Day 3, 2013	18	CO (PPM)	-9 00	-9 00	-9 00	4 00
GRDS	1	Episode Day 3, 2013	19	CO (PPM)	-9.00	-9 00	-9.00	4 00
GRDS	1	Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	9 00
GRDS	1	Episode Day 3, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	7 00
GRDS	1	Episode Day 3 2013	22	CO (PPM)	-9.00	-9 00	-9.00	4 00
GRDS	1	Episode Day 3, 2013	23	CO (PPM)	-9.00	-9.00	-9.00	4.00
ARV	1	Episode Day 1. 2013	0	CO (PPM)	-9.00	-9.00	-9.00	2.70
ARV	1	Episode Day 1. 2013	1	CO (PPM)	-9.00	-9.00	-9.00	3.30
ARV	1	Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	2.50
ARV	1	Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	1.60
ARV	1	Episode Day 1. 2013	4	CO (PPM)	-9.00	-9.00	-9.00	0.90
ARV	1	Episode Day 1. 2013	5	CO (PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode Dav 1. 2013	ĥ	CO (PPM)	-9.00	-9.00	-9.00	1.60
ARV	1	Episode Day 1, 2013	7	CO (PPM)	-9.00	-9.00	-9.00	2.50
ARV	1	Episode Day 1. 2013	8	CO (PPM)	-9.00	-9.00	-9.00	4.20
ARV	1	Episode Day 1. 2013	9	CO (PPM)	-9.00	-9.00	-9.00	2.00
ARV	1	Episode Day 1. 2013	10	CO (PPM)	-9.00	-9.00	-9.00	1.70
ARV	1	Episode Dav 1. 2013	11	CO (PPM)	-9.00	-9.00	-9.00	1.90
ARV	1	Episode Day 1. 2013	12	CO (PPM)	-9.00	-9.00	-9.00	1.50
ARV	1	Episode Day 1. 2013	13	CO (PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode Day 1, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode Dav 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	1.30
ARV	1	Episode Day 1. 2013	16	CO (PPM)	-9.00	-9.00	-9.00	2.20
ARV	1	Episode Day 1. 2013	17	CO (PPM)	-9.00	-9.00	-9.00	3.80
ARV	1	Episode Day 1. 2013	18	CO (PPM)	-9.00	-9.00	-9.00	3.70
ARV	1	Episode Day 1, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	3.90
ARV	1	Episode Day 1, 2013	2.0	CO (PPM)	-9.00	-9.00	-9.00	4.50
ARV ARV	1	Episode Day 1 2013	20	CO (DDM)	-9 00	-9 00	-9 00	6 50
	⊥ 1	Episode Day 1 2013	21 20	CO (DDM)	2.00	_9 00	2.00	5 40
ARV	1	Episode Day 1, 2013	2.3	CO (PPM)	2.42	-9.00	2.42	2.40

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

High: 2013 mob=867.2tpd;1.7;80;I/M 240 w/newest 4myr exemp						exempt;	0010	1000	
O T T T	7770			DOTI	ידיד א אידידי	2013	2013	2013	1988 ODGEDVED
SILE	AVG	DATE	HR	РОГГС	UIANI	(IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
	IBRIOD					(0411)	(CALISQUE)	(OAN CALD)	
ARV	1	Episode Day 2, 2013	0	CO	(PPM)	1.19	-9.00	1.19	1.70
ARV	1	Episode Day 2, 2013	1	CO	(PPM)	0.69	-9.00	0.69	1.30
ARV	1	Episode Day 2, 2013	2	CO	(PPM)	0.90	-9.00	0.90	1.50
ARV	1	Episode Day 2, 2013	3	CO	(PPM)	0.62	-9.00	0.62	1.40
ARV	1	Episode Day 2, 2013	4	CO	(PPM)	0.37	-9.00	0.37	1.20
ARV	1	Episode Day 2, 2013	5	CO	(PPM)	0.36	-9.00	0.36	1.80
ARV ARV	1	Episode Day 2, 2013	7	CO	(PPM)	0.43	-9.00	0.43	9.60
ARV	1	Episode Day 2, 2013	, 8	CO	(PPM)	0.63	-9.00	0.63	11.00
ARV	1	Episode Day 2, 2013	9	CO	(PPM)	0.76	-9.00	0.76	6.60
ARV	1	Episode Day 2, 2013	10	CO	(PPM)	0.75	-9.00	0.75	4.40
ARV	1	Episode Day 2, 2013	11	CO	(PPM)	0.83	-9.00	0.83	2.20
ARV	1	Episode Day 2, 2013	12	CO	(PPM)	0.96	-9.00	0.96	1.70
ARV	1	Episode Day 2, 2013	13	CO	(PPM)	1.03	-9.00	1.03	1.60
ARV ARV	1	Episode Day 2, 2013 Episode Day 2, 2013	14	CO	(PPM) (DDM)	1.10	-9.00	1.10	2 60
ARV	1	Episode Day 2, 2013 Episode Day 2, 2013	16	CO	(PPM)	2 92	-9.00	2 92	5 20
ARV	1	Episode Day 2, 2013	17	CO	(PPM)	2.17	-9.00	2.17	6.30
ARV	1	Episode Day 2, 2013	18	CO	(PPM)	0.95	-9.00	0.95	6.20
ARV	1	Episode Day 2, 2013	19	CO	(PPM)	0.53	-9.00	0.53	6.00
ARV	1	Episode Day 2, 2013	20	CO	(PPM)	0.44	-9.00	0.44	5.10
ARV	1	Episode Day 2, 2013	21	CO	(PPM)	0.45	-9.00	0.45	4.10
ARV	1	Episode Day 2, 2013	22	CO	(PPM)	0.42	-9.00	0.42	3.20
ARV ARV	1	Episode Day 2, 2013 Episode Day 3, 2013	∠3 0	CO	(PPM) (DDM)	0.37	-9.00	0.37	2.30
ARV	1	Episode Day 3, 2013 Episode Day 3, 2013	1	CO	(PPM)	0.33	-9.00	0.33	1 20
ARV	1	Episode Day 3, 2013	2	CO	(PPM)	0.30	-9.00	0.30	1.10
ARV	1	Episode Day 3, 2013	3	CO	(PPM)	0.28	-9.00	0.28	0.90
ARV	1	Episode Day 3, 2013	4	CO	(PPM)	0.25	-9.00	0.25	0.60
ARV	1	Episode Day 3, 2013	5	CO	(PPM)	0.28	-9.00	0.28	1.10
ARV	1	Episode Day 3, 2013	6	CO	(PPM)	0.58	-9.00	0.58	2.90
ARV	1	Episode Day 3, 2013	7	CO	(PPM)	1.33	-9.00	1.33	8.20
ARV ARV	1	Episode Day 3, 2013 Episode Day 3, 2013	0 9	CO	(PPM) (DDM)	0.74	-9.00	0.74	7.30
ARV	1	Episode Day 3, 2013	10	CO	(PPM)	0.73	-9.00	0.73	-9.00
ARV	1	Episode Day 3, 2013	11	CO	(PPM)	0.76	-9.00	0.76	1.00
ARV	1	Episode Day 3, 2013	12	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode Day 3, 2013	13	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV	1	Episode Day 3, 2013	14	CO	(PPM)	-9.00	-9.00	-9.00	0.90
ARV	1	Episode Day 3, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	1.00
ARV ARV	1	Episode Day 3, 2013 Episode Day 3, 2013	17	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	2.40
ARV	1	Episode Day 3, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	5.20
ARV	1	Episode Day 3, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	4.80
ARV	1	Episode Day 3, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	3.90
ARV	1	Episode Day 3, 2013	21	CO	(PPM)	-9.00	-9.00	-9.00	4.00
ARV	1	Episode Day 3, 2013	22	CO	(PPM)	-9.00	-9.00	-9.00	4.30
ARV	1	Episode Day 3, 2013	23	CO	(PPM)	-9.00	-9.00	-9.00	2.00
HLD	1	Episode Day 1, 2013	0	CO	(PPM)	-9.00	-9.00	-9.00	0.60
HLD	1	Episode Day 1, 2013 Episode Day 1, 2013	2	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD	1	Episode Day 1, 2013	3	CO	(PPM)	-9.00	-9.00	-9.00	0.50
HLD	1	Episode Day 1, 2013	4	CO	(PPM)	-9.00	-9.00	-9.00	0.40
HLD	1	Episode Day 1, 2013	5	CO	(PPM)	-9.00	-9.00	-9.00	1.20
HLD	1	Episode Day 1, 2013	6	CO	(PPM)	-9.00	-9.00	-9.00	1.50
HLD	1	Episode Day 1, 2013	7	CO	(PPM)	-9.00	-9.00	-9.00	0.70
HLD	1	Episode Day 1, 2013 Epigodo Day 1, 2013	8	CO	(PPM)	-9.00	-9.00	-9.00	0.30
HLD	1	Episode Day 1, 2013 Episode Day 1, 2013	10	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode Day 1, 2013	11	CO	(PPM)	-9.00	-9.00	-9.00	0.10
HLD	1	Episode Day 1, 2013	12	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD	1	Episode Day 1, 2013	13	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD	1	Episode Day 1, 2013	14	CO	(PPM)	-9.00	-9.00	-9.00	0.00
HLD	1	Episode Day 1, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	0.10
HLD	1	Episode Day 1, 2013	10 17	CO	(PPM)	-9.00	-9.00	-9.00	0.50
нцр П. П.	1	Episode Day 1, 2013 Episode Day 1, 2013	⊥/ 1 Q	CO CO	(PPM) (DDM)	-9.00 _9.00	-9.00 _0 00	-9.00 _9.00	0.40
תיוא	1 1	Episode Day 1, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	0.30
HLD	1	Episode Day 1, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode Day 1, 2013	21	CO	(PPM)	-9.00	-9.00	-9.00	0.20
HLD	1	Episode Day 1, 2013	22	CO	(PPM)	0.25	-9.00	0.25	0.30
HLD	1	Episode Day 1, 2013	23	CO	(PPM)	0.24	-9.00	0.24	0.20
HLD	1	Episode Day 2, 2013	0	CO	(PPM)	0.23	-9.00	0.23	0.20
HLD	1	Episode Day 2, 2013	1	CO	(PPM)	0.22	-9.00	0.22	0.20
пци	1	EPISOUE Day 2, 2013	7	CU	(1 / 1	0.21	-9.00	0.21	0.10

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2	tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0010	1000
		uр		2013 הפרטד (הרפת	2013 תקיים בתקפת		
PERIOD	DAIE	пк	POLLOTANI	UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
				(==== ,	((,	
HLD 1	Episode Day 2, 2013	3	CO (PPM)	0.21	-9.00	0.21	0.20
HLD 1	Episode Day 2, 2013	4	CO (PPM)	0.22	-9.00	0.22	0.10
HLD 1	Episode Day 2, 2013	5	CO (PPM)	0.23	-9.00	0.23	0.10
HLD I	Episode Day 2, 2013	6	CO (PPM)	0.28	-9.00	0.28	0.10
н.р. 1	Episode Day 2, 2013 Episode Day 2, 2013	8	CO (PPM)	0.39	-9.00	0.39	0.10
HLD 1	Episode Day 2, 2013	9	CO (PPM)	0.23	-9.00	0.23	0.00
HLD 1	Episode Day 2, 2013	10	CO (PPM)	0.23	-9.00	0.23	0.00
HLD 1	Episode Day 2, 2013	11	CO (PPM)	0.24	-9.00	0.24	0.00
HLD 1	Episode Day 2, 2013	12	CO (PPM)	0.40	-9.00	0.40	0.00
HLD 1	Episode Day 2, 2013	13	CO (PPM)	0.47	-9.00	0.47	0.00
HLD 1	Episode Day 2, 2013	14	CO (PPM)	0.62	-9.00	0.62	0.00
ב ענות 1	Episode Day 2, 2013	15	CO (PPM)	2.05	-9.00	2.05	4 00
HLD 1	Episode Day 2, 2013	17	CO (PPM)	3.20	-9.00	3.20	4.40
HLD 1	Episode Day 2, 2013	18	CO (PPM)	1.09	-9.00	1.09	1.60
HLD 1	Episode Day 2, 2013	19	CO (PPM)	0.39	-9.00	0.39	0.70
HLD 1	Episode Day 2, 2013	20	CO (PPM)	0.30	-9.00	0.30	0.50
HLD 1	Episode Day 2, 2013	21	CO (PPM)	0.28	-9.00	0.28	0.30
HLD 1	Episode Day 2, 2013	22	CO (PPM)	0.26	-9.00	0.26	0.30
HLD I	Episode Day 2, 2013 Episode Day 2, 2013	23	CO (PPM)	0.24	-9.00	0.24	0.40
ньр 1	Episode Day 3, 2013	1	CO (PPM)	0.25	-9 00	0.23	0.40
HLD 1	Episode Day 3, 2013	2	CO (PPM)	0.22	-9.00	0.22	0.50
HLD 1	Episode Day 3, 2013	3	CO (PPM)	0.22	-9.00	0.22	0.50
HLD 1	Episode Day 3, 2013	4	CO (PPM)	0.22	-9.00	0.22	0.40
HLD 1	Episode Day 3, 2013	5	CO (PPM)	0.24	-9.00	0.24	0.30
HLD 1	Episode Day 3, 2013	6	CO (PPM)	0.31	-9.00	0.31	0.30
HLD L	Episode Day 3, 2013 Episode Day 2, 2013	0	CO (PPM)	0.89	-9.00	0.89	1.90
н.р. 1	Episode Day 3, 2013 Episode Day 3, 2013	0 9	CO (PPM)	0.71	-9.00	0.71	2.00
HLD 1	Episode Day 3, 2013	10	CO (PPM)	0.47	-9.00	0.47	0.00
HLD 1	Episode Day 3, 2013	11	CO (PPM)	0.39	-9.00	0.39	0.00
HLD 1	Episode Day 3, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	0.00
HLD 1	Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	0.00
HLD 1	Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.00
HLD I	Episode Day 3, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	0.00
нцр 1	Episode Day 3, 2013 Episode Day 3, 2013	17	CO (PPM) CO (PPM)	-9.00	-9.00	-9.00	0.70
HLD 1	Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	0.20
HLD 1	Episode Day 3, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	0.20
HLD 1	Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	0.80
HLD 1	Episode Day 3, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	0.30
HLD 1	Episode Day 3, 2013	22	CO (PPM)	-9.00	-9.00	-9.00	0.40
HLD L	Episode Day 3, 2013 Episode Day 1, 2013	23 0	CO (PPM) CO (PPM)	-9.00	-9.00	-9.00	1.80
AUR 1	Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	4	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR L	Episode Day 1, 2013	6 7	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 AUR 1	Episode Day 1, 2013 Episode Day 1, 2013	8	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	9	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	11	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	⊥4 1⊑	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1	Episode Day 1, 2013	22	CO (PPM)	0.78	-9.00	0.78	-9.00
AUK L	Episode Day 1, 2013	∠ 3 ∩	CO (PPM)	U./9 N KQ	-9.00 _9.00	U./9 N KQ	-9.00
AUR 1	Episode Day 2, 2013	1	CO (PPM)	0.44	-9.00	0.44	-9.00
AUR 1	Episode Day 2, 2013	2	CO (PPM)	0.34	-9.00	0.34	-9.00
AUR 1	Episode Day 2, 2013	3	CO (PPM)	0.31	-9.00	0.31	-9.00
AUR 1	Episode Day 2, 2013	4	CO (PPM)	0.33	-9.00	0.33	-9.00
AUR 1	Episode Day 2, 2013	5	CO (PPM)	0.37	-9.00	0.37	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

SUTH AVID PERIOD DATE: Her POLLITIME PARCING		High: 2013 mob=8	867.2tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0.01.0	1000
Bit Int Int Classical Charlen Control Charlen Control Classical Classical		ישייי א כו			2013	2013	2013	1988 ODGEDVED
ALVE 1 DELADOR Day 2 2013 7 CO PPHY 1 Lis ->00 1 ->00 >00	SILE AVG	DATE	HR	POLLUIANI	PREDICIED (IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
NRE 1 2plands Day 2 QUI3 6 CO (PM) 0.54 -9.00 1.56 -9.00 ALR 1 Pplands Pyl 2 QUI3 7 CO (PM) 1.16 -9.00 1.53 -9.00 0.53 -9.00 0.53 -9.00 0.53 -9.00 0.53 -9.00 0.54 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 1.33 -9.00 <	I BICIC				(OPIN)	(CALISQUE)	(OANI CALLS)	
AUR 1 Be lands Day 2 2013 7 CO CPMM 1.16 -9.00 1.26 -9.00 AUR 1 Be lands Day 2 2013 10 CO CPMM 0.41 -9.00 0.41 -9.00 AUR 1 Belands Day 2 2013 11 CO CPMM 0.41 -9.00 0.41 -9.00 AUR 1 Belands Day 2 2013 11 CO CPMM 0.45 -9.00 0.45 -9.00 AUR 1 Belands Day 2 2.013 14 CO CPMM 1.24 -9.00 0.45 -9.00 AUR 1 Belands Day 2 2.013 13 CO CPMM 1.23 -9.00 4.023 -9.00 AUR 1 Belands Day 2 2.013 12 CO CPMM 1.27 -9.00 4.023 -9.00 AUR 1 Belands <td>AUR</td> <td>1 Episode Day 2, 2013</td> <td>б</td> <td>CO (PPM)</td> <td>0.54</td> <td>-9.00</td> <td>0.54</td> <td>-9.00</td>	AUR	1 Episode Day 2, 2013	б	CO (PPM)	0.54	-9.00	0.54	-9.00
AUR 1 Enclade Day J 2013 3 CC0 FPRI 090 -9.00 080 -9.00 AUR 1 Episode Day J 2013 11 CO IPPRI 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.41 -9.00 0.43 -9.00 0.43 -9.00 1.24 -9.00	AUR	1 Episode Day 2, 2013	7	CO (PPM)	1.16	-9.00	1.16	-9.00
AlfR 1 Epicator bay 3, 2013 3 CO (PPM) C.6.13 -9.00 C.6.14 -9.00 AlfR 1 Epicator Day 3, 2013 11 CC (PPM) C.6.41 -9.00 C.6.41 -9.00 AlfR 1 Epicator Day 3, 2013 11 CC (PPM) C.6.46 -9.00 C.6.57 -9.00 ARR 1 Epicator Day 4, 2013 16 CC (PPM) C.1.67 -9.00 C.2.58 -9.00 ARR 1 Epicator Day 4, 2013 16 CC (PPM) 1.231 -9.00 2.36 -9.00 ARR 1 Epicator Day 4, 2013 10 CC (PPM) 1.96 -9.00 3.95 -9.00 ARR 1 Epicator Day 4, 2013 20 CC (PPM) 1.92 -9.00 3.95 -9.00 ARR 1 Epicator Day 4, 2013 21 CC (PPM) 0.38 -9.00 0.38 -9.00 0.38 -9.00 0.48	AUR	1 Episode Day 2, 2013	8	CO (PPM)	0.90	-9.00	0.90	-9.00
AUR 1 Delatose Day J. 2011 01 CO 1PPN () 0.41 -9.00 0.44 -9.00 AUR 1 Episode Day J. 2013 13 CO (PPN) 0.45 -9.00 0.46 -9.00 AUR 1 Episode Day J. 2013 13 CO (PPN) 0.41 -9.00 0.55 -9.00 AUR 1 Episode Day J. 2013 13 CO (PPN) 1.46 -9.00 1.46 -9.00 AUR 1 Episode Day J. 2013 13 CO (PPN) 1.46 -9.00 3.22 -9.00 AUR 1 Episode Day J. 2013 22 CO (PPN) 1.47 -9.00 1.27 -9.00 AUR 1 Episode Day J. 2013 22 CO (PPN) 0.33 -9.00 0.33 -9.00 AUR 1 Episode Day J. 2013 22 CO (PPN) 0	AUR	1 Episode Day 2, 2013	9	CO (PPM)	0.63	-9.00	0.63	-9.00
ANIL 1 Episode Day 2 2013 11 CO DPRM 0.4 -5.00 0.4 -5.00 AUR 1 Episode Day 2 2013 13 CO DPRM 0.55 -5.00 0.77 -5.00 0.77 -5.00 AUR 1 Episode Day 2 2013 14 CO DPRM 0.77 -5.00 0.77 -5.00 AUR 1 Episode Day 2 2013 14 CO DPRM 1.24 -5.00 2.2 -5.00 AUR 1 Episode Day 2 2013 13 CO DPRM 2.36 -9.00 1.27 -9.00 AUR 1 Episode Day 2 2013 23 CO DPRM 1.25 -9.00 0.33 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31	AUR	1 Episode Day 2, 2013	10	CO (PPM)	0.41	-9.00	0.41	-9.00
ANR 1 Delonde Day 7. 2013 14 CC (PRN) 0.75 -9.00 0.75 -9.00 AUR 1 Epicode Day 7. 2013 14 CC (PRN) 0.75 -9.00 1.23 -9.00 AUR 1 Epicode Day 7. 2013 15 CC (PRN) 1.23 -9.00 1.23 -9.00 AUR 1 Epicode Day 7. 2013 13 CC (PRN) 2.22 -9.00 3.26 -9.00 3.26 -9.00 3.26 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.08 -9.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	AUR	1 Episode Day 2, 2013	11	CO (PPM)	0.41	-9.00	0.41	-9.00
norm 1 bp:sode Day 2 2013 14 CO PERH 0.77 -5.01 0.77 -5.01 AUR 1 Bp:sode Day 2 2013 15 CO PEHN 2.35 -9.00 2.38 -9.00 AUR 1 Bp:sode Day 2 2.013 15 CO PEHN 2.35 -9.00 2.32 -9.00 AUR 1 Bp:sode Day 2 2.013 10 CO (PEHN) 4.08 -9.00 4.08 -9.00 AUR 1 Bp:sode Day 2 2.013 20 CO (PEH) 1.07 -9.00 1.27 -9.00 AUR 1 Bp:sode Day 2 2.013 20 CO (PEHN) 0.18 -9.00 0.070 -9.00 AUR 1 Bp:sode Day 2 2.013 2 CO (PEHN) 0.23 -9.00 0.31 -9.00 AUR 1 Bp:	AUR	1 Episode Day 2, 2013	12	CO (PPM)	0.40	-9.00	0.40	-9.00
AUR 1 DFisode Day 2, 2013 15 CO (PWH) 1.23 -9.00 1.23 -9.00 AUR 1 Byisode Day 2, 2013 15 CO (PWH) 2.56 -9.00 2.56 -9.00 2.56 -9.00 3.68 -9.00 AUR 1 Byisode Day 2, 2.013 21 CO (PWH) 3.95 -9.00 3.95 -9.00 AUR 1 Byisode Day 2, 2.013 21 CO (PWH) 0.47 -9.00 0.59 -9.00 AUR 1 Byisode Day 2, 2.013 21 CO (PWH) 0.43 -9.00 0.59 -9.00 AUR 1 Byisode Day 3, 2.013 21 CO (PWH) 0.43 -9.00 0.33 -9.00 AUR 1 Byisode Day 3, 2.013 1 CO (PWH) 0.43 -9.00 0.33	AUR	1 Episode Day 2, 2013	14	CO (PPM)	0.77	-9.00	0.77	-9.00
AUR 1 Spinode Day 2.013 1.6 CC (PPR) 2.36 -0.00 2.36 -9.00 AUR 1 Bpinode Day 2.013 1.7 CC (PPR) 3.22 -9.00 3.22 -9.00 AUR 1 Bpinode Day 2.013 1.2 CC (PPR) 3.22 -9.00 3.22 -9.00 AUR 1 Bpinode Day 2.013 2.2 CC (PPR) 1.27 -9.00 1.27 -9.00 AUR 1 Bpinode Day 2.013 2.2 CC (PPR) 0.70 -9.00 0.70 -9.00 AUR 1 Bpinode Day 3.2 2.013 2 CC (PPR) 0.31 -9.00 0.33 -9.00 AUR 1 Bpinode Day 3.2 2.013 3 CC (PPR) 0.13 -9.00 0.23 -9.00 AUR 1 Bpino	AUR	1 Episode Day 2, 2013	15	CO (PPM)	1.23	-9.00	1.23	-9.00
AUR 1 Episode Day 2, 2013 17 CC (PPH) 2.96 -0.00 2.96 -9.00 AUR 1 Episode Day 2, 2013 15 CC (PPH) 3.92 -0.00 5.92 -9.00 AUR 1 Episode Day 2, 2013 21 CC (PPH) 1.39 -9.00 1.27 -9.00 AUR 1 Episode Day 2, 2013 22 CC (PPH) 0.73 -9.00 0.73 -9.00 AUR 1 Episode Day 2, 2013 22 CC (PPH) 0.33 -9.00 0.70 -9.00 AUR 1 Episode Day 3, 2013 2 CC (PPH) 0.38 -9.00 0.33 -9.00 AUR 1 Episode Day 3, 2013 4 CC (PPH) 0.28 -9.00 0.27 -9.00 AUR 1 Episode Day 3, 2013 4 CC (PPH) 0.28 -9.00 0.27 -9.00 AUR Episode Day 3	AUR	1 Episode Day 2, 2013	16	CO (PPM)	2.36	-9.00	2.36	-9.00
AUR 1 Bpiecde bay 2, 2013 18 CO (PPM) 3.22 -9.00 3.22 -9.00 AUR 1 Bpiecde bay 2, 2013 20 CO (PPM) 3.28 -9.00 1.27 -9.00 1.27 -9.00 AUR 1 Bpiecde bay 2, 2013 20 CO (PPM) 0.70 -9.00 0.70 -9.00 AUR 1 Bpiecde bay 3, 2013 1 CO (PPM) 0.70 -9.00 0.50 -9.00 0.50 -9.00 0.50 -9.00 0.51 -9.00 0.51 -9.00 0.51 -9.00 0.51 -9.00 0.51 -9.00 0.51 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31	AUR	1 Episode Day 2, 2013	17	CO (PPM)	2.96	-9.00	2.96	-9.00
ARR 1 Bpinode Day 2, 2013 19 CO (PMM) 4.08 -9.00 4.08 -9.00 ARR 1 Bpinode Day 2, 2013 22 CO (PPM) 0.75 -9.00 0.93 -9.00 AUR 1 Bpinode Day 2, 2013 22 CO (PPM) 0.70 -9.00 0.70 -9.00 AUR 1 Bpinode Day 3, 2013 1 CO (PPM) 0.50 -9.00 0.38	AUR	1 Episode Day 2, 2013	18	CO (PPM)	3.22	-9.00	3.22	-9.00
AUR 1 Bp1code Bay 2, 2013 20 CO (PPM) 3.99 -9.00 1.95 -9.00 AUR 1 Bp1code Bay 2, 2013 22 CO (PPM) 0.73 -9.00 0.9.07 -9.00 AUR 1 Bp1code Bay 3, 2013 1 CO (PPM) 0.50 -9.00 0.38 -9.00 AUR 1 Bp1code Day 3, 2013 1 CO (PPM) 0.31 -9.00 0.31 -9.00 0.38 -9.00 AUR 1 Bp1code Day 3, 2013 3 CO (PPM) 0.31 -9.00 0.31 -9.00 0.31 -9.00 AUR 1 Bp1code Day 3, 2013 6 CO (PPM) 0.47 -9.00 0.47 -9.00 AUR 1 Bp1code Day 3, 2013 6 CO (PPM) 0.46 -9.00 0.47 -9.00 AUR 1 Bp1code Day 3, 2013 12 CO (PPM) 0.46 -9.00 0.55 -9.00 AUR 1 Bp1code Day 3, 2013 12 CO <	AUR	1 Episode Day 2, 2013	19	CO (PPM)	4.08	-9.00	4.08	-9.00
AIR 1 Bp1600E By 2 2013 21 CO (PMM) 1.213 -9.00 1.213 -9.00 0.74 -9.00 0.74 -9.00 0.74 -9.00 0.74 -9.00 0.74 -9.00 0.74 -9.00 0.74 -9.00 0.75 -9.00 0.75 -9.00 0.75 -9.00 0.75 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 <td>AUR</td> <td>1 Episode Day 2, 2013</td> <td>20</td> <td>CO (PPM)</td> <td>3.95</td> <td>-9.00</td> <td>3.95</td> <td>-9.00</td>	AUR	1 Episode Day 2, 2013	20	CO (PPM)	3.95	-9.00	3.95	-9.00
ARR 1 Episode D 2 CO (PPM) 0.750 -3.00 0.750 -5.00 AUR 1 Episode Day 2 CO (PPM) 0.50 -9.00 0.50 -9.00 AUR 1 Episode Day 2 CO (PPM) 0.31 -9.00 0.131 -9.00 0.131 -9.00 AUR 1 Episode Day 2 CO (PPM) 0.31 -9.00 0.131 -9.00 0.131 -9.00 AUR 1 Episode Day 2 Day CO 0.131 -9.00 0.477 -9.00 AUR 1 Episode Day 2 Disode Day Disode Day D	AUR	1 Episode Day 2, 2013	21	CO (PPM)	1.27	-9.00	1.27	-9.00
ARR 1 Episode Day 3, 2013 20 CO (PPR) 0.58 -9.00 0.58 -9.00 0.38 -9.00 0.38 -9.00 0.38 -9.00 0.31 -9.00 0.36 -9.00 0.36 -9.00 0.36 -9.00 0.36 -9.00 0.36 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	AUR	1 Episode Day 2, 2013	22	CO (PPM)	0.93	-9.00	0.93	-9.00
AUR 1 Episode Day 3, 2013 1 CCO (PPM) 0.31 -9.00 1.88 -9.00 AUR 1 Episode Day 3, 2013 3 CCO (PPM) 0.21 -9.00 0.27 -9.00 0.27 -9.00 AUR 1 Episode Day 3, 2013 4 CCO (PPM) 0.28 -9.00 0.21 -9.00 AUR 1 Episode Day 3, 2013 5 CCO (PPM) 0.46 -9.00 0.31 -9.00 AUR 1 Episode Day 3, 2013 6 CCO (PPM) 0.46 -9.00 0.59 -9.00 AUR 1 Episode Day 3, 2013 10 CCO (PPM) 0.58 -9.00 0.58 -9.00 -9.9 -9.00 -9.9 -9.00 -9.9 -9.00 -9.9 -9.00 -9.9 -9.00 -9.9 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	AUR	1 Episode Day 2, 2013	2 <i>3</i>	CO (PPM)	0.70	-9.00	0.70	-9.00
ARR 1 Episode Day 3, 2013 2 CC (PPM) 0.31 -9.00 0.41 -9.00 AUR 1 Episode Day 3, 2013 4 CC (PPM) 0.28 -9.00 0.28 -9.00 AUR 1 Episode Day 3, 2013 5 CC (PPM) 0.41 -9.00 0.47 -9.00 AUR 1 Episode Day 3, 2013 6 CC (PPM) 0.46 -9.00 0.47 -9.00 AUR 1 Episode Day 3, 2013 7 CC (PPM) 0.65 -9.00 0.58 -9.00 0.58 -9.00 0.58 -9.00 .58 -9.00 .58 -9.00 .58 -9.00 .58 -9.00 .58 -9.00 .58 -9.00 .58 -9.00 .50 </td <td>AUR</td> <td>1 Episode Day 3, 2013</td> <td>1</td> <td>CO (PPM)</td> <td>0.38</td> <td>-9.00</td> <td>0.38</td> <td>-9.00</td>	AUR	1 Episode Day 3, 2013	1	CO (PPM)	0.38	-9.00	0.38	-9.00
AUR 1 Episode Day 3, 2013 3 CO (PFM) 0.22 -9.00 0.28 -9.00 0.28 -9.00 0.28 -9.00 0.28 -9.00 0.31 -9.00 AUR 1 Episode Day 3, 2013 5 CCO (PFM) 0.31 -9.00 0.31 -9.00 AUR 1 Episode Day 3, 2013 7 CCO (PFM) 0.31 -9.00 0.31 -9.00 AUR 1 Episode Day 3, 2013 7 CCO (PFM) 0.58 -9.00 0.58 -9.00 AUR 1 Episode Day 3, 2013 12 CCO (PFM) 0.53 -9.00 -5.00 -9.00	AUR	1 Episode Day 3, 2013	2	CO (PPM)	0.31	-9.00	0.31	-9.00
AUR 1 Fpinode Day 3, 2013 4 CO (PPM) 0.28 -9,00 0.28 -9,00 AUR 1 Epinode Day 3, 2013 6 CO (PPM) 0.47 -9,00 0.47 -9,00 AUR 1 Epinode Day 3, 2013 7 CO (PPM) 0.66 -9,00 0.66 -9,00 AUR 1 Epinode Day 3, 2013 10 CO (PPM) 0.58 -9,00 0.58 -9,00 0.58 -9,00 0.58 -9,00 0.58 -9,00	AUR	1 Episode Day 3, 2013	3	CO (PPM)	0.27	-9.00	0.27	-9.00
AUR 1 Fpisode Day 3, 2013 5 CO (PPM) 0.31 -9.00 0.31 -9.00 AUR 1 Fpisode Day 3, 2013 7 CO (PPM) 1.06 -9.00 1.06 -9.00 AUR 1 Fpisode Day 3, 2013 8 CO (PPM) 0.65 -9.00 0.65 -9.00 0.65 -9.00 0.65 -9.00 0.65 -9.00 0.53 -9.00 0.53 -9.00 0.53 -9.00	AUR	1 Episode Day 3, 2013	4	CO (PPM)	0.28	-9.00	0.28	-9.00
AUR I Episode Day 3, 2013 6 CO (PPM) 1.06 -9.00 1.06 -9.00 1.06 -9.00 1.06 -9.00 1.06 -9.00 1.06 -9.00 1.06 -9.00 1.06 -9.00 0.65 -9.00 0.55 -9.00 0.55 -9.00 0.55 -9.00 0.55 -9.00 0.55 -9.00 0.55 -9.00 0.55 -9.00	AUR	1 Episode Day 3, 2013	5	CO (PPM)	0.31	-9.00	0.31	-9.00
AUR 1 Episode Day 3, 2013 7 CO (PPM) 1.66 -9.00 1.66 -9.00 1.66 -9.00 1.66 -9.00 1.66 -9.00 1.66 -9.00 1.66 -9.00 1.66 -9.00 1.65 -9.00 1.65 -9.00 1.65 -9.00 1.65 -9.00 1.65 -9.00	AUR	1 Episode Day 3, 2013	6	CO (PPM)	0.47	-9.00	0.47	-9.00
AIR 1 Epicode Day 3, 2013 9 CC PPM 0.6 b -9.00 0.6 b -9.00 0.6 b -9.00 AIR 1 Epicode Day 3, 2013 10 CC (PPM) 0.5 53 -9.00 0.5 53 -9.00 0.5 53 -9.00 AUR 1 Epicode Day 3, 2013 12 CC (PPM) -9.00 -	AUR	1 Episode Day 3, 2013	7	CO (PPM)	1.06	-9.00	1.06	-9.00
AUR 1 Episode Day 3, 2013 11 CO (PPM) 0.59 -9.00 0.293 -9.00 AUR 1 Episode Day 3, 2013 11 CO (PFM) 0.59 -9.00 <td< td=""><td>AUR</td><td>1 Episode Day 3, 2013</td><td>8</td><td>CO (PPM)</td><td>0.66</td><td>-9.00</td><td>0.66</td><td>-9.00</td></td<>	AUR	1 Episode Day 3, 2013	8	CO (PPM)	0.66	-9.00	0.66	-9.00
ARR 1 Episode Day 3, 2013 11 CO (PPR) 0.58 -5.00 0.28 -5.00 ARR 1 Episode Day 3, 2013 11 CO (PPR) 0.58 -5.00 0.23 -5.00 AUR 1 Episode Day 3, 2013 11 CO (PPR) -9.00	AUR	1 Episode Day 3, 2013	9	CO (PPM)	0.59	-9.00	0.59	-9.00
AUR 1 Episode Day 3, 2013 12 CO (FPM) -9.00 <	AUR	1 Episode Day 3, 2013	10	CO (PPM) CO (PPM)	0.58	-9.00	0.58	-9.00
AUR Episode Day 3, 2013 13 CO (PPM) -9.00	AUR	1 Episode Day 3, 2013	12	CO (PPM)	-9 00	-9 00	-9.00	-9 00
AUR 1 Disode Day 3, 2013 14 CO (PPM) -9.00	AUR	1 Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 3, 2013 15 CC (PPM) -9,00 <	AUR	1 Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 3, 2013 16 CO (PPM) -9.00 <	AUR	1 Episode Day 3, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 3, 2013 17 CO (PPM) -9.00 <	AUR	1 Episode Day 3, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 3, 2013 18 CC (PPM) -9.00 <	AUR	1 Episode Day 3, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 3, 2013 19 CO (PPM) -9.00 <	AUR	1 Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 3, 2013 20 CO (PPM) -9.00 -0.00 <	AUR	1 Episode Day 3, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AUR 1 Episode Day 3, 2013 21 CO (PPM) -9.00 <	AUR	1 Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ARR 1 Bpisode Day 3, 2013 22 CO (EPM) -9.00 <	AUR	1 Episode Day 3, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	-9.00
AURS 1 Epicode Day 1, 2013 1 CO (PPM) -9:00 -9:00 -9:00 -9:00 -9:00 -9:00 -9:00 -0:00 -9:00 -0:	AUR	1 Episode Day 3, 2013	22	CO (PPM)	-9.00	-9 00	-9.00	-9 00
AURS 1 Episode Day 1, 2013 1 CO CPMM -9:00 -9:00 -9:00 -9:00 0.50 AURS 1 Episode Day 1, 2013 2 CO (PPM) -9:00 -9:00 -9:00 0.50 AURS 1 Episode Day 1, 2013 3 CO (PPM) -9:00 -9:00 -9:00 0.40 AURS 1 Episode Day 1, 2013 4 CO (PPM) -9:00 -9:00 -9:00 0.40 AURS 1 Episode Day 1, 2013 6 CO (PPM) -9:00 -9:00 -9:00 2:00 AURS 1 Episode Day 1, 2013 8 CO (PPM) -9:00 -9:00 -9:00 1.40 AURS 1 Episode Day 1, 2013 10 CO (PPM) -9:00 -9:00 -9:00 1.60 AURS 1 Episode Day 1, 2013 12 CO	AURS	1 Episode Day 1, 2013	0	CO (PPM)	-9.00	-9.00	-9.00	0.70
AURS 1 Episode Day 1, 2013 2 CO<(PPM) -9.00 -9.00 -9.00 0.50 AURS 1 Episode Day 1, 2013 3 CO<(PPM)	AURS	1 Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	0.60
AURS 1 Episode Day 1, 2013 3 CO (PPM) -9.00 -9.00 -9.00 0.40 AURS 1 Episode Day 1, 2013 5 CO (PPM) -9.00 -9.00 -9.00 0.70 AURS 1 Episode Day 1, 2013 6 CO (PPM) -9.00 -9.00 -9.00 2.50 AURS 1 Episode Day 1, 2013 6 CO (PPM) -9.00 -9.00 -9.00 2.20 AURS 1 Episode Day 1, 2013 8 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 10 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 0.50 AURS 1 Episode Day 1, 2013 14 CO (PPM) -9.00 -9.00 -	AURS	1 Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	0.50
AURS 1 Episode Day 1, 2013 4 CO (PPM) -9.00 -9.00 -9.00 0.70 AURS 1 Episode Day 1, 2013 6 CO (PPM) -9.00 -9.00 -9.00 2.50 AURS 1 Episode Day 1, 2013 7 CO (PPM) -9.00 -9.00 -9.00 2.20 AURS 1 Episode Day 1, 2013 7 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 9 CO (PPM) -9.00 -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 11 CO (PPM) -9.00 -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 1, 2013 14 CO (PPM) -9.00 -9.00 -9.00 0.70 AURS 1 Episode Day 1, 2013 16 CO (PPM) -9.00 -9.00 -	AURS	1 Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	0.40
AURS1Episode Day 1, 20135CO(PPM)-9.00-9.00-9.00-9.000.00.70AURS1Episode Day 1, 20137CO(PPM)-9.00-9.00-9.002.50AURS1Episode Day 1, 20138CO(PPM)-9.00-9.00-9.002.50AURS1Episode Day 1, 20138CO(PPM)-9.00-9.00-9.001.40AURS1Episode Day 1, 201310CO(PPM)-9.00-9.00-9.001.60AURS1Episode Day 1, 201311CO(PPM)-9.00-9.00-9.001.40AURS1Episode Day 1, 201312CO(PPM)-9.00-9.00-9.000.80AURS1Episode Day 1, 201313CO(PPM)-9.00-9.00-9.000.80AURS1Episode Day 1, 201314CO(PPM)-9.00-9.00-9.000.70AURS1Episode Day 1, 201315CO(PPM)-9.00-9.00-9.000.50AURS1Episode Day 1, 201316CO(PPM)-9.00-9.00-9.001.20AURS1Episode Day 1, 201316CO(PPM)-9.00-9.00-9.001.60AURS1Episode Day 1, 201317CO(PPM)-9.00-9.00-9.001.60AURS1Episode Day 1, 2013 <td>AURS</td> <td>1 Episode Day 1, 2013</td> <td>4</td> <td>CO (PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>0.40</td>	AURS	1 Episode Day 1, 2013	4	CO (PPM)	-9.00	-9.00	-9.00	0.40
AURS 1 Episode Day 1, 2013 6 CO (PPM) -9.00 -9.00 -9.00 2.50 AURS 1 Episode Day 1, 2013 7 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 9 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 10 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 11 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 0.0 0.00 AURS 1 Episode Day 1, 2013 14 CO (PPM) -9.00 -9.00 -9.00 0.0 0.00 0.	AURS	1 Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	0.70
AURS 1 Episode Day 1, 2013 7 CO (PPM) -9.00 -9.00 -9.00 2.20 AURS 1 Episode Day 1, 2013 9 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 10 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 11 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 1, 2013 14 CO (PPM) -9.00 -9.00 -9.00 0.90 0.70 AURS 1 Episode Day 1, 2013 15 CO (PPM) -9.00 -9.00 -9.00 0.50 AURS 1 Episode Day 1, 2013 16 CO (PPM) -9.00 -9.00 -9.00 1.20 AURS 1 Episode Day 1, 2013 18 CO (PPM) -9.00 <td< td=""><td>AURS</td><td>1 Episode Day 1, 2013</td><td>6</td><td>CO (PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>2.50</td></td<>	AURS	1 Episode Day 1, 2013	6	CO (PPM)	-9.00	-9.00	-9.00	2.50
AURS 1 Episode Day 1, 2013 9 CO (PPM) -9.00 -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 10 CO (PPM) -9.00 -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 11 CO (PPM) -9.00 -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 1, 2013 13 CO (PPM) -9.00 -9.00 -9.00 0.70 AURS 1 Episode Day 1, 2013 15 CO (PPM) -9.00 -9.00 -9.00 1.20 AURS 1 Episode Day 1, 2013 16 CO (PPM) -9.00 -9.00 1.20 AURS 1 Episode Day 1, 2013 16 CO (PPM) -9.00 -9.00 1.60 <td>AURS</td> <td>1 Episode Day 1, 2013</td> <td>/</td> <td>CO (PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>2.20</td>	AURS	1 Episode Day 1, 2013	/	CO (PPM)	-9.00	-9.00	-9.00	2.20
AURS 1 Episode Day 1, 2013 10 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 11 CO (PPM) -9.00 -9.00 -9.00 1.40 AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 1, 2013 13 CO (PPM) -9.00 -9.00 -9.00 0.90 0.80 AURS 1 Episode Day 1, 2013 14 CO (PPM) -9.00 -9.00 -9.00 0.90 0.70 AURS 1 Episode Day 1, 2013 16 CO (PPM) -9.00 -9.00 -9.00 1.20 AURS 1 Episode Day 1, 2013 16 CO (PPM) -9.00 -9.00 -9.00 1.20 AURS 1 Episode Day 1, 2013 18 CO (PPM) -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 20 CO (PPM) -9.00 <t< td=""><td>AURS</td><td>1 Episode Day 1, 2013</td><td>9</td><td>CO (PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>1 60</td></t<>	AURS	1 Episode Day 1, 2013	9	CO (PPM)	-9.00	-9.00	-9.00	1 60
AURS1Episode Day 1, 201311CO(PPM)-9.00-9.00-9.001.50AURS1Episode Day 1, 201312CO(PPM)-9.00-9.00-9.000.80AURS1Episode Day 1, 201313CO(PPM)-9.00-9.00-9.000.90AURS1Episode Day 1, 201314CO(PPM)-9.00-9.00-9.000.90AURS1Episode Day 1, 201314CO(PPM)-9.00-9.00-9.000.50AURS1Episode Day 1, 201316CO(PPM)-9.00-9.00-9.001.20AURS1Episode Day 1, 201317CO(PPM)-9.00-9.00-9.001.20AURS1Episode Day 1, 201318CO(PPM)-9.00-9.00-9.001.60AURS1Episode Day 1, 201319CO(PPM)-9.00-9.00-9.001.30AURS1Episode Day 1, 201320CO(PPM)-9.00-9.00-9.000.80AURS1Episode Day 1, 201321CO(PPM)-9.00-9.00-9.000.80AURS1Episode Day 1, 201322CO(PPM)0.56-9.000.551.00AURS1Episode Day 2, 20130CO(PPM)0.40-9.000.400.80AURS1Episode Day 2, 20131CO	AURS	1 Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	1.40
AURS 1 Episode Day 1, 2013 12 CO (PPM) -9.00 -9.00 -9.00 0.00 0.80 AURS 1 Episode Day 1, 2013 13 CO (PPM) -9.00 -9.00 -9.00 0.00 0.90 AURS 1 Episode Day 1, 2013 14 CO (PPM) -9.00 -9.00 -9.00 0.70 AURS 1 Episode Day 1, 2013 15 CO (PPM) -9.00 -9.00 -9.00 0.50 AURS 1 Episode Day 1, 2013 16 CO (PPM) -9.00 -9.00 -9.00 1.20 AURS 1 Episode Day 1, 2013 17 CO (PPM) -9.00 -9.00 -9.00 3.70 AURS 1 Episode Day 1, 2013 19 CO (PPM) -9.00 -9.00 -9.00 1.20 AURS 1 Episode Day 1, 2013 20 CO (PPM) -9.00 -9.00 1.30 AURS 1 Episode Day 1, 2013 21 CO (PPM) -9.00 <t< td=""><td>AURS</td><td>1 Episode Day 1, 2013</td><td>11</td><td>CO (PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>1.50</td></t<>	AURS	1 Episode Day 1, 2013	11	CO (PPM)	-9.00	-9.00	-9.00	1.50
AURS1Episode Day 1, 201313CO(PPM)-9.00-9.00-9.00-9.000.90AURS1Episode Day 1, 201315CO(PPM)-9.00-9.00-9.000.50AURS1Episode Day 1, 201315CO(PPM)-9.00-9.00-9.000.50AURS1Episode Day 1, 201316CO(PPM)-9.00-9.00-9.001.20AURS1Episode Day 1, 201316CO(PPM)-9.00-9.00-9.003.70AURS1Episode Day 1, 201317CO(PPM)-9.00-9.00-9.003.70AURS1Episode Day 1, 201319CO(PPM)-9.00-9.00-9.001.30AURS1Episode Day 1, 201320CO(PPM)-9.00-9.00-9.000.90AURS1Episode Day 1, 201321CO(PPM)-9.00-9.00-9.000.80AURS1Episode Day 1, 201322CO(PPM)-9.00-9.000.561.00AURS1Episode Day 2, 201323CO(PPM)0.53-9.000.551.00AURS1Episode Day 2, 20131CO(PPM)0.40-9.000.400.80AURS1Episode Day 2, 20131CO(PPM)0.27-9.000.550.90AURS1Episode Day 2, 20132C	AURS	1 Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	0.80
AURS1Episode Day 1, 201314CO(PPM)-9.00-9.00-9.00-9.000.70AURS1Episode Day 1, 201315CO(PPM)-9.00-9.00-9.000.50AURS1Episode Day 1, 201316CO(PPM)-9.00-9.00-9.001.20AURS1Episode Day 1, 201317CO(PPM)-9.00-9.00-9.003.70AURS1Episode Day 1, 201318CO(PPM)-9.00-9.00-9.001.60AURS1Episode Day 1, 201319CO(PPM)-9.00-9.00-9.001.30AURS1Episode Day 1, 201320CO(PPM)-9.00-9.00-9.000.90AURS1Episode Day 1, 201321CO(PPM)-9.00-9.00-9.000.80AURS1Episode Day 1, 201322CO(PPM)-9.00-9.000.530.90AURS1Episode Day 1, 201323CO(PPM)0.56-9.000.530.90AURS1Episode Day 2, 20130CO(PPM)0.31-9.000.310.50AURS1Episode Day 2, 20131CO(PPM)0.27-9.000.270.30AURS1Episode Day 2, 20133CO(PPM)0.26-9.000.260.30AURS1Episode Day 2, 20134CO </td <td>AURS</td> <td>1 Episode Day 1, 2013</td> <td>13</td> <td>CO (PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>0.90</td>	AURS	1 Episode Day 1, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	0.90
AURS1Episode Day 1, 201315CO(PPM)-9.00-9.00-9.00-9.000.50AURS1Episode Day 1, 201316CO(PPM)-9.00-9.00-9.001.20AURS1Episode Day 1, 201317CO(PPM)-9.00-9.00-9.003.70AURS1Episode Day 1, 201318CO(PPM)-9.00-9.00-9.001.60AURS1Episode Day 1, 201319CO(PPM)-9.00-9.00-9.001.30AURS1Episode Day 1, 201320CO(PPM)-9.00-9.00-9.000.90AURS1Episode Day 1, 201321CO(PPM)-9.00-9.00-9.000.90AURS1Episode Day 1, 201322CO(PPM)-9.00-9.000.561.00AURS1Episode Day 1, 201323CO(PPM)0.56-9.000.550.90AURS1Episode Day 2, 20130CO(PPM)0.31-9.000.310.50AURS1Episode Day 2, 20131CO(PPM)0.26-9.000.260.30AURS1Episode Day 2, 20133CO(PPM)0.26-9.000.280.30AURS1Episode Day 2, 20134CO(PPM)0.32-9.000.280.30AURS1Episode Day 2, 20135CO	AURS	1 Episode Day 1, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	0.70
AURS1Episode Day 1, 201316CO(PPM)-9.00-9.00-9.00-9.001.20AURS1Episode Day 1, 201317CO(PPM)-9.00-9.00-9.003.70AURS1Episode Day 1, 201318CO(PPM)-9.00-9.00-9.001.60AURS1Episode Day 1, 201319CO(PPM)-9.00-9.00-9.001.30AURS1Episode Day 1, 201320CO(PPM)-9.00-9.00-9.000.90AURS1Episode Day 1, 201321CO(PPM)-9.00-9.00-9.000.80AURS1Episode Day 1, 201322CO(PPM)0.56-9.000.561.00AURS1Episode Day 1, 201323CO(PPM)0.53-9.000.550.90AURS1Episode Day 2, 20130CO(PPM)0.31-9.000.310.50AURS1Episode Day 2, 20132CO(PPM)0.26-9.000.260.30AURS1Episode Day 2, 20133CO(PPM)0.26-9.000.280.30AURS1Episode Day 2, 20134CO(PPM)0.32-9.000.280.30AURS1Episode Day 2, 20135CO(PPM)0.54-9.000.542.80AURS1Episode Day 2, 20136CO	AURS	1 Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	0.50
AURS 1 Episode Day 1, 2013 17 CO (PPM) -9.00 -9.00 -9.00 3.70 AURS 1 Episode Day 1, 2013 18 CO (PPM) -9.00 -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 19 CO (PPM) -9.00 -9.00 -9.00 1.30 AURS 1 Episode Day 1, 2013 20 CO (PPM) -9.00 -9.00 -9.00 0.90 AURS 1 Episode Day 1, 2013 20 CO (PPM) -9.00 -9.00 -9.00 0.90 AURS 1 Episode Day 1, 2013 22 CO (PPM) -9.00 -9.00 0.80 AURS 1 Episode Day 1, 2013 23 CO (PPM) 0.55 -9.00 0.55 1.00 AURS 1 Episode Day 2, 2013 0 CO (PPM) 0.40 -9.00 0.31 0.50 AURS 1 Episode Day 2, 2013 2 CO (PPM) 0.26 -9.00 0.27 0.30	AURS	1 Episode Day 1, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	1.20
AURS 1 Episode Day 1, 2013 18 CO (PPM) -9.00 -9.00 -9.00 1.60 AURS 1 Episode Day 1, 2013 19 CO (PPM) -9.00 -9.00 -9.00 1.30 AURS 1 Episode Day 1, 2013 20 CO (PPM) -9.00 -9.00 -9.00 0.90 AURS 1 Episode Day 1, 2013 21 CO (PPM) -9.00 -9.00 -9.00 0.90 AURS 1 Episode Day 1, 2013 21 CO (PPM) -9.00 -9.00 0.90 AURS 1 Episode Day 1, 2013 22 CO (PPM) 0.56 -9.00 0.56 1.00 AURS 1 Episode Day 2, 2013 0 CO (PPM) 0.40 -9.00 0.53 0.90 AURS 1 Episode Day 2, 2013 0 CO (PPM) 0.31 -9.00 0.50 AURS 1 Episode Day 2, 2013 2 CO (PPM) 0.26 -9.00 0.26 0.30 <tr< td=""><td>AURS</td><td>1 Episode Day 1, 2013</td><td>17</td><td>CO (PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>3.70</td></tr<>	AURS	1 Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	3.70
AURS 1 Episode Day 1, 2013 19 CO<(PPM)	AURS	I Episode Day 1, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	1.60
AURS 1 Episode Day 1, 2013 20 CO (PFM) -9.00 -9.00 -9.00 0.90 AURS 1 Episode Day 1, 2013 21 CO (PPM) -9.00 -9.00 -9.00 0.80 AURS 1 Episode Day 1, 2013 22 CO (PPM) 0.56 -9.00 0.56 1.00 AURS 1 Episode Day 1, 2013 23 CO (PPM) 0.53 -9.00 0.53 0.90 AURS 1 Episode Day 2, 2013 0 CO (PPM) 0.40 -9.00 0.40 0.80 AURS 1 Episode Day 2, 2013 1 CO (PPM) 0.40 -9.00 0.40 0.80 AURS 1 Episode Day 2, 2013 1 CO (PPM) 0.31 -9.00 0.40 0.80 AURS 1 Episode Day 2, 2013 2 CO (PPM) 0.27 -9.00 0.26 0.30 AURS 1 Episode Day 2, 2013 3 CO (PPM) 0.28 -9.00 0.28	AUKS	1 Episode Day 1, 2013	20 7.2	CO (PPM)	-9.00 _0 nn	-9.00 _0 00	-9.00	1.30
AURS 1 Episode Day 1, 2013 22 CO (PPM) 0.56 -9.00 0.56 1.00 AURS 1 Episode Day 1, 2013 23 CO (PPM) 0.53 -9.00 0.53 0.90 AURS 1 Episode Day 2, 2013 0 CO (PPM) 0.40 -9.00 0.40 0.80 AURS 1 Episode Day 2, 2013 1 CO (PPM) 0.31 -9.00 0.31 0.50 AURS 1 Episode Day 2, 2013 1 CO (PPM) 0.27 -9.00 0.31 0.50 AURS 1 Episode Day 2, 2013 2 CO (PPM) 0.27 -9.00 0.26 0.30 AURS 1 Episode Day 2, 2013 3 CO (PPM) 0.28 -9.00 0.26 0.30 AURS 1 Episode Day 2, 2013 4 CO (PPM) 0.32 -9.00 0.28 0.30 AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.32 0.90 AURS 1 Episode Day 2, 2013 6 CO (PPM	AURS	1 Episode Day 1, 2013	∠∪ 21	CO (PPM)	-9.00	-9.00	-9.00	0.80
AURS 1 Episode Day 1, 2013 23 CO (PPM) 0.53 -9.00 0.53 0.90 AURS 1 Episode Day 2, 2013 0 CO (PPM) 0.40 -9.00 0.40 0.80 AURS 1 Episode Day 2, 2013 1 CO (PPM) 0.31 -9.00 0.31 0.50 AURS 1 Episode Day 2, 2013 2 CO (PPM) 0.27 -9.00 0.27 0.30 AURS 1 Episode Day 2, 2013 3 CO (PPM) 0.26 -9.00 0.26 0.30 AURS 1 Episode Day 2, 2013 4 CO (PPM) 0.28 -9.00 0.28 0.30 AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.28 0.30 AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.32 0.90 AURS 1 Episode Day 2, 2013 6 CO (PPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 7 CO (PPM)	AURS	1 Episode Day 1, 2013	22	CO (PPM)	0.56	-9.00	0.56	1.00
AURS 1 Episode Day 2, 2013 0 CO (PPM) 0.40 -9.00 0.40 0.80 AURS 1 Episode Day 2, 2013 1 CO (PPM) 0.31 -9.00 0.31 0.50 AURS 1 Episode Day 2, 2013 2 CO (PPM) 0.27 -9.00 0.27 0.30 AURS 1 Episode Day 2, 2013 3 CO (PPM) 0.26 -9.00 0.26 0.30 AURS 1 Episode Day 2, 2013 4 CO (PPM) 0.28 -9.00 0.28 0.30 AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.28 0.30 AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.32 0.90 AURS 1 Episode Day 2, 2013 6 CO (PPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 7 CO (PPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 8 CO (PPM)<	AURS	1 Episode Day 1, 2013	23	CO (PPM)	0.53	-9.00	0.53	0.90
AURS1Episode Day 2, 20131CO(PPM)0.31-9.000.310.50AURS1Episode Day 2, 20132CO(PPM)0.27-9.000.270.30AURS1Episode Day 2, 20133CO(PPM)0.26-9.000.260.30AURS1Episode Day 2, 20134CO(PPM)0.28-9.000.280.30AURS1Episode Day 2, 20135CO(PPM)0.32-9.000.320.90AURS1Episode Day 2, 20136CO(PPM)0.54-9.000.542.80AURS1Episode Day 2, 20137CO(PPM)1.09-9.001.093.90AURS1Episode Day 2, 20138CO(PPM)0.65-9.000.652.70	AURS	1 Episode Day 2, 2013	0	CO (PPM)	0.40	-9.00	0.40	0.80
AURS 1 Episode Day 2, 2013 2 CO (PPM) 0.27 -9.00 0.27 0.30 AURS 1 Episode Day 2, 2013 3 CO (PPM) 0.26 -9.00 0.26 0.30 AURS 1 Episode Day 2, 2013 4 CO (PPM) 0.28 -9.00 0.28 0.30 AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.32 0.90 AURS 1 Episode Day 2, 2013 6 CO (PPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 7 CO (PPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 7 CO (PPM) 1.09 -9.00 1.09 3.90 AURS 1 Episode Day 2, 2013 8 CO (PPM) 0.65 -9.00 0.65 2.70	AURS	1 Episode Day 2, 2013	1	CO (PPM)	0.31	-9.00	0.31	0.50
AURS 1 Episode Day 2, 2013 3 CO (PPM) 0.26 -9.00 0.26 0.30 AURS 1 Episode Day 2, 2013 4 CO (PPM) 0.28 -9.00 0.28 0.30 AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.32 0.90 AURS 1 Episode Day 2, 2013 6 CO (PPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 7 CO (PPM) 1.09 -9.00 1.09 3.90 AURS 1 Episode Day 2, 2013 8 CO (PPM) 0.65 -9.00 0.65 2.70	AURS	1 Episode Day 2, 2013	2	CO (PPM)	0.27	-9.00	0.27	0.30
AURS 1 Episode Day 2, 2013 4 CO (PPM) 0.28 -9.00 0.28 0.30 AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.32 0.90 AURS 1 Episode Day 2, 2013 6 CO (PPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 7 CO (PPM) 1.09 -9.00 1.09 3.90 AURS 1 Episode Day 2, 2013 8 CO (PPM) 0.65 -9.00 0.65 2.70	AURS	1 Episode Day 2, 2013	3	CO (PPM)	0.26	-9.00	0.26	0.30
AURS 1 Episode Day 2, 2013 5 CO (PPM) 0.32 -9.00 0.32 0.90 AURS 1 Episode Day 2, 2013 6 CO (PPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 7 CO (PPM) 1.09 -9.00 1.09 3.90 AURS 1 Episode Day 2, 2013 8 CO (PPM) 0.65 -9.00 0.65 2.70	AURS	I Episode Day 2, 2013	4	CO (PPM)	0.28	-9.00	0.28	0.30
AURS 1 Episode Day 2, 2013 0 CO (FPM) 0.54 -9.00 0.54 2.80 AURS 1 Episode Day 2, 2013 7 CO (FPM) 1.09 -9.00 1.09 3.90 AURS 1 Episode Day 2, 2013 8 CO (FPM) 0.65 -9.00 0.65 2.70	AURS	I Episode Day 2, 2013	5	CO (PPM)	0.32	-9.00	0.32	0.90
AURS 1 Episode Day 2, 2013 7 CO (PPM) 1.09 -9.00 1.09 3.90 AURS 1 Episode Day 2, 2013 8 CO (PPM) 0.65 -9.00 0.65 2.70	AURS	1 Episode Day 2, 2013	ю 7	CO (PPM)	0.54	-9.00	U.54 1 00	2.80
	AURS	1 Episode Day 2, 2013	8	CO (PPM)	0.65	-9.00	0.65	2.70

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867	2.2tpd;1.7;	80;I/M 240	w/newest 4myr	exempt;	0.01.0	1000
0.7.777	2110	53.77			2013	2013	2013	1988
SITE	AVG	DATE	HR	POLLUTAN	T PREDICTED	PREDICTED	PREDICTED	OBSERVED
	PERIOD				(UAM)	(CALSQHC)	(UAM+CAL3)	
AUDO	1	Enizodo Dev 2 2012	0	00 (DDM) 0.27	0.00	0 27	2 20
AURS	1	Episode Day 2, 2013	10	CO (PPM) 0.37	-9.00	0.37	2.30
AURS	1	Episode Day 2, 2013	10	CO (PPM) 0.31	-9.00	0.31	2.10
AURS	1	Episode Day 2, 2013	12	CO (PPM) 0.35	-9.00	0.35	2.70
AURS	1	Episode Day 2, 2013	13	CO (PPM) 0.40	-9.00	0.40	2.50
AURS	1	Episode Day 2, 2013	14	CO (PPM) 0.02	-9.00	0.02	1 70
AURS	1	Episode Day 2, 2013 Episode Day 2 2013	15	CO (DDM) 1 34	-9 00	1 34	2 60
AURS	1	Episode Day 2, 2013	16	CO (PPM) 2.51	-9 00	3 54	5 30
AURS	1	Episode Day 2, 2013	17	CO (PPM) 5.51	-9 00	5 75	11 20
AURS	1	Episode Day 2, 2013	18	CO (PPM) 6 19	-9 00	6 19	5 60
AURS	1	Episode Day 2, 2013	19	CO (PPM) 3.82	-9.00	3 82	3 00
AURS	1	Episode Day 2, 2013	20	CO (PPM) 0.93	-9 00	0.93	2 20
AURS	1	Episode Day 2, 2013	21	CO (PPM) 0.62	-9.00	0.62	1.80
AURS	1	Episode Day 2 2013	22	CO (PPM) 0.54	-9 00	0 54	1 70
AURS	1	Episode Day 2, 2013	23	CO (PPM) 0.41	-9.00	0.41	1.30
AURS	1	Episode Day 3, 2013	0	CO (PPM) 0.36	-9.00	0.36	0.80
AURS	1	Episode Day 3, 2013	1	CO (PPM) 0.35	-9.00	0.35	0.50
AURS	1	Episode Day 3, 2013	2	CO (PPM) 0.28	-9.00	0.28	0.50
AURS	1	Episode Day 3, 2013	3	CO (PPM) 0.25	-9.00	0.25	0.50
AURS	1	Episode Day 3, 2013	4	CO (PPM) 0.26	-9.00	0.26	0.70
AURS	1	Episode Day 3, 2013	5	CO (PPM) 0.30	-9.00	0.30	1.20
AURS	1	Episode Day 3, 2013	6	CO (PPM) 0.48	-9.00	0.48	5.40
AURS	1	Episode Dav 3, 2013	7	CO (PPM) 1.08	-9.00	1.08	6.90
AURS	1	Episode Day 3, 2013	8	CO (PPM) 0.54	-9.00	0.54	5.00
AURS	1	Episode Day 3, 2013	9	CO (PPM) 0.55	-9.00	0.55	3.30
AURS	1	Episode Day 3, 2013	10	CO (PPM) 0.50	-9.00	0.50	0.90
AURS	1	Episode Day 3, 2013	11	CO (PPM) 0.45	-9.00	0.45	0.90
AURS	1	Episode Day 3, 2013	12	CO (PPM) -9.00	-9.00	-9.00	0.70
AURS	1	Episode Day 3, 2013	13	CO (PPM) -9.00	-9.00	-9.00	0.80
AURS	1	Episode Day 3, 2013	14	CO (PPM) -9.00	-9.00	-9.00	0.80
AURS	1	Episode Day 3, 2013	15	CO (PPM) -9.00	-9.00	-9.00	0.80
AURS	1	Episode Day 3, 2013	16	CO (PPM) -9.00	-9.00	-9.00	1.80
AURS	1	Episode Day 3, 2013	17	CO (PPM) -9.00	-9.00	-9.00	3.40
AURS	1	Episode Day 3, 2013	18	CO (PPM) -9.00	-9.00	-9.00	3.90
AURS	1	Episode Day 3, 2013	19	CO (PPM) -9.00	-9.00	-9.00	2.70
AURS	1	Episode Day 3, 2013	20	CO (PPM) -9.00	-9.00	-9.00	3.00
AURS	1	Episode Day 3, 2013	21	CO (PPM) -9.00	-9.00	-9.00	2.50
AURS	1	Episode Day 3, 2013	22	CO (PPM) -9.00	-9.00	-9.00	1.50
AURS	1	Episode Day 3, 2013	23	CO (PPM) -9.00	-9.00	-9.00	1.10
PLM	1	Episode Day 1, 2013	0	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	1 2	CO (PPM) -9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 2013	2	CO (PPM) -9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 2013	3	CO (PPM	-9.00	-9.00	-9.00	-9.00
DT.M	1	Episode Day 1, 2013	5	CO (PPM) -9.00	-9.00	-9.00	-9.00
PT.M	1	Episode Day 1, 2013	6	CO (PPM) -9.00	-9 00	-9 00	-9 00
PLM	1	Episode Day 1, 2013	7	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	8	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	9	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	10	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	11	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	12	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	13	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	14	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	15	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	16	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	17	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	18	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	19	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	20	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	21	CO (PPM) -9.00	-9.00	-9.00	-9.00
PLM	1	Episode Day 1, 2013	22	CO (PPM) 1.09	-9.00	1.09	-9.00
PLM	1	Episode Day 1, 2013	23	CO (PPM) 1.13	-9.00	1.13	-9.00
PLM	1	Episode Day 2, 2013	0	CO (PPM) 0.86	-9.00	0.86	-9.00
PLM	1	Episode Day 2, 2013	1	CO (PPM) 0.49	-9.00	0.49	-9.00
PLM	1	Episode Day 2, 2013	2	CO (PPM) 0.41	-9.00	0.41	-9.00
PLM	1	Episode Day 2, 2013	3	CO (PPM) 0.38	-9.00	0.38	-9.00
PLM	1	Episode Day 2, 2013	4	CO (PPM) 0.40	-9.00	0.40	-9.00
PLM	1	Episode Day 2, 2013	5	CO (PPM) 0.43	-9.00	0.43	-9.00
PLM	1	Episode Day 2, 2013	6	CO (PPM) 0.64	-9.00	0.64	-9.00
PLM	1	Episode Day 2, 2013	7	CO (PPM) 1.57	-9.00	1.57	-9.00
PLM	1	Episode Day 2, 2013	8	CO (PPM) 1.06	-9.00	1.06	-9.00
PLM	1	Episode Day 2, 2013	9	CO (PPM) 0.82	-9.00	0.82	-9.00
PLM	1	Episode Day 2, 2013	1U	CO (PPM) 0.52	-9.00	0.52	-9.00
모니에	T	EPISOUE Day Z, ZUIS	11	CO (PPM	, 0.51	-9.00	0.51	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.	2tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0.01.0	1000
		TID		2013	2013	2013	1988
SITE AVG	DATE	HR	POLLUTANT	PREDICTED (IIAM)	(CALSOHC)	(HAM+CAL3)	OBSERVED
FERIO				(OAH)	(CAUSQUE)	(OAM CALS)	
PLM 1	Episode Day 2, 2013	12	CO (PPM)	0.59	-9.00	0.59	-9.00
PLM 1	L Episode Day 2, 2013	13	CO (PPM)	0.65	-9.00	0.65	-9.00
PLM 1	L Episode Day 2, 2013	14	CO (PPM)	0.95	-9.00	0.95	-9.00
PLM 1	L Episode Day 2, 2013	15	CO (PPM)	1.54	-9.00	1.54	-9.00
PLM 1	L Episode Day 2, 2013	16	CO (PPM)	3.13	-9.00	3.13	-9.00
PLM 1	L Episode Day 2, 2013	17	CO (PPM)	4.05	-9.00	4.05	-9.00
PLM 1	L Episode Day 2, 2013	18	CO (PPM)	4.65	-9.00	4.65	-9.00
PLM 1	L Episode Day 2, 2013	19	CO (PPM)	5.91	-9.00	5.91	-9.00
PLM	L Episode Day 2, 2013	20	CO (PPM)	1.97	-9.00	1.97	-9.00
PLM	L Episode Day 2, 2013	21	CO (PPM)	1.04	-9.00	1.04	-9.00
PLM	L Episode Day 2, 2013	22	CO (PPM)	1.07	-9.00	1.07	-9.00
PLM 1	L Episode Day 2, 2013	23	CO (PPM)	0.82	-9.00	0.82	-9.00
PLM 1	E Episode Day 3, 2013	1	CO (PPM)	0.57	-9.00	0.57	-9.00
DIM 1	E Episode Day 3, 2013	2	CO (PPM)	0.47	-9.00	0.47	-9.00
PLM 1	E Episode Day 3, 2013	3	CO (PPM)	0.35	-9.00	0.35	-9 00
PLM 1	Enisode Day 3, 2013	4	CO (PPM)	0.31	-9 00	0.31	-9 00
PLM 1	Episode Day 3, 2013	5	CO (PPM)	0.37	-9.00	0.37	-9.00
PLM 1	L Episode Day 3, 2013	6	CO (PPM)	0.55	-9.00	0.55	-9.00
PLM 1	L Episode Day 3, 2013	7	CO (PPM)	1.47	-9.00	1.47	-9.00
PLM 1	L Episode Day 3, 2013	8	CO (PPM)	0.91	-9.00	0.91	-9.00
PLM 1	L Episode Day 3, 2013	9	CO (PPM)	0.73	-9.00	0.73	-9.00
PLM 1	L Episode Day 3, 2013	10	CO (PPM)	0.69	-9.00	0.69	-9.00
PLM 1	L Episode Day 3, 2013	11	CO (PPM)	0.78	-9.00	0.78	-9.00
PLM 1	L Episode Day 3, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1	L Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
PLM	L Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	-9.00
PLM	L Episode Day 3, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1	L Episode Day 3, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1	E Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00
DT.M 1	E Episode Day 3, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1	E Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	-9 00
PLM 1	Episode Day 3, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1	Episode Day 3, 2013	22	CO (PPM)	-9.00	-9.00	-9.00	-9.00
PLM 1	L Episode Day 3, 2013	23	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN 1	L Episode Day 1, 2013	0	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN 1	L Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	L Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	l Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN 1	L Episode Day 1, 2013	4	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	L Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BIN	L Episode Day 1, 2013	6	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	L Episode Day 1, 2013	7	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BIN 1	E Episode Day 1, 2013	0 Q	CO (PPM)	-9.00	-9.00	-9.00	-9.00
ם בא ביי ביי ביי ביי ביי ביי ביי ביי ביי	E Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	E Episode Day 1, 2013	11	CO (PPM)	-9 00	-9 00	-9 00	-9 00
BTN 1	Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	L Episode Day 1, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	L Episode Day 1, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN 1	l Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN 1	L Episode Day 1, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN 1	L Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN 1	L Episode Day 1, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BTN	L Episode Day 1, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BIN	L Episode Day 1, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	-9.00
BIN	L Episode Day 1, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	-9.00
	E Episode Day 1, 2013	22	CO (PPM)	0.2/	-9.00	0.2/	-9.00
BTN 1	Enisode Day 1, 2013	د <u>م</u>	CO (DDM)	0.30	-9.00	0.30	_9 00
BTN 1	Episode Day 2, 2013	1	CO (PPM)	0.52	-9.00	0.52	-9.00
BTN 1	L Episode Day 2, 2013	2	CO (PPM)	0.49	-9.00	0.49	-9.00
BTN	L Episode Day 2, 2013	3	CO (PPM)	0.44	-9.00	0.44	-9.00
BTN	L Episode Day 2, 2013	4	CO (PPM)	0.36	-9.00	0.36	-9.00
BTN 1	L Episode Day 2, 2013	5	CO (PPM)	0.31	-9.00	0.31	-9.00
BTN 1	l Episode Day 2, 2013	6	CO (PPM)	0.32	-9.00	0.32	-9.00
BTN 1	L Episode Day 2, 2013	7	CO (PPM)	0.51	-9.00	0.51	-9.00
BTN 1	L Episode Day 2, 2013	8	CO (PPM)	0.47	-9.00	0.47	-9.00
BTN 1	L Episode Day 2, 2013	9	CO (PPM)	0.54	-9.00	0.54	-9.00
BTN 1	L Episode Day 2, 2013	10	CO (PPM)	0.65	-9.00	0.65	-9.00
BIN	L Episode Day 2, 2013		CO (PPM)	0.77	-9.00	0.77	-9.00
BIN	L Episode Day 2, 2013	12	CO (PPM)	U.76	-9.00	0.76	-9.00
	L Episode Day 2, 2013	13 14	CO (PPM)	0.74 0.78	-9.00	0.74	-9.00
עדדים	L DETROAC DAY 2, 2010	77	CO (FEII)	0.70	9.00	0.70	2.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=	867.2tpd;1.7	;80;1/	M 240 w	/newest 4myr	exempt;	0010	1000
OTTE AND		ם ייי די		DOT	T TITT እ እTTT	2013	2013	2013	1988 ODGEDVED
SILE AVG	тор	DATE	HR	POL	LUIANI	(IIAM)	(CAL3OHC)	(HAM+CAL3)	OBSERVED
I BR.	IOD					(OPIN)	(CAUSQUE)	(OAN CALS)	
BTN	1	Episode Day 2, 2013	15	CO	(PPM)	0.91	-9.00	0.91	-9.00
BTN	1	Episode Day 2, 2013	16	CO	(PPM)	1.24	-9.00	1.24	-9.00
BTN	1	Episode Day 2, 2013	17	CO	(PPM)	1.43	-9.00	1.43	-9.00
BTN	1	Episode Day 2, 2013	18	CO	(PPM)	1.53	-9.00	1.53	-9.00
BTN	1	Episode Day 2, 2013	19	CO	(PPM)	1.23	-9.00	1.23	-9.00
BIN	1	Episode Day 2, 2013	20	00	(PPM)	0.75	-9.00	0.75	-9.00
BIN BTN	1	Episode Day 2, 2013	21	CO	(PPM)	1 39	-9.00	1 39	-9.00
BTN	1	Episode Day 2, 2013	23	CO	(PPM)	1.67	-9.00	1.67	-9.00
BTN	1	Episode Day 3, 2013	0	CO	(PPM)	1.05	-9.00	1.05	-9.00
BTN	1	Episode Day 3, 2013	1	CO	(PPM)	0.80	-9.00	0.80	-9.00
BTN	1	Episode Day 3, 2013	2	CO	(PPM)	0.61	-9.00	0.61	-9.00
BTN	1	Episode Day 3, 2013	3	CO	(PPM)	0.41	-9.00	0.41	-9.00
BTN	1	Episode Day 3, 2013	4	CO	(PPM)	0.34	-9.00	0.34	-9.00
BIN	1	Episode Day 3, 2013	5	CO	(PPM) (DDM)	0.33	-9.00	0.33	-9.00
BIN	1	Episode Day 3, 2013	7	CO	(PPM)	0.30	-9.00	0.30	-9.00
BTN	1	Episode Day 3, 2013	, 8	CO	(PPM)	0.35	-9.00	0.35	-9.00
BTN	1	Episode Day 3, 2013	9	CO	(PPM)	0.39	-9.00	0.39	-9.00
BTN	1	Episode Day 3, 2013	10	CO	(PPM)	0.35	-9.00	0.35	-9.00
BTN	1	Episode Day 3, 2013	11	CO	(PPM)	0.26	-9.00	0.26	-9.00
BTN	1	Episode Day 3, 2013	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode Day 3, 2013	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode Day 3, 2013	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BIN	1	Episode Day 3, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode Day 3, 2013	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode Day 3, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode Day 3, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode Day 3, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode Day 3, 2013	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
BTN	1	Episode Day 3, 2013	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
B.I.N	1	Episode Day 3, 2013	23	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 2013	0	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U_1 TT 1	1	Episode Day 1, 2013	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode Day 1, 2013	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	7	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 2013	8	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 2013	10	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode Day 1, 2013	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode Day 1, 2013	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	16	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
	1	Episode Day 1, 2013	1 / 1 0	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
U_1 II 1	1	Episode Day 1, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U 1	1	Episode Day 1, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_1	1	Episode Day 1, 2013	22	CO	(PPM)	1.10	-9.00	1.10	-9.00
U_1	1	Episode Day 1, 2013	23	CO	(PPM)	1.14	-9.00	1.14	-9.00
U_1	1	Episode Day 2, 2013	0	CO	(PPM)	0.84	-9.00	0.84	-9.00
	1	Episode Day 2, 2013		CO	(PPM)	0.54	-9.00	0.54	-9.00
	1	Episode Day 2, 2013	2	CO	(PPM) (DDM)	0.44	-9.00	0.44	-9.00
U 1	1	Episode Day 2, 2013	4	CO	(PPM)	0.44	-9.00	0.44	-9.00
Ŭ_1	1	Episode Day 2, 2013	5	CO	(PPM)	0.48	-9.00	0.48	-9.00
U_1	1	Episode Day 2, 2013	6	CO	(PPM)	0.70	-9.00	0.70	-9.00
U_1	1	Episode Day 2, 2013	7	CO	(PPM)	1.86	-9.00	1.86	-9.00
U_1	1	Episode Day 2, 2013	8	CO	(PPM)	1.22	-9.00	1.22	-9.00
U_1	1	Episode Day 2, 2013	9	CO	(PPM)	0.74	-9.00	0.74	-9.00
	⊥ 1	Episode Day 2, 2013	10 11	00	(PPM)	0.50	-9.00	0.50	-9.00
	⊥ 1	Episode Day 2, 2013	1 D	C0 C0	(PPM)	0.50	-9.00 _9.00	0.50	-9.00
U 1	1	Episode Day 2, 2013	13	CO	(PPM)	0.95	-9.00	0.95	-9.00
Ū_1	ĩ	Episode Day 2, 2013	14	CO	(PPM)	1.52	-9.00	1.52	-9.00
U_1	1	Episode Day 2, 2013	15	CO	(PPM)	2.12	-9.00	2.12	-9.00
U_1	1	Episode Day 2, 2013	16	CO	(PPM)	5.03	-9.00	5.03	-9.00
U_1	1	Episode Day 2, 2013	17	CO	(PPM)	8.60	-9.00	8.60	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	7.2tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0.01.0	1000
	IID		2013	2013	2013	1988
DERIOD	HR	POLLUIANI	PREDICIED (IIAM)	(CAL3OHC)	(HAM+CAL3)	OBSERVED
PERIOD			(OAH)	(CADSQUE)	(OAMICALS)	
U 1 1 Episode Day 2, 2013	18	CO (PPM)	8.62	-9.00	8.62	-9.00
U_1 1 Episode Day 2, 2013	19	CO (PPM)	2.72	-9.00	2.72	-9.00
U_1 1 Episode Day 2, 2013	20	CO (PPM)	1.15	-9.00	1.15	-9.00
U_1 1 Episode Day 2, 2013	21	CO (PPM)	1.01	-9.00	1.01	-9.00
U_1 1 Episode Day 2, 2013	22	CO (PPM)	0.99	-9.00	0.99	-9.00
U_1 1 Episode Day 2, 2013	23	CO (PPM)	0.86	-9.00	0.86	-9.00
U_I I Episode Day 3, 2013	0	CO (PPM)	0.67	-9.00	0.67	-9.00
U 1 1 Episode Day 3, 2013	2	CO (PPM)	0.58	-9.00	0.50	-9.00
U 1 1 Episode Day 3, 2013	3	CO (PPM)	0.32	-9.00	0.32	-9.00
U 1 1 Episode Day 3, 2013	4	CO (PPM)	0.34	-9.00	0.34	-9.00
U_1 1 Episode Day 3, 2013	5	CO (PPM)	0.47	-9.00	0.47	-9.00
U_1 1 Episode Day 3, 2013	б	CO (PPM)	0.86	-9.00	0.86	-9.00
U_1 1 Episode Day 3, 2013	7	CO (PPM)	2.35	-9.00	2.35	-9.00
U_1 1 Episode Day 3, 2013	8	CO (PPM)	1.47	-9.00	1.47	-9.00
U_I I Episode Day 3, 2013	10	CO (PPM)	1.03	-9.00	1.03	-9.00
U_I I Episode Day 3, 2013	11	CO (PPM)	0.89	-9.00	0.89	-9.00
U 1 1 Episode Day 3, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U 1 1 Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1 Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1 Episode Day 3, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1 Episode Day 3, 2013	16	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1 Episode Day 3, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U_1 1 Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U_I I Episode Day 3, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U 1 1 Episode Day 3, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U 1 1 Episode Day 3, 2013	22	CO (PPM)	-9.00	-9.00	-9.00	-9.00
U 1 1 Episode Day 3, 2013	23	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	0	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	1	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	2	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	3	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	4	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A I Episode Day 1, 2013	5	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F A 1 Episode Day 1, 2013	7	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F A 1 Episode Day 1, 2013	8	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	9	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	10	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	11	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	12	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A I Episode Day 1, 2013 F A 1 Episode Day 1, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F A 1 Episode Day 1, 2013	15	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F A 1 Episode Day 1, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	19	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	20	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A 1 Episode Day 1, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	-9.00
F_A I Episode Day 1, 2013	22	CO (PPM)	1.34	-9.00	1.34	-9.00
F_A I Episode Day 1, 2013 F A 1 Episode Day 2, 2013	∠3 0	CO (PPM)	0.05	-9.00	0.05	-9.00
F_A i Episode Day 2, 2013 F_A i Episode Day 2 2013	1	CO (PPM)	0.25	-9.00	0.25	-9.00
F A 1 Episode Day 2, 2013	2	CO (PPM)	0.25	-9.00	0.26	-9.00
F_A 1 Episode Day 2, 2013	3	CO (PPM)	0.26	-9.00	0.26	-9.00
F_A 1 Episode Day 2, 2013	4	CO (PPM)	0.26	-9.00	0.26	-9.00
F_A 1 Episode Day 2, 2013	5	CO (PPM)	0.34	-9.00	0.34	-9.00
F_A 1 Episode Day 2, 2013	6	CO (PPM)	0.62	-9.00	0.62	-9.00
F_A I Episode Day 2, 2013	./	CO (PPM)	1.30	-9.00	1.30	-9.00
F A 1 Episode Day 2, 2013 F A 1 Episode Day 2 2012	ð G	CO (PPM)	0.05	-9.00 _0 nn	0.05	-9.00
F A 1 Episode Day 2, 2013	10	CO (PPM)	0.59	-9.00	0.59	-9.00
F_A 1 Episode Day 2, 2013	11	CO (PPM)	0.54	-9.00	0.54	-9.00
F_A 1 Episode Day 2, 2013	12	CO (PPM)	0.51	-9.00	0.51	-9.00
F_A 1 Episode Day 2, 2013	13	CO (PPM)	0.48	-9.00	0.48	-9.00
F_A 1 Episode Day 2, 2013	14	CO (PPM)	0.67	-9.00	0.67	-9.00
F_A 1 Episode Day 2, 2013	15	CO (PPM)	1.19	-9.00	1.19	-9.00
F_A 1 Episode Day 2, 2013	16	CO (PPM)	1.77	-9.00	1.77	-9.00
F_A I Episode Day 2, 2013	17	CO (PPM)	0.97	-9.00	0.97	-9.00
F_A I Episode Day 2, 2013	10 10	CO (PPM)	U./4 0 77	-9.00	0.74	-9.00
F_A 1 Episode Day 2, 2013	20	CO (PPM)	0.66	-9.00	0.66	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2	tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0.01.0	1000
SITE AVG PERIOD	DATE	HR	POLLUTANT	2013 PREDICTED (UAM)	2013 PREDICTED (CAL3QHC)	2013 PREDICTED (UAM+CAL3)	1988 OBSERVED
SITE AVG PERIOD F_A 1 F_A 1	DATE Episode Day 2, 2013 Episode Day 2, 2013 Episode Day 2, 2013 Episode Day 3, 2013	HR 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5	POLLUTANT CO (PPM)	PREDICTED (UAM) 0.48 0.36 0.30 0.28 0.26 0.27 0.29 0.26 0.27 0.29 0.26 0.44 1.13 0.64 0.44 1.13 0.64 0.31 0.38 0.38 -9.00 -9.00 -9.00	PREDICTED (CAL3QHC) -9.00	PREDICTED (UAM+CAL3) 0.48 0.36 0.30 0.28 0.26 0.27 0.29 0.26 0.27 0.29 0.26 0.44 1.13 0.64 0.44 0.31 0.38 -9.00 -9.00 -9.00	OBSERVED -9.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Episode Day 3, 2013 Episode Day 1, 2013	15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10	CO (PPM) CO (PPM)	$\begin{array}{c} -9.00\\ -9$	$\begin{array}{c} -9.00\\ -9$	$\begin{array}{c} -9.00\\ -9$	-9.00 -9.00
H_U 1	Episode Day 1, 2013 Episode Day 2, 2013	10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 22 23 0 1 2 3 4 5	CO (PPM) CO (PP	$\begin{array}{c} -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ 0.60\\ 0.40\\ 0.31\\ 0.28\\ 0.28\\ 0.28\\ 0.29\\ 0.31\end{array}$	-9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	$\begin{array}{c} -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ -9.00\\ 0.60\\ 0.40\\ 0.31\\ 0.28\\ 0.28\\ 0.28\\ 0.29\\ 0.21\\ \end{array}$	$\begin{array}{c} -9.00\\ -9$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Episode Day 2, 2013 Episode Day 2, 2013	5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23	CO (PPM) CO (PPM)	$\begin{array}{c} 0.31\\ 0.41\\ 0.77\\ 0.54\\ 0.33\\ 0.29\\ 0.32\\ 0.41\\ 0.59\\ 1.00\\ 1.85\\ 4.14\\ 4.42\\ 1.75\\ 0.80\\ 0.43\\ 0.41\\ 0.37\\ \end{array}$	$\begin{array}{c} -9.00\\ -9$	$\begin{array}{c} 0.31\\ 0.41\\ 0.77\\ 0.54\\ 0.33\\ 0.29\\ 0.32\\ 0.41\\ 0.59\\ 1.00\\ 1.85\\ 4.14\\ 4.42\\ 1.75\\ 0.80\\ 0.43\\ 0.41\\ 0.37\\ \end{array}$	-9.00 -9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

SITE AVG PRENDO DATE HE POLLTEAN PRENDO PRENDO PRENDO ORDERPORT L.J. T 1 Bridade Day 3, 2013 1 0 00 (FEW) 0.33 -9.00 0.33 -9.00 L.J. T 1 Bridade Day 3, 2013 2 00 (FEW) 0.22 -9.00 0.22 -9.00 L.J. T Bridade Day 3, 2013 4 00 (FEW) 0.22 -9.00 0.42 -9.00 L.J. T Bridade Day 3, 2013 4 00 (FEW) 0.28 -9.00 0.42 -9.00 L.J. T Bridade Day 3, 2013 8 00 (FEW) 0.28 -9.00 0.42 -9.00 L.J. T Bridade Day 3, 2013 11 00 (FEW) 0.65 -9.00 0.61 -9.00	High: 2013 mob=867.2tpd;1.7;80;I/M 240 w/newest 4myr exempt;								
Strip District District <thdistrict< th=""> District <th< td=""><td></td><td></td><td></td><td>DOT</td><td>ד דדידי א אדידי</td><td>2013</td><td>2013</td><td>2013</td><td>1988 ODCEDVED</td></th<></thdistrict<>				DOT	ד דדידי א אדידי	2013	2013	2013	1988 ODCEDVED
Links Long Long <thlong< th=""> <thlong< th=""> <thlong< th=""> <thlo< td=""><td>DAIL PERIOD</td><td></td><td>HR</td><td>POL</td><td>LUIANI</td><td>(IIAM)</td><td>(CAL3OHC)</td><td>(HAM+CAL3)</td><td>OBSERVED</td></thlo<></thlong<></thlong<></thlong<>	DAIL PERIOD		HR	POL	LUIANI	(IIAM)	(CAL3OHC)	(HAM+CAL3)	OBSERVED
	TERIOD					(Ohit)	(CALISQUE)	(OAN CALL)	
B.T. 1 Delicade Bay 3, 2013 1 CO PHV 0.33 -9.00 0.33 -9.00 0.33 -9.00 0.33 -9.00 0.33 -9.00 0.33 -9.00 0.33 -9.00 0.33 -9.00 0.33 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.35 -9.00 0.37 -9.00 0.37 -9.00 -9	H_U 1 Episo	de Day 3, 2013	0	CO	(PPM)	0.35	-9.00	0.35	-9.00
H_U 1 Episode Day 3, 2013 2 CC (P2M) 0.2,7 -9.00 -9.00 <t< td=""><td>H_U 1 Episo</td><td>de Day 3, 2013</td><td>1</td><td>CO</td><td>(PPM)</td><td>0.33</td><td>-9.00</td><td>0.33</td><td>-9.00</td></t<>	H_U 1 Episo	de Day 3, 2013	1	CO	(PPM)	0.33	-9.00	0.33	-9.00
H_U 1 Beinode Day 3, 2013 3 CO IPPNI; 0.26 -9.00 0.26 -9.00 H_U 1 Beinode Day 3, 2013 6 CO IPPNI; 0.42 -9.00 0.42 -9.00 H_U 1 Beinode Day 3, 2013 6 CO IPPNI; 0.42 -9.00 0.42 -9.00 H_U 1 Beinode Day 3, 2013 10 0 CO IPPNI; 0.42 -9.00 0.42 -9.00 H_U 1 Beinode Day 3, 2013 10 0 CO IPPNI; 0.42 -9.00 0.47 -9.00 -8.00 -9.00 -8.00 -9.00 -8.00 -9.00 -8.00 -9.00 -8.00 -9.00	H_U 1 Episo	de Day 3, 2013	2	CO	(PPM)	0.27	-9.00	0.27	-9.00
$ \begin{array}{c} \textbf{H}_{1} \textbf{U} & 1 \\ \textbf{E}_{1} \textbf{U} & 1 \\ \textbf{E}_{1} \textbf{U} & 1 \\ \textbf{E}_{1} \textbf{U} & 0 \\ \textbf{H}_{2} \textbf{U} & 1 \\ \textbf{E}_{1} E$	H_U 1 Episo	de Day 3, 2013	3	CO	(PPM)	0.26	-9.00	0.26	-9.00
	H_U 1 Episo	de Day 3, 2013	4	CO	(PPM)	0.26	-9.00	0.26	-9.00
	H_U I Episo	de Day 3, 2013 de Day 3, 2013	5	00	(PPM)	0.28	-9.00	0.28	-9.00
	HU 1 Episo	de Day 3, 2013	7	CO	(PPM)	1 09	-9.00	1 09	-9.00
	HU 1 Episo	de Day 3, 2013	8	CO	(PPM)	0.56	-9.00	0.56	-9.00
H_U 1 Epicade Bay 3, 2013 10 CO (PPR) 0.61 -0.00 0.61 -9.00 H_U 1 Epicade Bay 3, 2013 11 CO (PPR) -9.00 -	H_U 1 Episo	de Day 3, 2013	9	CO	(PPM)	0.57	-9.00	0.57	-9.00
	H_U 1 Episo	de Day 3, 2013	10	CO	(PPM)	0.61	-9.00	0.61	-9.00
H_U 1 Bplacede Day 3, 2013 1.2 CO PEM -9.00 <	H_U 1 Episo	de Day 3, 2013	11	CO	(PPM)	0.61	-9.00	0.61	-9.00
H_U 1 Bplace Day 3, 2013 1.4 CU PEN -9.00 <td< td=""><td>H_U 1 Episo</td><td>de Day 3, 2013</td><td>12</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></td<>	H_U 1 Episo	de Day 3, 2013	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
Intro 1 Bplinde Bay 3, 2013 15 CO FPRID -9.10	H_U I Episo	de Day 3, 2013	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1 Episode Day 3, 2013 16 CO (2PW) -9.00 <	HII 1 Episo	de Day 3, 2013 de Day 3, 2013	15	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
i.g.u 1 Dpisode Day 3, 2013 17 CC (2PH) -9.00 -9.00 -9.00 -9.00 H_U 1 Bpisode Day 3, 2013 19 CC (2PH) -9.00 -9.00 -9.00 -9.00 H_U 1 Bpisode Day 3, 2013 20 CC (PH) -9.00 -9.00 -9.00 -9.00 H_U 1 Bpisode Day 1, 2013 20 CC (PH) -9.00 -9	HII 1 Episo	de Day 3, 2013 de Day 3, 2013	16	CO	(PPM)	-9.00	-9.00	-9 00	-9.00
LU 1 Episode Day 3, 2013 18 CO (PPM) -9.00 <t< td=""><td>HU 1 Episo</td><td>de Day 3, 2013</td><td>17</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	HU 1 Episo	de Day 3, 2013	17	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1 Episode Day 3, 2013 19 CO (PPM) -9.00 <	H_U 1 Episo	de Day 3, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1 Episode Day 3, 2013 20 CO (PPM) -9.00 <	H_U 1 Episo	de Day 3, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1 Rpisode bay 3, 2013 21 CO (PPM) -9.00 <	H_U 1 Episo	de Day 3, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
H_U 1 Episade Bay 3, 2013 22 CD (PPR) -9.00 <	H_U 1 Episo	de Day 3, 2013	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
LD 1 Bplande Bay 1, 2013 20 CO 1 (Fin) -9.00	H_U I Episo	de Day 3, 2013	22	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Epi aode Day, 1 2013 1 CO (EPM) -9.00 <td>H_U I Episo</td> <td>de Day 3, 2013 de Day 1, 2013</td> <td>∠3 0</td> <td>CO</td> <td>(PPM) (DDM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td>	H_U I Episo	de Day 3, 2013 de Day 1, 2013	∠3 0	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
ULA Episode Day 1, 2013 2 CO (PEW) -9.00	UA 1 Episo	de Day 1, 2013 de Day 1, 2013	1	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
ULA 1 Epicode Day 1, 2013 3 CO (PPN) -9.00 <t< td=""><td>U A 1 Episo</td><td>de Day 1, 2013</td><td>2</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	U A 1 Episo	de Day 1, 2013	2	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 4 CO (PPM) -9.00 <t< td=""><td>U_A 1 Episo</td><td>de Day 1, 2013</td><td>3</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	U_A 1 Episo	de Day 1, 2013	3	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 5 CO (PPR) -9.00 <t< td=""><td>U_A 1 Episo</td><td>de Day 1, 2013</td><td>4</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	U_A 1 Episo	de Day 1, 2013	4	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 6 CO (PPM) -9.00 <t< td=""><td>U_A 1 Episo</td><td>de Day 1, 2013</td><td>5</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	U_A 1 Episo	de Day 1, 2013	5	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day I, 2013 7 CD (PPN) -9.00 <t< td=""><td>U_A 1 Episo</td><td>de Day 1, 2013</td><td>6</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	U_A 1 Episo	de Day 1, 2013	6	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Defined a Day 1, 2013 3 CO (PPN) -9:00 -9	U_A I Episo	de Day 1, 2013 de Day 1, 2013	0	00	(PPM)	-9.00	-9.00	-9.00	-9.00
U.A 1 Dipisode Day 1, 2013 10 CO (EPM) -9.00	U_A I EDISO	de Day 1, 2013 de Day 1, 2013	o g	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
UA 1 Episode Day 1, 2013 11 CO (PPM) -9.00 <t< td=""><td>UA 1 Episo</td><td>de Day 1, 2013</td><td>10</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	UA 1 Episo	de Day 1, 2013	10	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Épisode Day 1, 2013 12 CCO (PPM) -9.00	U_A 1 Episo	de Day 1, 2013	11	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 13 CO (PPM) -9.00 <	U_A 1 Episo	de Day 1, 2013	12	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 14 CO (PPM) -9.00 -0.22 <	U_A 1 Episo	de Day 1, 2013	13	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U_A 1 Episo	de Day 1, 2013	14	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 10 CO CVPM -9.00 <t< td=""><td>U_A I Episo</td><td>de Day 1, 2013</td><td>15</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	U_A I Episo	de Day 1, 2013	15	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
UA 1 Episode Day 1, 2013 18 CO (PPM) -5.00 <t< td=""><td>U_A I EDISO</td><td>de Day 1, 2013 de Day 1, 2013</td><td>17</td><td>CO</td><td>(PPM) (DDM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	U_A I EDISO	de Day 1, 2013 de Day 1, 2013	17	CO	(PPM) (DDM)	-9.00	-9.00	-9.00	-9.00
UA 1 Episode Day 1, 2013 19 CO (PPM) -9:00 0:22 -9:00 0:22 -9:00 0:22 -9:00 0:22 -9:00 0:22 -9:00 0:22 -9:00 0:22 -9:00 0:23 -9:00 0:23 -9:00 0:23 -9:00 0:23 -9:00 0:23 -9:00 0:23 -9:00 0:23 -9:00 0:23 -9:00 0:23 -9:00 0:24 -9:00 0:24 -9:00 0:24 -9:00 0:24	U A 1 Episo	de Day 1, 2013	18	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
UA 1 Episode Day 1, 2013 20 CO (PPM) -9.00 0.25 -9.00 0.26 -9.00 0.25 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00 <th< td=""><td>U A 1 Episo</td><td>de Day 1, 2013</td><td>19</td><td>CO</td><td>(PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></th<>	U A 1 Episo	de Day 1, 2013	19	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 21 CO CPM -9.00 -9.00 -9.00 -9.00 U_A 1 Episode Day 1, 2013 22 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 2, 2013 0 CO (PPM) 0.26 -9.00 0.25 -9.00 U_A 1 Episode Day 2, 2013 0 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 2 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 4 CO (PPM) 0.23 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.30 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 7 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 <	U_A 1 Episo	de Day 1, 2013	20	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 22 CO (PPM) 0.29 -9.00 0.29 -9.00 U_A 1 Episode Day 2, 2013 0 CO (PPM) 0.25 -9.00 0.25 -9.00 U_A 1 Episode Day 2, 2013 1 CO (PPM) 0.23 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 2 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 3 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 3 CO (PPM) 0.23 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.23 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00 0.25 -9.00 0.25 -9.00 0.25 -9.00 0.25 -9.00 0.24 -9.00 0.24 -9.00 </td <td>U_A 1 Episo</td> <td>de Day 1, 2013</td> <td>21</td> <td>CO</td> <td>(PPM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td>	U_A 1 Episo	de Day 1, 2013	21	CO	(PPM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Episode Day 1, 2013 23 CO CPPM 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 2, 2013 1 CO (PPM) 0.23 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 2 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 3 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 4 CO (PPM) 0.23 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.24 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.32 -9.00 0.32 -9.00 0.32 -9.00 0.32 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00 0.24 -9.00	U_A 1 Episo	de Day 1, 2013	22	CO	(PPM)	0.29	-9.00	0.29	-9.00
U_A 1 Episode Day 2, 2013 0 CO (PPM) 0.25 -9.00 0.25 -9.00 U_A 1 Episode Day 2, 2013 2 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 3 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 3 CO (PPM) 0.23 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 5 CO (PPM) 0.23 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.30 -9.00 0.34 -9.00 U_A 1 Episode Day 2, 2013 7 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 10 CO (PPM) 0.27 -9.00 0.24 -9.00 U_A 1 <t< td=""><td>U_A I Episo</td><td>de Day 1, 2013</td><td>23</td><td>CO</td><td>(PPM)</td><td>0.26</td><td>-9.00</td><td>0.26</td><td>-9.00</td></t<>	U_A I Episo	de Day 1, 2013	23	CO	(PPM)	0.26	-9.00	0.26	-9.00
U_A 1 Episode Day 2, 2013 1 CO (PPM) 0.23 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 2 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 3 CO (PPM) 0.22 -9.00 0.22 -9.00 U_A 1 Episode Day 2, 2013 5 CO (PPM) 0.23 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 5 CO (PPM) 0.30 -9.00 0.33 -9.00 U_A 1 Episode Day 2, 2013 7 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 9 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 10 CO (PPM) 0.44 -9.00 0.41 -9.00 U_A Episode Day 2, 20	U_A I Episo	de Day 2, 2013	1	CO	(PPM) (DDM)	0.25	-9.00	0.25	-9.00
U_A 1 Episode Day 2, 2013 3 CO (PPM) 0.22 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 4 CO (PPM) 0.23 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 5 CO (PPM) 0.24 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.30 -9.00 0.30 -9.00 U_A 1 Episode Day 2, 2013 7 CO (PPM) 0.44 -9.00 0.44 -9.00 U_A 1 Episode Day 2, 2013 8 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 10 CO (PPM) 0.24 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 11 CO (PPM) 0.24 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 12 CO (PPM) 0.44 -9.00 0.48	UA 1 Episo	de Day 2, 2013 de Day 2, 2013	2	CO	(PPM)	0.22	-9.00	0.22	-9.00
U_A 1 Episode Day 2, 2013 4 CO (PPM) 0.23 -9.00 0.23 -9.00 U_A 1 Episode Day 2, 2013 5 CO (PPM) 0.24 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.30 -9.00 0.30 -9.00 U_A 1 Episode Day 2, 2013 8 CO (PPM) 0.32 -9.00 0.44 -9.00 U_A 1 Episode Day 2, 2013 9 CO (PPM) 0.32 -9.00 0.25 -9.00 U_A 1 Episode Day 2, 2013 10 CO (PPM) 0.24 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 11 CO (PPM) 0.27 -9.00 0.27 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.48 -9.00 0.41 -9.00 0.41 -9.00 0.41<	U_A 1 Episo	de Day 2, 2013	3	CO	(PPM)	0.22	-9.00	0.22	-9.00
U_A 1 Episode Day 2, 2013 5 CO (PPM) 0.24 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.30 -9.00 0.30 -9.00 U_A 1 Episode Day 2, 2013 7 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 8 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 10 CO (PPM) 0.24 -9.00 0.25 -9.00 U_A 1 Episode Day 2, 2013 11 CO (PPM) 0.27 -9.00 0.27 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.41 -9.00 0.41 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.48 -9.00 0.69 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 1.17 -9.00 1.17 <t< td=""><td>U_A 1 Episo</td><td>de Day 2, 2013</td><td>4</td><td>CO</td><td>(PPM)</td><td>0.23</td><td>-9.00</td><td>0.23</td><td>-9.00</td></t<>	U_A 1 Episo	de Day 2, 2013	4	CO	(PPM)	0.23	-9.00	0.23	-9.00
U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.30 -9.00 0.30 -9.00 U_A 1 Episode Day 2, 2013 7 CO (PPM) 0.44 -9.00 0.44 -9.00 U_A 1 Episode Day 2, 2013 8 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 9 CO (PPM) 0.25 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 11 CO (PPM) 0.21 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 12 CO (PPM) 0.41 -9.00 0.41 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.48 -9.00 0.48 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 0.48 -9.00 1.17 -9.00 U_A 1 Episode Day 2, 2013 16 CO (PPM) 2.89 -9.00 2.89 <t< td=""><td>U_A 1 Episo</td><td>de Day 2, 2013</td><td>5</td><td>CO</td><td>(PPM)</td><td>0.24</td><td>-9.00</td><td>0.24</td><td>-9.00</td></t<>	U_A 1 Episo	de Day 2, 2013	5	CO	(PPM)	0.24	-9.00	0.24	-9.00
U_A 1 Episode Day 2, 2013 7 CO (PPM) 0.44 -9.00 0.44 -9.00 U_A 1 Episode Day 2, 2013 8 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 9 CO (PPM) 0.25 -9.00 0.25 -9.00 U_A 1 Episode Day 2, 2013 10 CO (PPM) 0.24 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 11 CO (PPM) 0.24 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 12 CO (PPM) 0.41 -9.00 0.41 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.48 -9.00 0.69 -9.00 0.69 -9.00 0.69 -9.00 0.117 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 1.68 -9.00 1.57 -9.00 1.57 -9.00 1.57 -9.00 <td< td=""><td>U_A 1 Episo</td><td>de Day 2, 2013</td><td>6</td><td>CO</td><td>(PPM)</td><td>0.30</td><td>-9.00</td><td>0.30</td><td>-9.00</td></td<>	U_A 1 Episo	de Day 2, 2013	6	CO	(PPM)	0.30	-9.00	0.30	-9.00
U_A 1 Episode Day 2, 2013 6 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 9 CO (PPM) 0.24 -9.00 0.25 -9.00 U_A 1 Episode Day 2, 2013 10 CO (PPM) 0.24 -9.00 0.27 -9.00 U_A 1 Episode Day 2, 2013 11 CO (PPM) 0.41 -9.00 0.41 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.48 -9.00 0.48 -9.00 U_A 1 Episode Day 2, 2013 14 CO (PPM) 0.69 -9.00 0.69 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 1.17 -9.00 1.17 -9.00 U_A 1 Episode Day 2, 2013 16 CO (PPM) 3.28 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 18 CO (PPM) 1.35 -9.00 1.35	U_A I Episo	de Day 2, 2013	./	CO	(PPM)	0.44	-9.00	0.44	-9.00
U_A 1 Episode Day 2, 2013 10 CO (FPM) 0.23 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 10 CO (PPM) 0.27 -9.00 0.24 -9.00 U_A 1 Episode Day 2, 2013 11 CO (PPM) 0.41 -9.00 0.41 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.48 -9.00 0.48 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.69 -9.00 0.48 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 0.69 -9.00 0.69 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 1.17 -9.00 1.17 -9.00 U_A 1 Episode Day 2, 2013 16 CO (PPM) 3.28 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 18 CO (PPM) 1.35 -9.00 1.35	U_A I Episo	de Day 2, 2013 de Day 2, 2013	8	C0	(PPM) (DDM)	0.32	-9.00	0.32	-9.00
U_A 1 Episode Day 2, 2013 11 CO (PPM) 0.27 -9.00 0.27 -9.00 U_A 1 Episode Day 2, 2013 12 CO (PPM) 0.41 -9.00 0.41 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.41 -9.00 0.41 -9.00 U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.48 -9.00 0.48 -9.00 U_A 1 Episode Day 2, 2013 14 CO (PPM) 0.69 -9.00 0.69 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 1.17 -9.00 1.17 -9.00 U_A 1 Episode Day 2, 2013 16 CO (PPM) 3.28 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 18 CO (PPM) 1.35 -9.00 1.35 -9.00 U_A 1 Episode Day 2, 2013 20 CO (PPM) 0.32 -9.00 0.32	UA I Episo	de Day 2, 2013 de Day 2, 2013	10	CO	(PPM) (DDM)	0.25	-9.00	0.25	-9.00
U_A 1 Episode Day 2, 2013 12 CO<(PPM)	U A 1 Episo	de Day 2, 2013	11	CO	(PPM)	0.27	-9.00	0.27	-9.00
U_A 1 Episode Day 2, 2013 13 CO (PPM) 0.48 -9.00 0.48 -9.00 U_A 1 Episode Day 2, 2013 14 CO (PPM) 0.69 -9.00 0.69 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 1.17 -9.00 1.17 -9.00 U_A 1 Episode Day 2, 2013 16 CO (PPM) 2.89 -9.00 2.89 -9.00 U_A 1 Episode Day 2, 2013 17 CO (PPM) 3.28 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 18 CO (PPM) 1.35 -9.00 1.35 -9.00 U_A 1 Episode Day 2, 2013 19 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 21 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 22 CO (PPM) 0.32 -9.00 0.32	U_A 1 Episo	de Day 2, 2013	12	CO	(PPM)	0.41	-9.00	0.41	-9.00
U_A 1 Episode Day 2, 2013 14 CO (PPM) 0.69 -9.00 0.69 -9.00 U_A 1 Episode Day 2, 2013 15 CO (PPM) 1.17 -9.00 1.17 -9.00 U_A 1 Episode Day 2, 2013 16 CO (PPM) 2.89 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 17 CO (PPM) 3.28 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 18 CO (PPM) 1.35 -9.00 1.35 -9.00 U_A 1 Episode Day 2, 2013 19 CO (PPM) 0.46 -9.00 0.46 -9.00 U_A 1 Episode Day 2, 2013 20 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 21 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 22 CO (PPM) 0.26 -9.00 0.29	U_A 1 Episo	de Day 2, 2013	13	CO	(PPM)	0.48	-9.00	0.48	-9.00
U_A 1 Episode Day 2, 2013 15 CO (PPM) 1.17 -9.00 1.17 -9.00 U_A 1 Episode Day 2, 2013 16 CO (PPM) 2.89 -9.00 2.89 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 17 CO (PPM) 3.28 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 17 CO (PPM) 1.35 -9.00 1.35 -9.00 U_A 1 Episode Day 2, 2013 19 CO (PPM) 0.46 -9.00 0.46 -9.00 U_A 1 Episode Day 2, 2013 20 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 21 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 22 CO (PPM) 0.26 -9.00 0.29 -9.00 U_A 1 Episode Day 3, 2013 23 CO (PPM) 0.26	U_A 1 Episo	de Day 2, 2013	14	CO	(PPM)	0.69	-9.00	0.69	-9.00
U_A 1 Episode Day 2, 2013 16 CO (PPM) 2.89 -9.00 2.89 -9.00 U_A 1 Episode Day 2, 2013 17 CO (PPM) 3.28 -9.00 3.28 -9.00 U_A 1 Episode Day 2, 2013 18 CO (PPM) 1.35 -9.00 1.35 -9.00 U_A 1 Episode Day 2, 2013 19 CO (PPM) 0.46 -9.00 0.46 -9.00 U_A 1 Episode Day 2, 2013 20 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 21 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 22 CO (PPM) 0.29 -9.00 0.29 -9.00 U_A 1 Episode Day 2, 2013 23 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 0 CO (PPM) 0.26 -9.00 0.26	U_A 1 Episo	de Day 2, 2013	15	CO	(PPM)	1.17	-9.00	1.17	-9.00
U_A 1 Episode Day 2, 2013 17 CO (PPM) 5.26 -9.00 5.26 -9.00 U_A 1 Episode Day 2, 2013 18 CO (PPM) 1.35 -9.00 1.35 -9.00 U_A 1 Episode Day 2, 2013 19 CO (PPM) 0.46 -9.00 0.46 -9.00 U_A 1 Episode Day 2, 2013 20 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 21 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 22 CO (PPM) 0.29 -9.00 0.29 -9.00 U_A 1 Episode Day 2, 2013 23 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 0 CO (PPM) 0.27 -9.00 0.27 -9.00 U_A 1 Episode Day 3, 2013 1 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 2 CO	U_A L Episo	de Day 2, 2013	17	00	(PPM)	2.89	-9.00	2.89	-9.00
U_A 1 Episode Day 2, 2013 19 CO (PPM) 0.46 -9.00 0.46 -9.00 U_A 1 Episode Day 2, 2013 19 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 20 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 21 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 22 CO (PPM) 0.29 -9.00 0.29 -9.00 U_A 1 Episode Day 2, 2013 23 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 0 CO (PPM) 0.27 -9.00 0.27 -9.00 U_A 1 Episode Day 3, 2013 1 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 2 CO (PPM) 0.23 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 2 CO (UA IEDISO	de Day 2, 2013 de Day 2, 2013	18	CO	(PPM)	3.20 1 35	-9.00	3.20 1 35	-9.00
U_A 1 Episode Day 2, 2013 20 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 21 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 21 CO (PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 22 CO (PPM) 0.29 -9.00 0.29 -9.00 U_A 1 Episode Day 2, 2013 23 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 0 CO (PPM) 0.27 -9.00 0.27 -9.00 U_A 1 Episode Day 3, 2013 1 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 2 CO (PPM) 0.23 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 2 CO (PPM) 0.23 -9.00 0.23 -9.00	UA 1 Episo	de Day 2, 2013	19	CO	(PPM)	0.46	-9.00	0.46	-9.00
U_A 1 Episode Day 2, 2013 21 CO<(PPM) 0.32 -9.00 0.32 -9.00 U_A 1 Episode Day 2, 2013 22 CO<(PPM)	U_A 1 Episo	de Day 2, 2013	20	CO	(PPM)	0.32	-9.00	0.32	-9.00
U_A 1 Episode Day 2, 2013 22 CO CPM 0.29 -9.00 0.29 -9.00 U_A 1 Episode Day 2, 2013 23 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 0 CO (PPM) 0.27 -9.00 0.27 -9.00 U_A 1 Episode Day 3, 2013 1 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 2 CO (PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 2 CO (PPM) 0.23 -9.00 0.23 -9.00	U_A 1 Episo	de Day 2, 2013	21	CO	(PPM)	0.32	-9.00	0.32	-9.00
U_A 1 Episode Day 2, 2013 23 CO<(PPM) 0.26 -9.00 0.26 -9.00 U_A 1 Episode Day 3, 2013 0 CO<(PPM)	U_A 1 Episo	de Day 2, 2013	22	CO	(PPM)	0.29	-9.00	0.29	-9.00
U_A 1 Episode Day 3, 2013 0 CO (PPM) 0.27 -9.00 0.27 -9.00 U_A 1 Episode Day 3, 2013 1 CO (PPM) 0.26 -9.00 0.26 -9.00 U A 1 Episode Day 3, 2013 2 CO (PPM) 0.23 -9.00 0.23 -9.00	U_A 1 Episo	de Day 2, 2013	23	CO	(PPM)	0.26	-9.00	0.26	-9.00
UA I Episode Day 3, 2013 I CO (PPM) 0.26 -9.00 0.26 -9.00 UA I Episode Day 3, 2013 2 CO (PPM) 0.23 -9.00 0.23 -9.00	U_A l Episo	ae Day 3, 2013	U	CO	(PPM)	0.27	-9.00	0.27	-9.00
	UA LEPISO UA 1 Enviso	de Day 3, 2013 de Day 3, 2013	⊥ 2	CO	(PPM)	0.20	-9.00	0.20	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

STIRE AVID EXERCISE DARK PARCOLLTANC PARCOLLTANC PARCOLLTANC PARCOLLTANC DARK DARK U_A 1 Ppicade by 1, 2013 1 CO (PAN) 0.23 -0.00 0.23 -0.00 U_A 1 Dpicade by 1, 2013 5 CO (PNN) 0.23 -0.00 0.23 -0.00 U_A 1 Dpicade by 3, 2013 6 CO (PNN) 0.25 -0.00 0.25 -0.00 U_A 1 Dpicade by 3, 2013 8 CO (PNN) 0.65 -0.00 0.45 -0.00 U_A 1 Dpicade by 3, 2013 11 CO (PNN) -0.65 -0.00 0.45 -0.00 U_A 1 Dpicade by 3, 2013 11 CO (PNN) -0.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	High: 2013 mob=867.2tpd;1.7;80;I/M 240 w/newest 4myr exempt;								
Construct Fill Construct Fill		ייי די	TID		יא אדרדי	2013	2013	2013	1988 ODCEDVED
Disk Disk <thdisk< th=""> Disk Disk <thd< td=""><td>SILE AVG I PERIOD</td><td>DATE</td><td>HR</td><td>POLLUI</td><td>ANI</td><td>(IIAM)</td><td>(CALSOHC)</td><td>(HAM+CAL3)</td><td>OBSERVED</td></thd<></thdisk<>	SILE AVG I PERIOD	DATE	HR	POLLUI	ANI	(IIAM)	(CALSOHC)	(HAM+CAL3)	OBSERVED
U.A. 1 bplinde lay 3, 2013 3 CO (PW) 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.22 -9.00 0.23 -9.00<	TERTOP					(Ohin)	(CALISQUE)	(OANICALD)	
U.A. 1 bialode BW 3 2013 4 CO (PM) 0.23 3.00 0.33 3.00 U.A. 1 Bialode BW 3 2013 5 CO (PM) 0.24 3.00 0.35 3.00 U.A. 1 Bialode BW 3 2013 7 CO (PM) 0.26 3.00 0.35 3.00 U.A. 1 Bialode BW 3 2013 10 CO (PM) 0.56 -4.00 0.45 -4.00 U.A. 1 Bialode BW 3 2013 11 CO (PM) -5.00	U_A 1 H	Episode Day 3, 2013	3	CO (P	PM)	0.22	-9.00	0.22	-9.00
U.A. 1 Depicted Day 3, 2013 5 CO IPMAL 0.2,5 9.00 0.2,64 -9.00 U.A. 1 Depicted Day 3, 2013 0 CO IPMAL 0.2,59 -9.00 0.5,59 -9.00 0.5,59 -9.00 0.5,59 -9.00 0.5,59 -9.00 0.5,64 -9.00 0.5,64 -9.00 0.5,64 -9.00 0.5,64 -9.00 0.5,64 -9.00 0.5,64 -9.00 0.5,64 -9.00 0.5,64 -9.00	U_A 1 H	Episode Day 3, 2013	4	CO (P	PM)	0.23	-9.00	0.23	-9.00
$ \begin{array}{c} U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 6 & CO & (PM4) & 0.34 & -9.00 & 0.34 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 9 & CO & (PM4) & 0.54 & -9.00 & 0.54 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 10 & CO & (PM4) & 0.56 & -9.00 & 0.56 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 11 & CO & (PM4) & 0.56 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 11 & CO & (PM4) & 0.56 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 11 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 11 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 116 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 15 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 15 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 15 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 21 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 21 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 21 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 21 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 21 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 20 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 20 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 20 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 3 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ U_{A} & 1 & p_{1} \operatorname{icde} P_{A} & 2013 & 3 & CO & (PM4) & -9.00 & -9.00 & -9.00 & -9.00 & -9.00 \\ P_{A} & 1 & p_{1} \operatorname{icde} $	U_A 1 H	Episode Day 3, 2013	5	CO (P	PM)	0.25	-9.00	0.25	-9.00
U_A 1 bpinsten Bay 1 2001 0 000 0.	U_A 1 H	Episode Day 3, 2013	6	CO (P	PM)	0.34	-9.00	0.34	-9.00
$ \begin{array}{c} 0.4 & 1 & \text{pp} 1 \text{arcs} 1 & \text{pp} 1 $	U_A 1 H	Episode Day 3, 2013	7	CO (P	PPM)	0.96	-9.00	0.96	-9.00
$ \begin{array}{c} \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{p}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{U}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{U}_{1 \text{ lot} \text{ lot} \\ \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{U}_{\mathbf{A}} & \mathbf{U}_{\mathbf{A}} & 1 & \mathbf{U}_{\mathbf{A}} & \mathbf{U}_{$		Episode Day 3, 2013 Episode Day 2, 2012	8	CO (P	(PM)	0.59	-9.00	0.59	-9.00
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $		Episode Day 3, 2013	10	CO (P	DM)	0.03	-9.00	0.03	-9.00
		Episode Day 3, 2013	11	CO (P	PM)	0.45	-9.00	0.45	-9.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U_A 1 H	Episode Day 3, 2013	12	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
U_A 1 ppinode py 2, 2013 14 CO PPRN -9.00	U_A 1 H	Episode Day 3, 2013	13	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
U_A 1 Bpinode Day 3, 2013 15 CO PPM -9.00 <th< td=""><td>U_A 1 H</td><td>Episode Day 3, 2013</td><td>14</td><td>CO (P</td><td>PM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></th<>	U_A 1 H	Episode Day 3, 2013	14	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
U.A. 1 Bplace Bay 3, 2013 16 CO (PRM) -9.00 <	U_A 1 H	Episode Day 3, 2013	15	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
U_A 1 ppinode py 3 2013 16 CCO (FFW) -9.00 -9.00 -9.00 -9.00 -9.00 U_A 1 ppiaced py 3 2013 20 CO (PW) -9.00 -9.0		Episode Day 3, 2013	10	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
O.A. 1 Diplace Day 1 2013 19 CO (PPH) -9.00 -9.		Episode Day 3, 2013	18	CO (P	DM)	-9.00	-9.00	-9.00	-9.00
ULA 1 Episode Day 3, 2013 20 20 CO (28M) -9.00		Episode Day 3, 2013	19	CO (P	DM)	-9 00	-9.00	-9.00	-9.00
U.A 1 bpisode Day 3, 2013 21 CC (PPM) -9.00	UA 1 H	Episode Day 3, 2013	20	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
U.A 1 Episode Day 3, 2013 22 CCO (PPM) -9.00	U_A 1 H	Episode Day 3, 2013	21	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
U.A. 1 Episode Day 1, 2013 23 CO (PM) -9.00 <	U_A 1 H	Episode Day 3, 2013	22	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
P_L 1 Rpiacde Day 1, 2013 0 CO (PPM) -9.00 <t< td=""><td>U_A 1 H</td><td>Episode Day 3, 2013</td><td>23</td><td>CO (P</td><td>PM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	U_A 1 H	Episode Day 3, 2013	23	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
P_L 1 Ppisede Bay 1, 2013 1 CO (PPM) -9.00 <t< td=""><td>P_I 1 H</td><td>Episode Day 1, 2013</td><td>0</td><td>CO (P</td><td>PM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	P_I 1 H	Episode Day 1, 2013	0	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
P_1 1 Bpinded By 1, 2013 2 CC (FPN) -9.00		Episode Day 1, 2013	Ţ	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
p_1 p_1 <td></td> <td>Episode Day 1, 2013</td> <td>2</td> <td>CO (P</td> <td>(PM)</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td> <td>-9.00</td>		Episode Day 1, 2013	2	CO (P	(PM)	-9.00	-9.00	-9.00	-9.00
P_1 P_1 adde Day 1, 2013 5 CO (PEW) -9.00		Episode Day 1, 2013	4	CO (P	DM)	-9 00	-9.00	-9.00	-9.00
P_T 1 Episode Day 1, 2013 6 CO CPPN -9.00 <th< td=""><td></td><td>Episode Day 1, 2013</td><td>5</td><td>CO (P</td><td>PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></th<>		Episode Day 1, 2013	5	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1 Episode Day 1, 2013 7 CO (PPM) -9.00 <t< td=""><td>P_I 1 H</td><td>Episode Day 1, 2013</td><td>6</td><td>CO (P</td><td>PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	P_I 1 H	Episode Day 1, 2013	6	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1 Episode Day 1, 2013 8 CO (PPW) -9.00 <t< td=""><td>P_I 1 H</td><td>Episode Day 1, 2013</td><td>7</td><td>CO (P</td><td>PM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	P_I 1 H	Episode Day 1, 2013	7	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
P_I 1 Episode Day 1, 2013 9 CO (PPM) -9.00 <t< td=""><td>P_I 1 H</td><td>Episode Day 1, 2013</td><td>8</td><td>CO (P</td><td>PPM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	P_I 1 H	Episode Day 1, 2013	8	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
P_1 1 Episode Day I, 2013 10 CO (PPN) -9.00 <	P_I 1 F	Episode Day 1, 2013	9	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
P_1 1 Disode Day 1, 2013 11 CO (PPI) -9:00 <t< td=""><td></td><td>Episode Day 1, 2013</td><td>10 11</td><td>CO (P</td><td>PM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>		Episode Day 1, 2013	10 11	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
b_l 1 bpisode Day 1, 2013 13 CO CPRM -9.00 <t< td=""><td></td><td>Episode Day 1, 2013</td><td>12</td><td>CO (P</td><td>DM)</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>		Episode Day 1, 2013	12	CO (P	DM)	-9.00	-9.00	-9.00	-9.00
p_T 1 Episode Day 1, 2013 14 CO CPPMI -9.00 <		Episode Day 1, 2013	13	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P_I 1 H	Episode Day 1, 2013	14	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
P_I 1 Episode Day 1, 2013 16 CCO (PPM) -9.00	P_I 1 H	Episode Day 1, 2013	15	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
P_I 1 Episode Day 1, 2013 17 CO (PPM) -9.00 <	P_I 1 H	Episode Day 1, 2013	16	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
P_1 1 Bpisode Day 1, 2013 18 CO (PPM) -9.00 -9.00 -9.00 -9.00 P_I 1 Bpisode Day 1, 2013 20 CO (PPM) -9.00 -9.00 -9.00 -9.00 P_I 1 Bpisode Day 1, 2013 21 CO (PPM) -9.00 0.62 -9.00 0.62 -9.00 0.62 -9.00 0.45 -9.00 0.45 -9.00 0.35 -9.00 0.35 -9.00 0.29 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.31 -9.00 0.34 -9.	P_I 1 H	Episode Day 1, 2013	17	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
P_1 1 Episode Day 1, 2013 20 CO (PPM) -9.00 -9.00 -9.00 -9.00 -9.00 P_I 1 Episode Day 1, 2013 21 CO (PPM) -9.00 <		Episode Day 1, 2013	18	CO (P	PPM)	-9.00	-9.00	-9.00	-9.00
P_1 1 Episode Day 1, 2013 21 CO (PM) -5.00 -5.00 -5.00 -5.00 P_1 1 Episode Day 1, 2013 22 CO (PPM) 0.71 -5.00 0.71 -9.00 P_1 1 Episode Day 2, 2013 0 CO (PPM) 0.62 -9.00 0.62 -9.00 P_1 1 Episode Day 2, 2013 1 CO (PPM) 0.35 -9.00 0.35 -9.00 P_1 1 Episode Day 2, 2013 2 CO (PPM) 0.30 -9.00 0.33 -9.00 P_1 1 Episode Day 2, 2013 3 CO<(PPM)		Episode Day 1, 2013	20	CO (P	DM)	-9.00	-9.00	-9.00	-9.00
P_T 1 Episode Day 1, 2013 22 CO (PPM) 0.71 -9.00 0.71 -9.00 P_I 1 Episode Day 1, 2013 23 CO (PPM) 0.62 -9.00 0.62 -9.00 P_I 1 Episode Day 2, 2013 1 CO (PPM) 0.45 -9.00 0.45 -9.00 P_I 1 Episode Day 2, 2013 2 CO (PPM) 0.35 -9.00 0.35 -9.00 P_I 1 Episode Day 2, 2013 3 CO (PPM) 0.31 -9.00 0.33 -9.00 P_I 1 Episode Day 2, 2013 4 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 2, 2013 6 CO (PPM) 0.36 -9.00 0.59 -9.00 .59 -9.00 .59 -9.00 .59 -9.00 .59 -9.00 .59 -9.00 .56 -9.00 .56 .59.00		Episode Day 1, 2013	21	CO (P	PM)	-9.00	-9.00	-9.00	-9.00
P_I 1 Episode Day 1, 2013 23 CO (PPM) 0.62 -9.00 0.62 -9.00 P_I 1 Episode Day 2, 2013 0 CO (PPM) 0.45 -9.00 0.45 -9.00 P_I 1 Episode Day 2, 2013 1 CO (PPM) 0.35 -9.00 0.35 -9.00 P_I 1 Episode Day 2, 2013 2 CO (PPM) 0.30 -9.00 0.32 -9.00 P_I 1 Episode Day 2, 2013 3 CO (PPM) 0.31 -9.00 0.31 -9.00 P_I 1 Episode Day 2, 2013 5 CO (PPM) 0.36 -9.00 0.35 -9.00 P_I 1 Episode Day 2, 2013 6 CO (PPM) 0.56 -9.00 0.59 -9.00 P_I 1 Episode Day 2, 2013 7 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 11 CO (PPM	PI 1 P	Episode Day 1, 2013	22	CO (P	PPM)	0.71	-9.00	0.71	-9.00
P_I 1 Episode Day 2, 2013 0 CO (PPM) 0.45 -9.00 0.45 -9.00 P_I 1 Episode Day 2, 2013 1 CO (PPM) 0.30 -9.00 0.35 -9.00 P_I 1 Episode Day 2, 2013 3 CO (PPM) 0.29 -9.00 0.29 -9.00 P_I 1 Episode Day 2, 2013 3 CO (PPM) 0.36 -9.00 0.31 -9.00 P_I 1 Episode Day 2, 2013 5 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 2, 2013 6 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 2, 2013 7 CO (PPM) 0.59 -9.00 0.69 -9.00 P_I 1 Episode Day 2, 2013 9 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.34 -9.00 P_I 1 Episode Day 2, 2013 11 CO (PPM)	P_I 1 H	Episode Day 1, 2013	23	CO (P	PPM)	0.62	-9.00	0.62	-9.00
P_I 1 Episode Day 2, 2013 1 CO (PPM) 0.35 -9.00 0.35 -9.00 P_I 1 Episode Day 2, 2013 3 CO (PPM) 0.29 -9.00 0.29 -9.00 P_I 1 Episode Day 2, 2013 4 CO (PPM) 0.31 -9.00 0.31 -9.00 P_I 1 Episode Day 2, 2013 5 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 2, 2013 6 CO (PPM) 0.59 -9.00 0.59 -9.00 P_I 1 Episode Day 2, 2013 6 CO (PPM) 0.80 -9.00 0.80 -9.00 P_I 1 Episode Day 2, 2013 8 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.34 -9.00 P_I 1 Episode Day 2, 2013 11 CO (PPM) 0.38 -9.00 0.56 -	P_I 1 H	Episode Day 2, 2013	0	CO (P	PM)	0.45	-9.00	0.45	-9.00
P_I 1 Episode Day 2, 2013 2 CO (PPM) 0.30 -9.00 0.30 -9.00 P_I 1 Episode Day 2, 2013 4 CO (PPM) 0.31 -9.00 0.31 -9.00 P_I 1 Episode Day 2, 2013 5 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 2, 2013 5 CO (PPM) 0.36 -9.00 0.59 -9.00 P_I 1 Episode Day 2, 2013 7 CO (PPM) 0.59 -9.00 0.80 -9.00 P_I 1 Episode Day 2, 2013 7 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.34 -9.00 0.34 -9.00 0.34 -9.00 0.38 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 </td <td>P_I 1 H</td> <td>Episode Day 2, 2013</td> <td>1</td> <td>CO (P</td> <td>PM)</td> <td>0.35</td> <td>-9.00</td> <td>0.35</td> <td>-9.00</td>	P_I 1 H	Episode Day 2, 2013	1	CO (P	PM)	0.35	-9.00	0.35	-9.00
P_1 1 Episode Day 2, 2013 3 CO (PPM) 0.29 -9.00 0.29 -9.00 P_1 1 Episode Day 2, 2013 5 CO (PPM) 0.31 -9.00 0.31 -9.00 P_1 1 Episode Day 2, 2013 6 CO (PPM) 0.36 -9.00 0.59 -9.00 P_1 1 Episode Day 2, 2013 7 CO (PPM) 1.28 -9.00 1.28 -9.00 P_1 1 Episode Day 2, 2013 8 CO (PPM) 0.80 -9.00 0.42 -9.00 P_1 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.34 -9.00 P_1 1 Episode Day 2, 2013 11 CO (PPM) 0.34 -9.00 0.50 -9.00 0.50 -9.00 0.50 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.56 -9.00 0.50 -9.00 0.50 -9.00 0.57 -9.00 0.57 -9.00<		Episode Day 2, 2013	2	CO (P	PPM)	0.30	-9.00	0.30	-9.00
P_I 1 Episode Day 2, 2013 5 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 2, 2013 6 CO (PPM) 0.59 -9.00 0.59 -9.00 P_I 1 Episode Day 2, 2013 7 CO (PPM) 0.80 -9.00 0.80 -9.00 P_I 1 Episode Day 2, 2013 9 CO (PPM) 0.80 -9.00 0.80 -9.00 P_I 1 Episode Day 2, 2013 9 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.38 -9.00 P_I Episode Day 2, 2013 11 CO (PPM) 0.56 -9.00 0.56 -9.00 P_I Episode Day 2, 2013 13 CO (PPM) 0.56 -9.00 0.56 -9.00 P_I Episode Day 2, 2013 15 CO (PPM) 0.78 -9.00 0.78 -9.00 P_I Episode		Episode Day 2, 2013	3	CO (P	(PM)	0.29	-9.00	0.29	-9.00
P_I 1 Episode Day 2, 2013 6 CO (PPM) 0.59 -9.00 0.59 -9.00 P_I 1 Episode Day 2, 2013 7 CO (PPM) 1.28 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 8 CO (PPM) 0.80 -9.00 0.80 -9.00 P_I 1 Episode Day 2, 2013 9 CO (PPM) 0.34 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.34 -9.00 P_I 1 Episode Day 2, 2013 12 CO (PPM) 0.34 -9.00 0.34 -9.00 P_I 1 Episode Day 2, 2013 12 CO (PPM) 0.56 -9.00 0.56 -9.00 P_I 1 Episode Day 2, 2013 13 CO (PPM) 0.78 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 15 CO (PPM) 3.05 -9.00 3.05 <t< td=""><td></td><td>Episode Day 2, 2013</td><td>5</td><td>CO (P</td><td>PM)</td><td>0.36</td><td>-9.00</td><td>0.36</td><td>-9.00</td></t<>		Episode Day 2, 2013	5	CO (P	PM)	0.36	-9.00	0.36	-9.00
P_I 1 Episode Day 2, 2013 7 CO (PPM) 1.28 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 8 CO (PPM) 0.80 -9.00 0.80 -9.00 P_I 1 Episode Day 2, 2013 9 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.34 -9.00 P_I 1 Episode Day 2, 2013 11 CO (PPM) 0.38 -9.00 0.38 -9.00 P_I 1 Episode Day 2, 2013 12 CO (PPM) 0.56 -9.00 0.56 -9.00 P_I 1 Episode Day 2, 2013 15 CO (PPM) 0.78 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 15 CO (PPM) 1.28 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 15 CO (PPM) 3.05 -9.00 3.05 <	P_I 1 H	Episode Day 2, 2013	6	CO (P	PM)	0.59	-9.00	0.59	-9.00
P_I 1 Episode Day 2, 2013 8 CO (PPM) 0.80 -9.00 0.80 -9.00 P_I 1 Episode Day 2, 2013 9 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.38 -9.00 P_I 1 Episode Day 2, 2013 11 CO (PPM) 0.56 -9.00 0.50 -9.00 P_I 1 Episode Day 2, 2013 12 CO (PPM) 0.56 -9.00 0.56 -9.00 P_I 1 Episode Day 2, 2013 14 CO (PPM) 0.78 -9.00 0.78 -9.00 P_I 1 Episode Day 2, 2013 15 CO (PPM) 1.28 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 16 CO (PPM) 3.05 -9.00 3.05 -9.00 P_I 1 Episode Day 2, 2013 19 CO (PPM) 3.07 -9.00 3.07 -9.00 P_I 1 Episode Day 2, 2013 20 CO	P_I 1 H	Episode Day 2, 2013	7	CO (P	PPM)	1.28	-9.00	1.28	-9.00
P_I 1 Episode Day 2, 2013 9 CO (PPM) 0.42 -9.00 0.42 -9.00 P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.34 -9.00 P_I 1 Episode Day 2, 2013 11 CO (PPM) 0.38 -9.00 0.38 -9.00 P_I 1 Episode Day 2, 2013 12 CO (PPM) 0.50 -9.00 0.56 -9.00 P_I 1 Episode Day 2, 2013 14 CO (PPM) 0.78 -9.00 0.78 -9.00 P_I 1 Episode Day 2, 2013 15 CO (PPM) 1.28 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 16 CO (PPM) 3.05 -9.00 3.05 -9.00 P_I 1 Episode Day 2, 2013 18 CO (PPM) 3.07 -9.00 5.98 -9.00 5.98 -9.00 5.98 -9.00 1.04 -9.00 -9.00 P.1 1 Episode Day 2, 2013 <td>P_I 1 F</td> <td>Episode Day 2, 2013</td> <td>8</td> <td>CO (P</td> <td>PPM)</td> <td>0.80</td> <td>-9.00</td> <td>0.80</td> <td>-9.00</td>	P_I 1 F	Episode Day 2, 2013	8	CO (P	PPM)	0.80	-9.00	0.80	-9.00
P_I 1 Episode Day 2, 2013 10 CO (PPM) 0.34 -9.00 0.34 -9.00 P_I 1 Episode Day 2, 2013 11 CO (PPM) 0.38 -9.00 0.38 -9.00 P_I 1 Episode Day 2, 2013 12 CO (PPM) 0.56 -9.00 0.56 -9.00 P_I 1 Episode Day 2, 2013 13 CO (PPM) 0.56 -9.00 0.56 -9.00 P_I 1 Episode Day 2, 2013 14 CO (PPM) 0.78 -9.00 0.78 -9.00 P_I 1 Episode Day 2, 2013 15 CO (PPM) 1.28 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 16 CO (PPM) 3.05 -9.00 3.05 -9.00 P_I 1 Episode Day 2, 2013 17 CO (PPM) 4.86 -9.00 5.98 -9.00 5.98 -9.00 5.98 -9.00 1.04 -9.00 1.04 -9.00 1.04 -9.00 <	P_I 1 H	Episode Day 2, 2013	9	CO (P	PM)	0.42	-9.00	0.42	-9.00
P_1 1 Episode Day 2, 2013 11 CO<(PPM)		Episode Day 2, 2013	10	CO (P	PPM)	0.34	-9.00	0.34	-9.00
P_I 1 Episode Day 2, 2013 12 CO<(FFM)		Episode Day 2, 2013	12	CO (P	(PM)	0.38	-9.00	0.38	-9.00
P_I 1 Episode Day 2, 2013 14 CO (PPM) 0.78 -9.00 0.78 -9.00 P_I 1 Episode Day 2, 2013 15 CO (PPM) 1.28 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 16 CO (PPM) 3.05 -9.00 3.05 -9.00 P_I 1 Episode Day 2, 2013 16 CO (PPM) 4.86 -9.00 4.86 -9.00 P_I 1 Episode Day 2, 2013 17 CO (PPM) 4.86 -9.00 5.98 -9.00 P_I 1 Episode Day 2, 2013 18 CO (PPM) 5.98 -9.00 5.98 -9.00 P_I 1 Episode Day 2, 2013 19 CO (PPM) 3.07 -9.00 3.07 -9.00 P_I 1 Episode Day 2, 2013 20 CO (PPM) 1.04 -9.00 1.04 -9.00 P_I 1 Episode Day 2, 2013 21 CO (PPM) 0.70 -9.00 0.70 -9.00 P_I 1 Episode Day 3, 2013 22		Episode Day 2, 2013	13	CO (P	DM)	0.50	-9.00	0.50	-9.00
P_I 1 Episode Day 2, 2013 15 CO (PPM) 1.28 -9.00 1.28 -9.00 P_I 1 Episode Day 2, 2013 16 CO (PPM) 3.05 -9.00 3.05 -9.00 P_I 1 Episode Day 2, 2013 17 CO (PPM) 4.86 -9.00 4.86 -9.00 P_I 1 Episode Day 2, 2013 17 CO (PPM) 5.98 -9.00 5.98 -9.00 P_I 1 Episode Day 2, 2013 19 CO (PPM) 5.98 -9.00 3.07 -9.00 P_I 1 Episode Day 2, 2013 19 CO (PPM) 1.04 -9.00 1.04 -9.00 P_I 1 Episode Day 2, 2013 20 CO (PPM) 0.70 -9.00 0.70 -9.00 P_I 1 Episode Day 2, 2013 21 CO (PPM) 0.67 -9.00 0.67 -9.00 P_I 1 Episode Day 2, 2013 22 CO (PPM) 0.48 -9.00 0.48 -9.00 P_I 1 Episode Day 3, 2013 0 C	P I 1 P	Episode Day 2, 2013	14	CO (P	PPM)	0.78	-9.00	0.78	-9.00
P_I 1 Episode Day 2, 2013 16 CO (PPM) 3.05 -9.00 3.05 -9.00 P_I 1 Episode Day 2, 2013 17 CO (PPM) 4.86 -9.00 4.86 -9.00 P_I 1 Episode Day 2, 2013 18 CO (PPM) 5.98 -9.00 5.98 -9.00 P_I 1 Episode Day 2, 2013 19 CO (PPM) 3.07 -9.00 3.07 -9.00 P_I 1 Episode Day 2, 2013 20 CO (PPM) 1.04 -9.00 1.04 -9.00 P_I 1 Episode Day 2, 2013 21 CO (PPM) 0.70 -9.00 0.70 -9.00 P_I 1 Episode Day 2, 2013 22 CO (PPM) 0.67 -9.00 0.67 -9.00 P_I 1 Episode Day 2, 2013 23 CO (PPM) 0.48 -9.00 0.48 -9.00 P_I 1 Episode Day 3, 2013 0 CO (PPM) 0.40 -9.00 0.40 -9.00 P_I 1 Episode Day 3, 2013 1 CO	P_I 1 H	Episode Day 2, 2013	15	CO (P	PPM)	1.28	-9.00	1.28	-9.00
P_I 1 Episode Day 2, 2013 17 CO (PPM) 4.86 -9.00 4.86 -9.00 P_I 1 Episode Day 2, 2013 18 CO (PPM) 5.98 -9.00 5.98 -9.00 P_I 1 Episode Day 2, 2013 19 CO (PPM) 3.07 -9.00 3.07 -9.00 P_I 1 Episode Day 2, 2013 20 CO (PPM) 1.04 -9.00 1.04 -9.00 P_I 1 Episode Day 2, 2013 21 CO (PPM) 0.70 -9.00 0.70 -9.00 P_I 1 Episode Day 2, 2013 22 CO (PPM) 0.67 -9.00 0.67 -9.00 P_I 1 Episode Day 2, 2013 23 CO (PPM) 0.48 -9.00 0.48 -9.00 P_I 1 Episode Day 3, 2013 0 CO (PPM) 0.46 -9.00 0.40 -9.00 P_I 1 Episode Day 3, 2013 1 CO (PPM) 0.48 -9.00 0.36	P_I 1 H	Episode Day 2, 2013	16	CO (P	PM)	3.05	-9.00	3.05	-9.00
P_I I Episode Day 2, 2013 18 CO<(PPM)	P_I 1 H	Episode Day 2, 2013	17	CO (P	PM)	4.86	-9.00	4.86	-9.00
P_i 1 Episode Day 2, 2013 19 CO<(PPM)		spisode Day 2, 2013	18	CO (P	PM)	5.98	-9.00	5.98	-9.00
P_I 1 Episode Day 2, 2013 20 CO (PFH) 1.04 -9.00 1.04 -9.00 P_I 1 Episode Day 2, 2013 21 CO (PPM) 0.70 -9.00 0.70 -9.00 P_I 1 Episode Day 2, 2013 22 CO (PPM) 0.67 -9.00 0.67 -9.00 P_I 1 Episode Day 2, 2013 23 CO (PPM) 0.48 -9.00 0.48 -9.00 P_I 1 Episode Day 3, 2013 0 CO (PPM) 0.40 -9.00 0.40 -9.00 P_I 1 Episode Day 3, 2013 1 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 3, 2013 2 CO (PPM) 0.28 -9.00 0.28 -9.00 P_I 1 Episode Day 3, 2013 3 CO (PPM) 0.26 -9.00 0.26 -9.00 P_I 1 Episode Day 3, 2013 4 CO (PPM) 0.27 -9.00 0.27 <td< td=""><td></td><td>Tpisode Day 2, 2013</td><td>19 20</td><td></td><td>DM)</td><td>3.07</td><td>-9.UU _0 00</td><td>3.07</td><td>-9.00 _9.00</td></td<>		Tpisode Day 2, 2013	19 20		DM)	3.07	-9.UU _0 00	3.07	-9.00 _9.00
P_I 1 Episode Day 2, 2013 22 CO (PPM) 0.67 -9.00 0.67 -9.00 P_I 1 Episode Day 2, 2013 23 CO (PPM) 0.48 -9.00 0.48 -9.00 P_I 1 Episode Day 3, 2013 0 CO (PPM) 0.40 -9.00 0.48 -9.00 P_I 1 Episode Day 3, 2013 0 CO (PPM) 0.40 -9.00 0.40 -9.00 P_I 1 Episode Day 3, 2013 1 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 3, 2013 2 CO (PPM) 0.28 -9.00 0.28 -9.00 P_I 1 Episode Day 3, 2013 3 CO (PPM) 0.26 -9.00 0.26 -9.00 P_I 1 Episode Day 3, 2013 4 CO (PPM) 0.27 -9.00 0.27 -9.00 P_I 1 Episode Day 3, 2013 5 CO (PPM) 0.31 -9.00 0.31 -9.00		Episode Day 2, 2013	20 21	CO (P CO (D	PM)	1.04 0.70	-9.00	1.04 0.70	-9.00
P_I 1 Episode Day 2, 2013 23 CO (PPM) 0.48 -9.00 0.48 -9.00 P_I 1 Episode Day 3, 2013 0 CO (PPM) 0.40 -9.00 0.40 -9.00 P_I 1 Episode Day 3, 2013 1 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 3, 2013 2 CO (PPM) 0.28 -9.00 0.28 -9.00 P_I 1 Episode Day 3, 2013 3 CO (PPM) 0.26 -9.00 0.26 -9.00 P_I 1 Episode Day 3, 2013 4 CO (PPM) 0.27 -9.00 0.27 -9.00 P_I 1 Episode Day 3, 2013 5 CO (PPM) 0.31 -9.00 0.31 -9.00		Episode Day 2, 2013	22	CO (P	PPM)	0.67	-9.00	0.67	-9.00
P_I 1 Episode Day 3, 2013 0 CO (PPM) 0.40 -9.00 0.40 -9.00 P_I 1 Episode Day 3, 2013 1 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 3, 2013 2 CO (PPM) 0.28 -9.00 0.28 -9.00 P_I 1 Episode Day 3, 2013 3 CO (PPM) 0.26 -9.00 0.26 -9.00 P_I 1 Episode Day 3, 2013 4 CO (PPM) 0.27 -9.00 0.27 -9.00 P_I 1 Episode Day 3, 2013 5 CO (PPM) 0.31 -9.00 0.31 -9.00	P_I 1 P	Episode Day 2, 2013	23	CO (P	PPM)	0.48	-9.00	0.48	-9.00
P_I 1 Episode Day 3, 2013 1 CO (PPM) 0.36 -9.00 0.36 -9.00 P_I 1 Episode Day 3, 2013 2 CO (PPM) 0.28 -9.00 0.28 -9.00 P_I 1 Episode Day 3, 2013 3 CO (PPM) 0.26 -9.00 0.26 -9.00 P_I 1 Episode Day 3, 2013 4 CO (PPM) 0.27 -9.00 0.27 -9.00 P_I 1 Episode Day 3, 2013 5 CO (PPM) 0.31 -9.00 0.31 -9.00	P_I 1 H	Episode Day 3, 2013	0	CO (P	PPM)	0.40	-9.00	0.40	-9.00
P_I 1 Episode Day 3, 2013 2 CO (PPM) 0.28 -9.00 0.28 -9.00 P_I 1 Episode Day 3, 2013 3 CO (PPM) 0.26 -9.00 0.26 -9.00 P_I 1 Episode Day 3, 2013 4 CO (PPM) 0.27 -9.00 0.27 -9.00 P_I 1 Episode Day 3, 2013 5 CO (PPM) 0.31 -9.00 0.31 -9.00	P_I 1 P	Episode Day 3, 2013	1	CO (P	PPM)	0.36	-9.00	0.36	-9.00
P_I I Episode Day 3, 2013 3 CO<(PPM) 0.26 -9.00 0.26 -9.00 P_I 1 Episode Day 3, 2013 4 CO<(PPM)	P_I 1 H	Episode Day 3, 2013	2	CO (P	PM)	0.28	-9.00	0.28	-9.00
PI 1 Episode Day 3, 2013 4 CO (PPM) 0.27 -9.00 0.27 -9.00 PI 1 Episode Day 3, 2013 5 CO (PPM) 0.31 -9.00 0.31 -9.00		Episode Day 3, 2013	3	CO (P	'PM)	0.26	-9.00	0.26	-9.00
		Episode Day 3, 2013 Episode Day 3, 2013	4 5	CO (P CO (P	PM)	U.∠/ 0 31	-9.00 -9.00	0.⊿/ 0 31	-9.00 -9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

High: 2013 mob=867.2tpd;1.7;80;I/M 240 w/newest 4myr exempt;								
SITE AVG PERIC	DATE	HR	POLLUTANT	2013 PREDICTED (UAM)	2013 PREDICTED (CAL3QHC)	2013 PREDICTED (UAM+CAL3)	1988 OBSERVED	
P_I P_I P_I	1 Episode Day 3, 2013 1 Episode Day 3, 2013 1 Episode Day 3, 2013	6 7	CO (PPM) CO (PPM)	0.53 1.28	-9.00 -9.00	0.53 1.28 0.73	-9.00 -9.00	
P_I P_I	1 Episode Day 3, 2013	9	CO (PPM) CO (PPM)	0.72	-9.00	0.72	-9.00	
P_I	1 Episode Day 3, 2013	10	CO (PPM)	0.64	-9.00	0.64	-9.00	
P_I P T	1 Episode Day 3, 2013 1 Episode Day 3, 2013	11 12	CO (PPM) CO (PPM)	0.52 -9.00	-9.00	0.52	-9.00	
P_I	1 Episode Day 3, 2013	13	CO (PPM)	-9.00	-9.00	-9.00	-9.00	
P_I	1 Episode Day 3, 2013	14	CO (PPM)	-9.00	-9.00	-9.00	-9.00	
P_1 P T	1 Episode Day 3, 2013 1 Episode Day 3, 2013	15 16	CO (PPM) CO (PPM)	-9.00	-9.00	-9.00	-9.00	
P_I	1 Episode Day 3, 2013	17	CO (PPM)	-9.00	-9.00	-9.00	-9.00	
P_I	1 Episode Day 3, 2013	18	CO (PPM)	-9.00	-9.00	-9.00	-9.00	
P_I P I	1 Episode Day 3, 2013 1 Episode Day 3, 2013	20	CO (PPM) CO (PPM)	-9.00	-9.00	-9.00	-9.00	
P_I	1 Episode Day 3, 2013	21	CO (PPM)	-9.00	-9.00	-9.00	-9.00	
	1 Episode Day 3, 2013 1 Episode Day 3, 2013	22	CO (PPM)	-9.00	-9.00	-9.00	-9.00	
	I EPISOUE Day 5, 2015	23	CO (FFM)	-9.00	-9.00	-9.00	-9.00	
CMP	8 Episode Day 1, 2013 8 Episode Day 1, 2013	0 1	CO (PPM)	0.00	NA NA	0.00	-9.00	
CMP	8 Episode Day 1, 2013	2	CO (PPM)	0.00	NA	0.00	-9.00	
CMP	8 Episode Day 1, 2013	3	CO (PPM)	0.00	NA	0.00	-9.00	
CMP CMP	8 Episode Day 1, 2013 8 Episode Day 1, 2013	4 5	CO (PPM) CO (PPM)	0.00	NA NA	0.00	-9.00	
CMP	8 Episode Day 1, 2013	6	CO (PPM)	0.00	NA	0.00	-9.00	
CMP	8 Episode Day 1, 2013 8 Episode Day 1, 2013	7	CO (PPM)	-9.00	NA	-9.00	2.04	
CMP	8 Episode Day 1, 2013	9	CO (PPM) CO (PPM)	-9.00	NA	-9.00	1.84	
CMP	8 Episode Day 1, 2013	10	CO (PPM)	-9.00	NA	-9.00	1.81	
CMP	8 Episode Day 1, 2013 8 Episode Day 1, 2013	12	CO (PPM)	-9.00	NA NA	-9.00	1.70 1.59	
CMP	8 Episode Day 1, 2013	13	CO (PPM)	-9.00	NA	-9.00	1.56	
CMP	8 Episode Day 1, 2013	14	CO (PPM)	-9.00	NA	-9.00	1.57	
CMP CMP	8 Episode Day 1, 2013 8 Episode Day 1, 2013	15	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	1.74 2.36	
CMP	8 Episode Day 1, 2013	17	CO (PPM)	-9.00	NA	-9.00	3.15	
CMP	8 Episode Day 1, 2013 8 Episode Day 1 2013	18 19	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	3.84	
CMP	8 Episode Day 1, 2013	20	CO (PPM)	-9.00	NA	-9.00	3.96	
CMP	8 Episode Day 1, 2013	21	CO (PPM)	-9.00	NA	-9.00	3.91	
CMP	8 Episode Day 1, 2013 8 Episode Day 1, 2013	22	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	3.84	
CMP	8 Episode Day 2, 2013	0	CO (PPM)	-9.00	NA	-9.00	3.08	
CMP	8 Episode Day 2, 2013 8 Episode Day 2, 2013	1	CO (PPM)	-9.00	NA NA	-9.00	2.23	
CMP	8 Episode Day 2, 2013	3	CO (PPM)	1.45	NA	1.45	0.93	
CMP	8 Episode Day 2, 2013	4	CO (PPM)	1.36	NA	1.36	0.76	
CMP	8 Episode Day 2, 2013 8 Episode Day 2, 2013	5	CO (PPM) CO (PPM)	1.28	NA NA	1.28	0.65	
CMP	8 Episode Day 2, 2013	7	CO (PPM)	1.38	NA	1.38	0.94	
CMP	8 Episode Day 2, 2013 8 Episode Day 2, 2013	8	CO (PPM)	1.31	NA	1.31	1.43	
CMP	8 Episode Day 2, 2013	10	CO (PPM) CO (PPM)	1.23	NA	1.23	2.05	
CMP	8 Episode Day 2, 2013	11	CO (PPM)	1.30	NA	1.30	2.61	
CMP	8 Episode Day 2, 2013 8 Episode Day 2, 2013	12	CO (PPM) CO (PPM)	1.37	NA NA	1.37 1.46	3.11	
CMP	8 Episode Day 2, 2013	14	CO (PPM)	1.57	NA	1.57	4.08	
CMP	8 Episode Day 2, 2013 8 Episode Day 2, 2013	15	CO (PPM)	1.59	NA	1.59	4.44	
CMP	8 Episode Day 2, 2013	17	CO (PPM) CO (PPM)	4.07	NA	4.07	15.34	
CMP	8 Episode Day 2, 2013	18	CO (PPM)	5.78	NA	5.78	18.73	
CMP CMP	<pre>8 Episode Day 2, 2013 8 Episode Day 2, 2013</pre>	19 20	CO (PPM) CO (PPM)	7.02	NA NA	7.02	⊥8.65 18.41	
CMP	8 Episode Day 2, 2013	21	CO (PPM)	7.67	NA	7.67	18.16	
CMP	8 Episode Day 2, 2013 8 Episode Day 2, 2013	22	CO (PPM)	7.88	NA NA	7.88	18.08	
CMP	8 Episode Day 3, 2013	د <u>د</u> 0	CO (PPM)	7.92	NA	7.92	12.64	
CMP	8 Episode Day 3, 2013	1	CO (PPM)	5.58	NA	5.58	6.65	
CMP	8 Episode Day 3, 2013 8 Episode Day 3, 2013	2	CO (PPM)	3.88 2.56	NA NA	3.88	3.04	
CMP	8 Episode Day 3, 2013	4	CO (PPM)	2.07	NA	2.07	2.53	
CMP	8 Episode Day 3, 2013	5	CO (PPM)	1.78	NA	1.78	2.54	
CMP	o mpisoue Day 3, 2013	Ь	CU (PPM)	1.01	NA	1.01	∠./∪	
Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013	3 mob=867.2tpd;1.7	7;80;I/	M 240 w	/newest 4myr	exempt;	0010	1000
O T T T	7770	ייי דע ד		DOT	ד דוידית אוידי	2013	2013	2013	1988 ODGEDVED
SILE	AVG	DAIE	HK	POL	LUIANI	PREDICIED (IIAM)	(CALSOHC)	(IIAM+CAL3)	OBSERVED
	IBRIOD					(OPIN)	(CAUSQUE)	(OANICALS)	
CMP	8	Episode Day 3, 2	2013 7	CO	(PPM)	1.78	NA	1.78	3.36
CMP	8	Episode Day 3, 2	2013 8	CO	(PPM)	1.81	NA	1.81	4.14
CMP	8	Episode Day 3, 2	2013 9	CO	(PPM)	1.91	NA	1.91	4.71
CMP	8	Episode Day 3, 2	2013 10	CO	(PPM)	2.05	NA	2.05	5.21
CMP	8	Episode Day 3, 2	2013 11	CO	(PPM)	2.16	NA	2.16	5.56
CMP	8	Episode Day 3, 2	2013 12	C0 C0	(PPM)	2.38	NA	2.38	5.74
CMP	0	Episode Day 3, 2	2013 13	CO	(PPM) (DDM)	_9 00	NA NA	_9 00	5.09
CMP	8	Episode Day 3, 2	2013 15	CO	(PPM)	-9.00	NA	-9.00	4.64
CMP	8	Episode Day 3, 2	2013 16	CO	(PPM)	-9.00	NA	-9.00	4.56
CMP	8	Episode Day 3, 2	2013 17	CO	(PPM)	-9.00	NA	-9.00	5.28
CMP	8	Episode Day 3, 2	2013 18	CO	(PPM)	-9.00	NA	-9.00	5.30
CMP	8	Episode Day 3, 2	2013 19	CO	(PPM)	-9.00	NA	-9.00	5.34
CMP	8	Episode Day 3, 2	2013 20	CO	(PPM)	-9.00	NA	-9.00	5.69
CMP	8	Episode Day 3, 2	2013 21	CO	(PPM)	-9.00	NA	-9.00	5.94
CMP	8	Episode Day 3, 2	2013 22	C0	(PPM)	-9.00	NA	-9.00	6.00
CMP WDV	8	Episode Day 3, 2	2013 23	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
WBI	8	Episode Day 1, 2	2013 0	CO	(PPM) (DDM)	0.00	NΑ NΔ	0.00	-9.00
WBY	8	Episode Day 1, 2	2013 2	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day 1, 2	2013 3	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day 1, 2	2013 4	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day 1, 2	2013 5	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day 1, 2	2013 6	CO	(PPM)	0.00	NA	0.00	-9.00
WBY	8	Episode Day 1, 2	2013 7	CO	(PPM)	-9.00	NA	-9.00	2.44
WBY	8	Episode Day 1, 2	2013 8	CO	(PPM)	-9.00	NA	-9.00	2.14
WBY	8	Episode Day 1, 2	2013 9	CO	(PPM)	-9.00	NA	-9.00	1.73
WBY	8	Episode Day 1, 2	2013 10	00	(PPM)	-9.00	NA	-9.00	1.48
WBI	0 8	Episode Day 1, 2 Frigode Day 1	2013 12	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1 16
WBY	8	Episode Day 1, 2	2013 13	CO	(PPM)	-9.00	NA	-9.00	1.14
WBY	8	Episode Day 1, 2	2013 14	CO	(PPM)	-9.00	NA	-9.00	1.01
WBY	8	Episode Day 1, 2	2013 15	CO	(PPM)	-9.00	NA	-9.00	0.85
WBY	8	Episode Day 1, 2	2013 16	CO	(PPM)	-9.00	NA	-9.00	0.75
WBY	8	Episode Day 1, 2	2013 17	CO	(PPM)	-9.00	NA	-9.00	1.14
WBY	8	Episode Day 1, 2	2013 18	CO	(PPM)	-9.00	NA	-9.00	1.69
WBY	8	Episode Day 1, 2	2013 19	CO	(PPM)	-9.00	NA	-9.00	1.94
WBY	8	Episode Day 1, 2	2013 20	CO	(PPM)	-9.00	NA	-9.00	2.41
WBY	8	Episode Day 1, 2 Episode Day 1	2013 21	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.01
WBY	8	Episode Day 1, 2	2013 22	CO	(DDM)	-9.00	NΔ	-9.00	2.70
WBY	8	Episode Day 1, 2 Episode Day 2, 2	2013 0	CO	(PPM)	-9.00	NA	-9.00	3.39
WBY	8	Episode Day 2, 2	2013 1	CO	(PPM)	-9.00	NA	-9.00	3.28
WBY	8	Episode Day 2, 2	2013 2	CO	(PPM)	-9.00	NA	-9.00	2.88
WBY	8	Episode Day 2, 2	2013 3	CO	(PPM)	1.32	NA	1.32	2.70
WBY	8	Episode Day 2, 2	2013 4	CO	(PPM)	1.26	NA	1.26	2.30
WBY	8	Episode Day 2, 2	2013 5	CO	(PPM)	1.21	NA	1.21	2.21
WBY	8	Episode Day 2, 2	2013 6	CO	(PPM)	1.19	NA	1.19	2.24
WBI	8	Episode Day 2, 2	2013 /	00	(PPM)	1.21	NA NA	1.21	2.71
WBI	0 8	Episode Day 2, 2 Episode Day 2, 2	2013 0	CO	(PPM) (DDM)	1.14	NA NA	1.14	3.04
WBY	8	Episode Day 2, 2	2013 10	CO	(PPM)	1.05	NA	1.05	3.26
WBY	8	Episode Day 2, 2	2013 11	CO	(PPM)	1.02	NA	1.02	3.24
WBY	8	Episode Day 2, 2	2013 12	CO	(PPM)	1.00	NA	1.00	3.17
WBY	8	Episode Day 2, 2	2013 13	CO	(PPM)	0.97	NA	0.97	3.11
WBY	8	Episode Day 2, 2	2013 14	CO	(PPM)	0.93	NA	0.93	3.02
WBY	8	Episode Day 2, 2	2013 15	CO	(PPM)	0.84	NA	0.84	2.46
WBY	8	Episode Day 2, 2	2013 16	CO	(PPM)	0.91	NA	0.91	1.92
WBY	8	Episode Day 2, 2	2013 17	CO	(PPM)	1.12	NA	1.12	2.50
WBI	0	Episode Day 2, 2	2013 10	CO	(PPM) (DDM)	1.44	NA NA	1.44	5.00 4.86
WRV	2 R	Episode Day 2, 2	2013 20	CO	(PPM)	2 04	NΔ	2 04	5 71
WBY	8	Episode Day 2, 2	2013 21	CO	(PPM)	2.60	NA	2.60	6.39
WBY	8	Episode Day 2. 2	2013 22	CO	(PPM)	3.17	NA	3.17	7.17
WBY	8	Episode Day 2, 2	2013 23	CO	(PPM)	3.72	NA	3.72	8.09
WBY	8	Episode Day 3, 2	2013 0	CO	(PPM)	4.08	NA	4.08	8.94
WBY	8	Episode Day 3, 2	2013 1	CO	(PPM)	4.09	NA	4.09	8.66
WBY	8	Episode Day 3, 2	2013 2	CO	(PPM)	3.80	NA	3.80	7.36
WBY	8	Episode Day 3, 2	2013 3	CO	(PPM)	3.56	NA	3.56	6.40
WBY	8	Episode Day 3, 2	2013 4	CO	(PPM)	3.17	NA	3.17	5.64
WBY	8	Episode Day 3, 2	2013 5 2012 6	CO	(PPM)	2.62	NA NA	2.62	5.06
MB1 MB1	б Q	Episode Day 3, 2	2013 0 2013 7	00	(PPM)	2.U8 1 56	NA NA	2.U8 1 56	4.5U 3.70
WDI WRV	o Q	Episode Day 3, 2	2013 P	C0 C0	(DDM)	1 12	ND NA	1 12	2 99
WBY	8	Episode Day 3, 2	2013 9	CO	(PPM)	0.94	NA	0.94	2.46

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High:	2013 mob=867.	2tpd;1.7;	80;I/	M 240 w	/newest 4myr	exempt;	0010	1000
	שעם	E.			DOT	T TTO A NTO -	2013	2013	2013	1988 ODGEDVED
SILE AVG	DAI תר	E.		HK	POL	LUIANI	(IIAM)	(CALSOHC)	(HAM+CAL3)	OBSERVED
1 BRI							(OPAN)	(CAUSQUE)	(OANICALS)	
WBY	8 Epi	sode Day	3, 2013	10	CO	(PPM)	0.92	NA	0.92	2.41
WBY	8 Epi	sode Day	3, 2013	11	CO	(PPM)	0.93	NA	0.93	2.26
WBY	8 Epi	sode Day	3, 2013	12	CO	(PPM)	0.97	NA	0.97	2.09
WBY	8 Epi	sode Day	3, 2013	13	CO	(PPM)	1.02	NA	1.02	1.89
WBY	8 Epi	sode Day	3, 2013	14	CO	(PPM)	-9.00	NA	-9.00	1.53
WBY	8 Epi	sode Day	3, 2013	15	00	(PPM)	-9.00	NA	-9.00	1.17
WBI	8 Epi	sode Day	3, 2013	17	CO	(PPM)	-9.00	NA NA	-9.00	1.13
WBY	8 Epi	sode Day	3, 2013	18	CO	(PPM)	-9.00	NA	-9.00	0.70
WBY	8 Epi	sode Day	3, 2013	19	CO	(PPM)	-9.00	NA	-9.00	1.01
WBY	8 Epi	sode Day	3, 2013	20	CO	(PPM)	-9.00	NA	-9.00	1.73
WBY	8 Epi	sode Day	3, 2013	21	CO	(PPM)	-9.00	NA	-9.00	2.44
WBY	8 Epi	sode Day	3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	3.08
WBY	8 Epi	sode Day	3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	3.59
CRG	8 Epi	sode Day	1, 2013	0	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	o Epi	sode Day	1, 2013	1	CO	(PPM)	0.00	NA NA	0.00	-9.00
CRG	8 Epi	sode Day	1, 2013	3	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Epi	sode Day	1, 2013	4	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Epi	sode Day	1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Epi	sode Day	1, 2013	б	CO	(PPM)	0.00	NA	0.00	-9.00
CRG	8 Epi	sode Day	1, 2013	7	CO	(PPM)	-9.00	NA	-9.00	2.91
CRG	8 Epi	sode Day	1, 2013	8	CO	(PPM)	-9.00	NA	-9.00	2.54
CRG	8 Epi	sode Day	1, 2013	9	CO	(PPM)	-9.00	NA	-9.00	2.14
CRG	8 Epi	sode Day	1, 2013	10	00	(PPM)	-9.00	NA	-9.00	1.85
CRG	8 Epi	sode Day	1 2013	12	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1 51
CRG	8 Epi	sode Day	1, 2013	13	CO	(PPM)	-9.00	NA	-9.00	1.45
CRG	8 Epi	sode Day	1, 2013	14	CO	(PPM)	-9.00	NA	-9.00	1.30
CRG	8 Epi	sode Day	1, 2013	15	CO	(PPM)	-9.00	NA	-9.00	1.10
CRG	8 Epi	sode Day	1, 2013	16	CO	(PPM)	-9.00	NA	-9.00	1.19
CRG	8 Epi	sode Day	1, 2013	17	CO	(PPM)	-9.00	NA	-9.00	1.86
CRG	8 Epi	sode Day	1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	2.77
CRG	8 Epi	sode Day	1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	4.16
CRG	8 Epi	sode Day	1 2013	∠∪ 21	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	4.51
CRG	8 Epi	sode Day	1, 2013	22	CO	(PPM)	-9.00	NA	-9.00	5.37
CRG	8 Epi	sode Dav	1, 2013	23	CO	(PPM)	-9.00	NA	-9.00	5.11
CRG	8 Epi	sode Day	2, 2013	0	CO	(PPM)	-9.00	NA	-9.00	5.28
CRG	8 Epi	sode Day	2, 2013	1	CO	(PPM)	-9.00	NA	-9.00	5.14
CRG	8 Epi	sode Day	2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	4.58
CRG	8 Epi	sode Day	2, 2013	3	CO	(PPM)	1.72	NA	1.72	3.54
CRG	8 Epi	sode Day	2, 2013	4	CO	(PPM)	1.50	NA NA	1.50	3.43
CRG	8 Epi	sode Day	2, 2013	5	CO	(PPM)	1 34	NA	1 34	3.54
CRG	8 Epi	sode Day	2, 2013	7	CO	(PPM)	1.31	NA	1.31	4.48
CRG	8 Epi	sode Day	2, 2013	8	CO	(PPM)	1.16	NA	1.16	5.33
CRG	8 Epi	sode Day	2, 2013	9	CO	(PPM)	0.99	NA	0.99	5.21
CRG	8 Epi	sode Day	2, 2013	10	CO	(PPM)	0.91	NA	0.91	5.01
CRG	8 Epi	sode Day	2, 2013	11	CO	(PPM)	0.92	NA	0.92	4.85
CRG	8 Epi	sode Day	2, 2013	12	CO	(PPM)	0.98	NA	0.98	4.71
CRG	8 Epi	sode Day	2, 2013 2 2012	13	CO	(PPM)	1.05	NA NA	1.05	4.54
CRG	8 Epi	sode Day	2, 2013	15	CO	(PPM)	1.12	NA	1 12	2 85
CRG	8 Epi	sode Day	2, 2013	16	CO	(PPM)	1.48	NA	1.48	2.34
CRG	8 Epi	sode Day	2, 2013	17	CO	(PPM)	1.99	NA	1.99	3.03
CRG	8 Epi	sode Day	2, 2013	18	CO	(PPM)	2.56	NA	2.56	4.50
CRG	8 Epi	sode Day	2, 2013	19	CO	(PPM)	3.10	NA	3.10	6.39
CRG	8 Epi	sode Day	2, 2013	20	CO	(PPM)	3.50	NA	3.50	7.80
CRG	8 Epi	sode Day	2, 2013	21	CO	(PPM)	3.77	NA	3.77	8.52
CRG	o Epi	soue Day	2, 2013 2 2012	22	CO	(PPM)	3.93 2 OF	NA N7	3.93 2 OF	0.94 0.01
CRG	8 Eni	sode Dav	3, 2013	∠ 2 0	CO	(PPM)	2.80	NA NA	3.95	±.91 10 ع
CRG	8 Epi	sode Dav	3, 2013	1	CO	(PPM)	3.23	NA	3.23	9.73
CRG	8 Epi	sode Day	3, 2013	2	CO	(PPM)	2.71	NA	2.71	8.69
CRG	8 Epi	sode Day	3, 2013	3	CO	(PPM)	2.16	NA	2.16	7.14
CRG	8 Epi	sode Day	3, 2013	4	CO	(PPM)	1.69	NA	1.69	5.78
CRG	8 Epi	sode Day	3, 2013	5	CO	(PPM)	1.36	NA	1.36	5.26
CRG	8 Epi	sode Day	3, 2013	6	CO	(PPM)	1.21	NA	1.21	5.04
CRG	o ≝pi g r∽∹	soue Day	2, ∠UL3 2, 2012	/	00	(PPM)	1.31 1.27	NA NTA	1.3L 1.27	4./3
CRG	8 Epi	sode Dav	3, 2013	0 9	CO	(PPM)	1 24	NA NA	1 24	4 08
CRG	8 Epi	sode Dav	3, 2013	10	CO	(PPM)	1.24	NA	1.24	3.59
CRG	8 Epi	sode Dav	3, 2013	11	CO	(PPM)	1.23	NA	1.23	3.54
CRG	8 Epi	sode Day	3, 2013	12	CO	(PPM)	1.33	NA	1.33	3.37

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	Hig	gh: 2013 mob=867	.2tpd;1.7;	80;I/I	M 240 w	/newest 4myr	exempt;	0.01.0	1.0.0.0
	עיייער			DOT	ד דדידי א אדידי	2013	2013	2013	1988 ODCEDVED
SILE AVG	DALE		HR	POL.	LUIANI	(IIAM)	(CALSOHC)	(HAM+CAL3)	OBSERVED
I BRIC						(OAN)	(CADSQUE)	(OANICALS)	
CRG	8 Episode I	Day 3, 2013	13	CO	(PPM)	1.43	NA	1.43	3.00
CRG	8 Episode I	Day 3, 2013	14	CO	(PPM)	-9.00	NA	-9.00	2.60
CRG	8 Episode I	Day 3, 2013	15	CO	(PPM)	-9.00	NA	-9.00	1.74
CRG	8 Episode I	Day 3, 2013	16	CO	(PPM)	-9.00	NA	-9.00	1.30
CRG	8 Episode I	Day 3, 2013	17	CO	(PPM)	-9.00	NA	-9.00	1.71
CRG	8 Episode I	Day 3, 2013	18	00	(PPM)	-9.00	NA	-9.00	2.86
CRG	8 Episode I	Day 3, 2013	19	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	4.05
CRG	8 Episode I	Day 3, 2013	20	CO	(PPM)	-9.00	NA	-9.00	6.16
CRG	8 Episode I	Day 3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	7.05
CRG	8 Episode I	Day 3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	8.00
NJH	8 Episode I	Day 1, 2013	0	CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode I	Day 1, 2013	1	CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode I	Day 1, 2013	2	CO	(PPM)	0.00	NA	0.00	-9.00
NJH	8 Episode I	Day 1, 2013	3	CO	(PPM)	0.00	NA	0.00	-9.00
NUH	8 Episode I	Day 1, 2013	4 5	CO	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
NUTH	8 Episode I	Day 1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9 00
NJH	8 Episode I	Day 1, 2013	7	CO	(PPM)	-9.00	NA	-9.00	2.08
NJH	8 Episode I	Day 1, 2013	8	CO	(PPM)	-9.00	NA	-9.00	2.04
NJH	8 Episode I	Day 1, 2013	9	CO	(PPM)	-9.00	NA	-9.00	2.13
NJH	8 Episode I	Day 1, 2013	10	CO	(PPM)	-9.00	NA	-9.00	2.21
NJH	8 Episode I	Day 1, 2013	11	CO	(PPM)	-9.00	NA	-9.00	2.25
NJH	8 Episode I	Day 1, 2013	12	CO	(PPM)	-9.00	NA	-9.00	2.10
NJH	8 Episode I	Day 1, 2013	13	00	(PPM)	-9.00	NA	-9.00	1.98
NUH	8 Episode I	Day 1, 2013 Day 1, 2013	14	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	1 49
NJH	8 Episode I	Day 1, 2013	16	CO	(PPM)	-9.00	NA	-9.00	1.60
NJH	8 Episode I	Day 1, 2013	17	CO	(PPM)	-9.00	NA	-9.00	2.43
NJH	8 Episode I	Day 1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	2.66
NJH	8 Episode I	Day 1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	2.85
NJH	8 Episode I	Day 1, 2013	20	CO	(PPM)	-9.00	NA	-9.00	3.08
NJH	8 Episode I	Day 1, 2013	21	CO	(PPM)	-9.00	NA	-9.00	3.28
NJH	8 Episode I	Day 1, 2013	22	00	(PPM)	-9.00	NA	-9.00	3.46
NUH	8 Episode I	Day 1, 2013	∠3 0	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	3.50
NTH	8 Episode I	Day 2, 2013	1	CO	(PPM)	-9.00	NA	-9.00	2.56
NJH	8 Episode I	Day 2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	2.21
NJH	8 Episode I	Day 2, 2013	3	CO	(PPM)	0.88	NA	0.88	1.96
NJH	8 Episode I	Day 2, 2013	4	CO	(PPM)	0.82	NA	0.82	1.73
NJH	8 Episode I	Day 2, 2013	5	CO	(PPM)	0.78	NA	0.78	1.60
NJH	8 Episode I	Day 2, 2013	6	CO	(PPM)	0.73	NA	0.73	1.71
NUH	8 Episode I	Day 2, 2013	/	CO	(PPM) (DDM)	0.80	NA NA	0.80	2.20
NUTH	8 Episode I	Day 2, 2013	9	CO	(PPM) (PPM)	0.82	NA NA	0.82	2.74
NJH	8 Episode I	Day 2, 2013	10	CO	(PPM)	0.86	NA	0.86	3.17
NJH	8 Episode I	Day 2, 2013	11	CO	(PPM)	0.89	NA	0.89	3.29
NJH	8 Episode I	Day 2, 2013	12	CO	(PPM)	0.91	NA	0.91	3.42
NJH	8 Episode I	Day 2, 2013	13	CO	(PPM)	0.94	NA	0.94	3.56
NJH	8 Episode I	Day 2, 2013	14	CO	(PPM)	0.99	NA	0.99	3.55
NJH	8 Episode I	Day 2, 2013	15	CO	(PPM)	0.97	NA	0.97	3.32
NUH	8 Episode I	Day 2, 2013	10	CO	(PPM) (DDM)	1.25	NA NA	1.25	5.03
NUTH	8 Episode I	Day 2, 2013	18	CO	(PPM) (PPM)	2 29	NA NA	2 29	9 60
NJH	8 Episode I	Day 2, 2013	19	CO	(PPM)	3.00	NA	3.00	10.43
NJH	8 Episode I	Day 2, 2013	20	CO	(PPM)	3.25	NA	3.25	10.95
NJH	8 Episode I	Day 2, 2013	21	CO	(PPM)	3.33	NA	3.33	11.16
NJH	8 Episode I	Day 2, 2013	22	CO	(PPM)	3.36	NA	3.36	11.27
NJH	8 Episode I	Day 2, 2013	23	CO	(PPM)	3.28	NA	3.28	11.10
NJH	8 Episode I	Day 3, 2013	0	CO	(PPM)	2.95	NA	2.95	8.92
NUH	8 Episode I	Day 3, 2013	1	CO	(PPM) (DDM)	2.45	NA NA	2.45	0.21 2.01
NJH	8 Episode I	Day 3, 2013	⊿ ג	CO	(PPM)	1.10	NA	1.10	2.94
NJH	8 Episode I	Day 3, 2013	4	CO	(PPM)	0.81	NA	0.81	2.25
NJH	8 Episode I	Day 3, 2013	5	CO	(PPM)	0.70	NA	0.70	1.90
NJH	8 Episode I	Day 3, 2013	б	CO	(PPM)	0.62	NA	0.62	1.75
NJH	8 Episode I	Day 3, 2013	7	CO	(PPM)	0.73	NA	0.73	2.22
NJH	8 Episode I	Day 3, 2013	8	CO	(PPM)	0.79	NA	0.79	2.65
NJH	8 Episode I	Day 3, 2013	9	CO	(PPM)	0.84	NA	0.84	3.11
NU H NTU	o Episode l	Jay 3, 2013	1U 11	00	(PPM)	0.89	NA NA	0.89	3.4U 2 16
NJH	8 Episode I	$a_{x} = 3, 2013$	12	CO	(PPM)	0.95	NA ND	0.95 1 AR	3.40
NJH	8 Episode T	Day 3, 2013	13	CO	(PPM)	1.12	NA	1.12	3.79
NJH	8 Episode I	Day 3, 2013	14	CO	(PPM)	-9.00	NA	-9.00	3.46
NJH	8 Episode I	Day 3, 2013	15	CO	(PPM)	-9.00	NA	-9.00	2.57

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

			High: 2013	mob=867.2tpd;1.7	7;80;I/	M 240 w	/newest 4myr	exempt;	0.01.0	1000
	ידידי	7770	שתיגר		DOT	ד דדידי אזידי	2013	2013	2013	1988 ODCEDVED
2	STIR	AVG	DAIE	HR	POL	LUIANI	PREDICIED (IIAM)	(CAL3OHC)	(HAM+CAL3)	OBSERVED
		IBRIOD					(0111)	(CALISQUE)	(OALLO)	
ľ	IJН	8	Episode Day 3, 2	013 16	CO	(PPM)	-9.00	NA	-9.00	2.39
1	JU	8	Episode Day 3, 2	013 17	CO	(PPM)	-9.00	NA	-9.00	2.63
1	JJH	8	Episode Day 3, 2	013 18	CO	(PPM)	-9.00	NA	-9.00	2.84
1	IJН	8	Episode Day 3, 2	013 19	CO	(PPM)	-9.00	NA	-9.00	3.64
1	NJH	8	Episode Day 3, 2	013 20	CO	(PPM)	-9.00	NA	-9.00	4.27
1	HUN	8	Episode Day 3, 2	012 21	CO	(PPM)	-9.00	NA NA	-9.00	4.24
I N	л.тц	с 8	Episode Day 3, 2	013 22	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	4.01
1	TIV	8	Episode Day 1, 2	013 0	CO	(PPM)	0.00	NA	0.00	-9.00
1	riv	8	Episode Day 1, 2	013 1	CO	(PPM)	0.00	NA	0.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 2	CO	(PPM)	0.00	NA	0.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 3	CO	(PPM)	0.00	NA	0.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 4	CO	(PPM)	0.00	NA	0.00	-9.00
1		8	Episode Day 1, 2	013 5	CO	(PPM)	0.00	NA	0.00	-9.00
		0 8	Episode Day 1, 2 Episode Day 1, 2	013 7	CO	(PPM) (DDM)	-9 00	NA NA	-9 00	-9.00
	LTV PTV	8	Episode Day 1, 2 Episode Day 1 2	013 8	CO	(PPM)	-9.00	NA	-9.00	-9.00
1 1	riv	8	Episode Day 1, 2	013 9	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 10	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 11	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 12	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	ΓIV	8	Episode Day 1, 2	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
1		8	Episode Day 1, 2	013 14	CO	(PPM)	-9.00	NA	-9.00	-9.00
		8	Episode Day 1, 2 Episode Day 1, 2	013 16	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
1 7	rtv rtv	8	Episode Day 1, 2	013 17	CO	(PPM)	-9.00	NA	-9.00	-9.00
1 1	riv	8	Episode Day 1, 2	013 18	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 19	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 20	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	ΓIV	8	Episode Day 1, 2	013 21	CO	(PPM)	-9.00	NA	-9.00	-9.00
1 1	riv 	8	Episode Day 1, 2	013 22	CO	(PPM)	-9.00	NA	-9.00	-9.00
	LTV LTV	8	Episode Day 1, 2 Episode Day 2, 2	013 23	CO	(PPM)	-9.00	NA	-9.00	-9.00
	L L V PTV	0 8	Episode Day 2, 2 Episode Day 2 2	013 1	CO	(PPM) (PPM)	-9.00	NA NA	-9.00	-9.00
1 1	riv	8	Episode Day 2, 2	013 2	CO	(PPM)	-9.00	NA	-9.00	-9.00
1	ΓIV	8	Episode Day 2, 2	013 3	CO	(PPM)	1.41	NA	1.41	-9.00
1	ΓIV	8	Episode Day 2, 2	013 4	CO	(PPM)	1.30	NA	1.30	-9.00
1	ΓIV	8	Episode Day 2, 2	013 5	CO	(PPM)	1.23	NA	1.23	-9.00
1	riv 	8	Episode Day 2, 2	013 6	CO	(PPM)	1.16	NA	1.16	-9.00
		8	Episode Day 2, 2	013 7	CO	(PPM)	1.27	NA	1.27 1.10	-9.00
	L L V PTV	0 8	Episode Day 2, 2 Episode Day 2 2	013 9	CO	(PPM) (PPM)	1.10	NA NA	1.10	-9.00
1 1	ΓIV	8	Episode Day 2, 2	013 10	CO	(PPM)	1.09	NA	1.09	-9.00
1	ΓIV	8	Episode Day 2, 2	013 11	CO	(PPM)	1.15	NA	1.15	-9.00
1	ΓIV	8	Episode Day 2, 2	013 12	CO	(PPM)	1.26	NA	1.26	-9.00
1	ΓIV	8	Episode Day 2, 2	013 13	CO	(PPM)	1.38	NA	1.38	-9.00
1	CIV	8	Episode Day 2, 2	013 14	CO	(PPM)	1.50	NA	1.50	-9.00
		8	Episode Day 2, 2	012 16	CO	(PPM)	1.53	NA NA	1.53	-9.00
		8	Episode Day 2, 2 Episode Day 2 2	013 17	CO	(PPM) (DDM)	4 13	NΑ	4 13	-9.00
1 1	riv	8	Episode Day 2, 2	013 18	CO	(PPM)	5.82	NA	5.82	-9.00
1	ΓIV	8	Episode Day 2, 2	013 19	CO	(PPM)	6.72	NA	6.72	-9.00
1	ΓIV	8	Episode Day 2, 2	013 20	CO	(PPM)	7.01	NA	7.01	-9.00
1	ΓIV	8	Episode Day 2, 2	013 21	CO	(PPM)	7.18	NA	7.18	-9.00
1 1	riv 	8	Episode Day 2, 2	013 22	CO	(PPM)	7.30	NA	7.30	-9.00
	LTV LTV	8	Episode Day 2, 2	013 23	CO	(PPM)	7.28	NA	7.28	-9.00
		8	Episode Day 3, 2 Episode Day 3 2	013 1	CO	(PPM)	4 82	NΑ NA	4 82	-9.00
1 1	riv	8	Episode Day 3, 2	013 2	CO	(PPM)	3.15	NA	3.15	-9.00
1	riv	8	Episode Day 3, 2	013 3	CO	(PPM)	2.18	NA	2.18	-9.00
1	ΓIV	8	Episode Day 3, 2	013 4	CO	(PPM)	1.78	NA	1.78	-9.00
1 3	ΓIV	8	Episode Day 3, 2	013 5	CO	(PPM)	1.54	NA	1.54	-9.00
]	ΓIV	8	Episode Day 3, 2	013 6	CO	(PPM)	1.48	NA	1.48	-9.00
1 1		8	Episode Day 3, 2	UL3 7	00	(PPM)	1.// 1 or	NA	1.77	-9.00
ני רי	⊥⊥V ГТ\7	б Д	Episode Day 3, 2	013 0	C0 C0	(PPM)	1.05 1.0 <i>1</i>	INA NA	1.00 1.0 <i>1</i>	-9.00
נ ר	LIV LIV	8	Episode Day 3, 2	013 10	CO	(PPM)	2.00	NA	2.00	-9.00
1	ΓIV	8	Episode Day 3. 2	013 11	CO	(PPM)	2.03	NA	2.07	-9.00
1 2	ΓIV	8	Episode Day 3, 2	013 12	CO	(PPM)	2.28	NA	2.28	-9.00
1	ΓIV	8	Episode Day 3, 2	013 13	CO	(PPM)	2.46	NA	2.46	-9.00
1 3	ΓIV	8	Episode Day 3, 2	013 14	CO	(PPM)	-9.00	NA	-9.00	-9.00
]	ΓIV	8	Episode Day 3, 2	013 15	CO	(PPM)	-9.00	NA	-9.00	-9.00
1 7	L'LV PTV	8	Episode Day 3, 2	16 12 16	CO	(PPM)	-9.00	NA	-9.00	-9.00
ני ר	LTV LIV	8 8	Episode Day 3, 2	013 18	C0 C0	(PPM)	-9.00 -9.00	NA NA	-9.00 -9.00	-9.00
د ا	*	5	-r + 20000 Dul 01 2	10	00	(/	2.00	TAT 7	2.00	

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.	2tpd;1.7;	80;I/	M 240 w	/newest 4myr	exempt;	0.01.0	1000
	10	ייי א מיידי א כי		DOT	T TTO 7 NTO 1	2013	2013	2013	1988 ODGEDVED
SILE AV	VG FRIOD	DAIE	HK	POL	LUIANI	PREDICIED (IIAM)	(CALSOHC)	(IIAM+CAL3)	OBSERVED
	BICLOD					(0411)	(CAUSQUE)	(OANI CALLS)	
TIV	8	Episode Day 3, 2013	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode Day 3, 2013	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode Day 3, 2013	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode Day 3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
TIV	8	Episode Day 3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	8	Episode Day 1, 2013	0	00	(PPM)	0.00	NA	0.00	-9.00
TCMP	o g	Episode Day 1, 2013	⊥ 2	CO	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
TCMP	8	Episode Day 1, 2013	3	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode Day 1, 2013	4	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode Day 1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode Day 1, 2013	б	CO	(PPM)	0.00	NA	0.00	-9.00
ICMP	8	Episode Day 1, 2013	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	8	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	9	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	10	00	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	8	Episode Day 1, 2013 Episode Day 1, 2013	12	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
TCMP	8	Episode Day 1, 2013	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 1, 2013	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
TCMP	8	Episode Day 1, 2013 Episode Day 1, 2013	21	C0	(PPM)	-9.00	NA NA	-9.00	-9.00
TCMP	o g	Episode Day 1, 2013	22	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
TCMP	8	Episode Day 1, 2013	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 2, 2013	ĩ	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 2, 2013	3	CO	(PPM)	1.45	NA	1.45	-9.00
ICMP	8	Episode Day 2, 2013	4	CO	(PPM)	1.36	NA	1.36	-9.00
ICMP	8	Episode Day 2, 2013	5	CO	(PPM)	1.28	NA	1.28	-9.00
ICMP	8	Episode Day 2, 2013	6	CO	(PPM)	1.24	NA	1.24	-9.00
TCMP	8	Episode Day 2, 2013	/	00 00	(PPM)	1.38 1.21	NA	1.38	-9.00
TCMP	8	Episode Day 2, 2013 Episode Day 2, 2013	8	CO	(PPM) (DDM)	⊥.3⊥ 1 23	NA NA	1.31 1.23	-9.00
TCMP	8	Episode Day 2, 2013	10	CO	(PPM)	1.23	NA	1.23	-9.00
ICMP	8	Episode Day 2, 2013	11	CO	(PPM)	1.30	NA	1.30	-9.00
ICMP	8	Episode Day 2, 2013	12	CO	(PPM)	1.37	NA	1.37	-9.00
ICMP	8	Episode Day 2, 2013	13	CO	(PPM)	1.46	NA	1.46	-9.00
ICMP	8	Episode Day 2, 2013	14	CO	(PPM)	1.57	NA	1.80	-9.00
ICMP	8	Episode Day 2, 2013	15	CO	(PPM)	1.59	NA	1.99	-9.00
ICMP	8	Episode Day 2, 2013	16	CO	(PPM)	2.48	NA	3.25	-9.00
TCMP	8	Episode Day 2, 2013 Episode Day 2, 2013	10	C0	(PPM)	4.07	NA NA	5.10	-9.00
TCMP	8	Episode Day 2, 2013 Episode Day 2, 2013	19	CO	(PPM) (DDM)	7 02	NΑ NΔ	8 23	-9.00
TCMP	8	Episode Day 2, 2013	20	CO	(PPM)	7.42	NA	8.67	-9.00
ICMP	8	Episode Day 2, 2013	21	CO	(PPM)	7.67	NA	8.92	-9.00
ICMP	8	Episode Day 2, 2013	22	CO	(PPM)	7.88	NA	8.96	-9.00
ICMP	8	Episode Day 2, 2013	23	CO	(PPM)	7.92	NA	8.84	-9.00
ICMP	8	Episode Day 3, 2013	0	CO	(PPM)	7.11	NA	7.67	-9.00
ICMP	8	Episode Day 3, 2013	1	CO	(PPM)	5.58	NA	5.88	-9.00
ICMP	8	Episode Day 3, 2013	2	CO	(PPM)	3.88	NA	4.04	-9.00
TCMP	8	Episode Day 3, 2013 Episode Day 2, 2013	3	C0	(PPM)	2.50	NA NA	2.68	-9.00
TCMP	o g	Episode Day 3, 2013		CO	(PPM)	2.07	NA NA	2.14	-9.00
TCMP	8	Episode Day 3, 2013	6	CO	(PPM)	1.61	NA	1.62	-9.00
ICMP	8	Episode Day 3, 2013	7	CO	(PPM)	1.78	NA	1.78	-9.00
ICMP	8	Episode Day 3, 2013	8	CO	(PPM)	1.81	NA	1.81	-9.00
ICMP	8	Episode Day 3, 2013	9	CO	(PPM)	1.91	NA	1.91	-9.00
ICMP	8	Episode Day 3, 2013	10	CO	(PPM)	2.05	NA	2.05	-9.00
ICMP	8	Episode Day 3, 2013	11	CO	(PPM)	2.16	NA	2.16	-9.00
ICMP	8	Episode Day 3, 2013	12	CO	(PPM)	2.38	NA	2.38	-9.00
TCMP	8	Episode Day 3, 2013	13	00	(PPM)	2.5/	NA NA	2.57	-9.00
TCMP	Ö Q	Episode Day 3, 2013	14 15	C0	(PPM) (DDM)	-9.00	NA NA	-9.00	-9.00
ICMP	8	Episode Day 3, 2013	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 3. 2013	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 3, 2013	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 3, 2013	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 3, 2013	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 3, 2013	21	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=86	7.2tpd;1.7;	80;I/	M 240 w	/newest 4myr	exempt;		1000
	10		UD	DOT	T TITEN NITE	2013	2013 DRFDICTED	2013 תידים תפת	1988 OBGEBVED
SILE AV	D T T T	DATE	HR	POL	LUIANI	PREDICIED (IIAM)	(CALSOHC)	(HAM+CAL3)	OBSERVED
F F	SICLOD					(UAN)	(CAUSQUE)	(OAMICALS)	
ICMP	8	Episode Dav 3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
ICMP	8	Episode Day 3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
ENG	8	Episode Day 1, 2013	0	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2013	1	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2013	2	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2013	3	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2013	4	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2013	6	CO	(PPM)	0.00	NA	0.00	-9.00
ENG	8	Episode Day 1, 2013	7	CO	(PPM)	-9.00	NA	-9.00	1.50
ENG	8	Episode Day 1, 2013	8	CO	(PPM)	-9.00	NA	-9.00	1.54
ENG	8	Episode Day 1, 2013	9	CO	(PPM)	-9.00	NA	-9.00	1.54
ENG	8	Episode Day 1, 2013	10	CO	(PPM)	-9.00	NA	-9.00	1.46
ENG	8	Episode Day 1, 2013	11	00	(PPM)	-9.00	NA	-9.00	1.32
ENG	8	Episode Day 1, 2013 Episode Day 1, 2013	12	CO	(PPM)	-9.00	NA NA	-9.00	1.19
ENG	o g	Episode Day 1, 2013	14	CO	(PPM)	-9.00	NA NA	-9.00	1.05
FNG	8	Episode Day 1, 2013 Episode Day 1 2013	15	CO	(DDM)	-9.00	NΔ	-9.00	0.90
ENG	8	Episode Day 1, 2013	16	CO	(PPM)	-9 00	NA	-9.00	0.70
ENG	8	Episode Day 1, 2013	17	CO	(PPM)	-9.00	NA	-9.00	1.21
ENG	8	Episode Day 1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	1.42
ENG	8	Episode Day 1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	1.52
ENG	8	Episode Day 1, 2013	20	CO	(PPM)	-9.00	NA	-9.00	1.60
ENG	8	Episode Day 1, 2013	21	CO	(PPM)	-9.00	NA	-9.00	1.67
ENG	8	Episode Day 1, 2013	22	CO	(PPM)	-9.00	NA	-9.00	1.80
ENG	8	Episode Day 1, 2013	23	CO	(PPM)	-9.00	NA	-9.00	1.86
ENG	8	Episode Day 2, 2013	0	CO	(PPM)	-9.00	NA	-9.00	1.76
ENG	8	Episode Day 2, 2013	1	CO	(PPM)	-9.00	NA	-9.00	1.30
ENG	8	Episode Day 2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	1.06
ENG	8	Episode Day 2, 2013	3	CO	(PPM)	0.41	NA	0.41	0.96
ENG	8	Episode Day 2, 2013	4	00	(PPM)	0.39	NA	0.39	0.88
ENG	8	Episode Day 2, 2013 Episode Day 2, 2013	5	CO	(PPM)	0.38	NA NA	0.38	0.88
ENG	o g	Episode Day 2, 2013 Episode Day 2, 2013	07	CO	(PPM) (DDM)	0.34	NA NA	0.34	1 40
ENG	o g	Episode Day 2, 2013	2 8	CO	(PPM)	0.41	NA NA	0.41	1 82
ENG	8	Episode Day 2, 2013 Episode Day 2 2013	9	CO	(PPM)	0.45	NA	0.45	1 89
ENG	8	Episode Day 2, 2013	10	CO	(PPM)	0.46	NA	0.46	1.91
ENG	8	Episode Day 2, 2013	11	CO	(PPM)	0.47	NA	0.47	1.94
ENG	8	Episode Day 2, 2013	12	CO	(PPM)	0.49	NA	0.49	1.97
ENG	8	Episode Day 2, 2013	13	CO	(PPM)	0.53	NA	0.53	1.96
ENG	8	Episode Day 2, 2013	14	CO	(PPM)	0.58	NA	0.58	1.85
ENG	8	Episode Day 2, 2013	15	CO	(PPM)	0.65	NA	0.65	1.63
ENG	8	Episode Day 2, 2013	16	CO	(PPM)	1.05	NA	1.05	1.89
ENG	8	Episode Day 2, 2013	17	CO	(PPM)	1.47	NA	1.47	2.91
ENG	8	Episode Day 2, 2013	18	CO	(PPM)	1.60	NA	1.60	3.22
ENG	8	Episode Day 2, 2013	19	CO	(PPM)	1.64	NA	1.64	3.38
ENG	8	Episode Day 2, 2013	20	00	(PPM)	1.64	NA	1.64	3.4/
ENG	8	Episode Day 2, 2013 Episode Day 2, 2013	21	CO	(PPM)	1.01	NA NA	1.01	3.50
ENG	0	Episode Day 2, 2013	22	co	(PPM)	1 42	NA NZ	1 42	3.00
ENG	8	Episode Day 2, 2013 Episode Day 3 2013	23	CO	(PPM)	0.99	NA	0 99	2 91
ENG	8	Episode Day 3, 2013	ı 1	CO	(PPM)	0.57	NA	0.57	1.86
ENG	8	Episode Day 3, 2013	2	CO	(PPM)	0.43	NA	0.43	1.54
ENG	8	Episode Day 3, 2013	3	CO	(PPM)	0.38	NA	0.38	1.36
ENG	8	Episode Day 3, 2013	4	CO	(PPM)	0.35	NA	0.35	1.22
ENG	8	Episode Day 3, 2013	5	CO	(PPM)	0.33	NA	0.33	1.09
ENG	8	Episode Day 3, 2013	б	CO	(PPM)	0.33	NA	0.33	1.02
ENG	8	Episode Day 3, 2013	7	CO	(PPM)	0.44	NA	0.44	1.26
ENG	8	Episode Day 3, 2013	8	CO	(PPM)	0.46	NA	0.46	1.23
ENG	8	Episode Day 3, 2013	9	CO	(PPM)	0.49	NA	0.49	1.49
ENG	8	Episode Day 3, 2013	10 1 1	00	(PPM)	0.54	NA	0.54	1.69
ENG	ð o	Episode Day 3, 2013	10	00	(PPM)	0.59	NA NA	0.59	1./U
ENG	Ö Q	Episode Day 3, 2013 Episode Day 3, 2013	⊥∠ 1 2	00	(PPM)	0.04	INA MA	0.04	1 70
ENG	Q	Episode Day 3, 2013	14	C0 C0	(DDM)	_9 00	NV INW	_0.09	1 52
ENG	0 8	Episode Day 3, 2013	⊥± 15	CO	(PPM)	-9.00	NΔ	-9.00	1 11
ENG	8	Episode Day 3, 2013	16	CO	(PPM)	-9.00	NA	-9.00	1.17
ENG	8	Episode Day 3. 2013	17	CO	(PPM)	-9.00	NA	-9.00	1.30
ENG	8	Episode Day 3, 2013	18	CO	(PPM)	-9.00	NA	-9.00	1.59
ENG	8	Episode Day 3, 2013	19	CO	(PPM)	-9.00	NA	-9.00	1.89
ENG	8	Episode Day 3, 2013	20	CO	(PPM)	-9.00	NA	-9.00	2.07
ENG	8	Episode Day 3, 2013	21	CO	(PPM)	-9.00	NA	-9.00	2.17
ENG	8	Episode Day 3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	2.24
ENG	8	Episode Day 3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	2.35
BOU	8	Episode Day 1, 2013	0	CO	(PPM)	0.00	NA	0.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.2	tpd;1.7;	80;I/	M 240 w	/newest 4myr	exempt;	0010	1000
	70	יידי א ג ר		DOT	T TTO 7 NTO 1	2013	2013	2013	1988 ODGEDVED
SILE AV	ים ח∩דפי	DAIE	HR	POL	LUIANI	PREDICIED (IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
10	IIIIOD					(OAN)	(CADSQUE)	(OAN CALS)	
BOU	8	Episode Day 1, 2013	1	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode Day 1, 2013	2	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode Day 1, 2013	3	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode Day 1, 2013	4	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode Day 1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode Day 1, 2013	6	CO	(PPM)	0.00	NA	0.00	-9.00
BOU	8	Episode Day 1, 2013	7	CO	(PPM)	-9.00	NA	-9.00	0.68
BOU	8	Episode Day 1, 2013	8	CO	(PPM)	-9.00	NA	-9.00	0.85
BOU	8	Episode Day 1, 2013	9	CO	(PPM)	-9.00	NA	-9.00	1.19
BOU	8	Episode Day 1, 2013	10	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode Day 1, 2013		CO	(PPM)	-9.00	NA	-9.00	1.43
BOU	8	Episode Day 1, 2013	12	CO	(PPM)	-9.00	NA NA	-9.00	1 25
BOU	Q Q	Episode Day 1, 2013	14	CO	(PPM)	-9.00	NA NA	-9.00	1 34
BOU	8	Episode Day 1, 2013 Episode Day 1, 2013	15	CO	(DDM)	-9.00	NΔ	-9.00	1 35
BOU	8	Episode Day 1, 2013	16	CO	(PPM)	-9 00	NA	-9 00	1 28
BOU	8	Episode Day 1, 2013	17	CO	(PPM)	-9.00	NA	-9.00	0.99
BOU	8	Episode Day 1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	0.83
BOU	8	Episode Day 1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	0.70
BOU	8	Episode Day 1, 2013	20	CO	(PPM)	-9.00	NA	-9.00	0.61
BOU	8	Episode Day 1, 2013	21	CO	(PPM)	-9.00	NA	-9.00	0.54
BOU	8	Episode Day 1, 2013	22	CO	(PPM)	-9.00	NA	-9.00	0.46
BOU	8	Episode Day 1, 2013	23	CO	(PPM)	-9.00	NA	-9.00	0.34
BOU	8	Episode Day 2, 2013	0	CO	(PPM)	-9.00	NA	-9.00	0.21
BOU	8	Episode Day 2, 2013	1	CO	(PPM)	-9.00	NA	-9.00	0.19
BOU	8	Episode Day 2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	0.16
BOU	8	Episode Day 2, 2013	3	CO	(PPM)	0.39	NA	0.39	0.16
BOU	8	Episode Day 2, 2013	4	CO	(PPM)	0.37	NA	0.37	0.20
BOU	8	Episode Day 2, 2013	5	CO	(PPM)	0.36	NA	0.36	0.28
BOU	8	Episode Day 2, 2013	0 7	CO	(PPM)	0.30	NA NA	0.30	0.40
BOU	Q Q	Episode Day 2, 2013	, 8	CO	(PPM)	0.35	NA NA	0.33	0.00
BOU	8	Episode Day 2, 2013 Episode Day 2 2013	9	CO	(DDM)	0.30	NΔ	0.30	1 41
BOU	8	Episode Day 2, 2013	10	CO	(PPM)	0.46	NA	0.46	1.76
BOU	8	Episode Day 2, 2013	11	CO	(PPM)	0.51	NA	0.51	1.91
BOU	8	Episode Day 2, 2013	12	CO	(PPM)	0.56	NA	0.56	2.05
BOU	8	Episode Day 2, 2013	13	CO	(PPM)	0.60	NA	0.60	2.13
BOU	8	Episode Day 2, 2013	14	CO	(PPM)	0.63	NA	0.63	2.13
BOU	8	Episode Day 2, 2013	15	CO	(PPM)	0.71	NA	0.71	2.04
BOU	8	Episode Day 2, 2013	16	CO	(PPM)	0.80	NA	0.80	2.01
BOU	8	Episode Day 2, 2013	17	CO	(PPM)	0.82	NA	0.82	1.65
BOU	8	Episode Day 2, 2013	18	CO	(PPM)	0.80	NA	0.80	1.42
BOU	8	Episode Day 2, 2013	19	CO	(PPM)	0.78	NA	0.78	2.07
BOU	8	Episode Day 2, 2013	20	CO	(PPM)	0.75	NA	0.75	2.10
BOU	8	Episode Day 2, 2013	21	00	(PPM)	0.72	NA	0.72	2.11
BOU	0	Episode Day 2, 2013	22	00	(PPM)	0.00	INA NA	0.00	2.00
BOU	0 8	Episode Day 2, 2013 Episode Day 3, 2013	23 0	CO	(PPM) (DDM)	0.51	NA NA	0.51	1.00
BOU	8	Episode Day 3, 2013 Episode Day 3, 2013	1	CO	(PPM)	0.40	NA	0.40	1 46
BOU	8	Episode Day 3, 2013	2	CO	(PPM)	0.33	NA	0.33	1 32
BOU	8	Episode Day 3, 2013	3	CO	(PPM)	0.28	NA	0.28	0.51
BOU	8	Episode Day 3, 2013	4	CO	(PPM)	0.26	NA	0.26	0.32
BOU	8	Episode Day 3, 2013	5	CO	(PPM)	0.25	NA	0.25	0.21
BOU	8	Episode Day 3, 2013	6	CO	(PPM)	0.27	NA	0.27	0.21
BOU	8	Episode Day 3, 2013	7	CO	(PPM)	0.35	NA	0.35	0.66
BOU	8	Episode Day 3, 2013	8	CO	(PPM)	0.38	NA	0.38	0.95
BOU	8	Episode Day 3, 2013	9	CO	(PPM)	0.40	NA	0.40	1.31
BOU	8	Episode Day 3, 2013	10	CO	(PPM)	0.41	NA	0.41	1.40
BOU	8	Episode Day 3, 2013	11	CO	(PPM)	0.42	NA	0.42	1.51
BOU	8	Episode Day 3, 2013	12	00	(PPM)	0.44	NA	0.44	1.01
BOU	ð	Episode Day 3, 2013	1 J	00		0.48	INA ATA	0.48	1 75
BOU	δ Q	Episode Day 2 2012	⊥4 1⊑	CO	(PPM)	-9.00	NA NA	-9.00	1.75 1.24
BOU	о 8	Episode Day 3, 2013	16	CO	(PPM)	-9 00	NΔ	-9 00	1.49
BOII	8	Episode Day 3, 2013	17	CO	(PPM)	-9.00	NA	-9.00	1.32
BOU	8	Episode Day 3, 2013	18	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode Day 3, 2013	19	CO	(PPM)	-9.00	NA	-9.00	1.35
BOU	8	Episode Day 3, 2013	20	CO	(PPM)	-9.00	NA	-9.00	1.34
BOU	8	Episode Day 3, 2013	21	CO	(PPM)	-9.00	NA	-9.00	1.27
BOU	8	Episode Day 3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	1.26
BOU	8	Episode Day 3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	1.26
GRDS	8	Episode Day 1, 2013	0	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode Day 1, 2013	1	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode Day 1, 2013	2	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode Day 1, 2013	3	CO	(PPM)	0.00	NA	0.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.2	tpd;1.7;	80;I/	M 240 w	/newest 4myr	exempt;	0.01.0	1000
		עדיי ארו		DOT	T TTO 7 NTO 1	2013	2013	2013	1988 ODGEDVED
SIL AV	יG ת∩דפי	DATE	HR	POL	LUIANI	PREDICIED (IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
10	INTOD					(0111)	(CALISQUE)	(OAN CALS)	
GRDS	8	Episode Day 1, 2013	4	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode Day 1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode Day 1, 2013	6	CO	(PPM)	0.00	NA	0.00	-9.00
GRDS	8	Episode Day 1, 2013	7	CO	(PPM)	-9.00	NA	-9.00	2.00
GRDS	8	Episode Day 1, 2013	8	CO	(PPM)	-9.00	NA	-9.00	2.25
GRDS	8	Episode Day 1, 2013	10	CO	(PPM)	-9.00	NA	-9.00	2.50
GRDS	o g	Episode Day 1, 2013 Episode Day 1, 2013	10	CO	(PPM) (DDM)	-9.00	INA NA	-9.00	2.75
GRDS	8	Episode Day 1, 2013	12	CO	(PPM)	-9.00	NA	-9.00	3.13
GRDS	8	Episode Day 1, 2013	13	CO	(PPM)	-9.00	NA	-9.00	3.00
GRDS	8	Episode Day 1, 2013	14	CO	(PPM)	-9.00	NA	-9.00	2.75
GRDS	8	Episode Day 1, 2013	15	CO	(PPM)	-9.00	NA	-9.00	2.50
GRDS	8	Episode Day 1, 2013	16	CO	(PPM)	-9.00	NA	-9.00	2.25
GRDS	8	Episode Day 1, 2013	17	CO	(PPM)	-9.00	NA	-9.00	2.13
GRDS	8	Episode Day 1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	2.00
GRDS	8	Episode Day 1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	1.88
GRDS	8	Episode Day 1, 2013	20	CO	(PPM)	-9.00	NA NA	-9.00	1.88
GRDS	8	Episode Day 1, 2013 Episode Day 1, 2013	21	CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	2.00
GRDS	8	Episode Day 1, 2013	23	CO	(PPM)	-9.00	NA	-9.00	2.50
GRDS	8	Episode Day 2, 2013	0	CO	(PPM)	-9.00	NA	-9.00	2.35
GRDS	8	Episode Day 2, 2013	1	CO	(PPM)	-9.00	NA	-9.00	2.04
GRDS	8	Episode Day 2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	1.87
GRDS	8	Episode Day 2, 2013	3	CO	(PPM)	0.46	NA	0.46	1.74
GRDS	8	Episode Day 2, 2013	4	CO	(PPM)	0.43	NA	0.43	1.62
GRDS	8	Episode Day 2, 2013	5	CO	(PPM)	0.41	NA	0.41	1.56
GRDS	8	Episode Day 2, 2013	6	CO	(PPM)	0.32	NA	0.32	1.72
GRDS	8	Episode Day 2, 2013	/	00 00	(PPM)	0.40	NA	0.40	3.39
GRDS	0 8	Episode Day 2, 2013 Episode Day 2, 2013	9	CO	(PPM) (DDM)	0.44	NA NA	0.44	5.30
GRDS	8	Episode Day 2, 2013	10	CO	(PPM)	0.55	NA	0.55	6.22
GRDS	8	Episode Day 2, 2013	11	CO	(PPM)	0.61	NA	0.61	6.34
GRDS	8	Episode Day 2, 2013	12	CO	(PPM)	0.66	NA	0.66	6.42
GRDS	8	Episode Day 2, 2013	13	CO	(PPM)	0.69	NA	0.69	7.13
GRDS	8	Episode Day 2, 2013	14	CO	(PPM)	0.72	NA	0.72	6.71
GRDS	8	Episode Day 2, 2013	15	CO	(PPM)	0.77	NA	0.77	4.89
GRDS	8	Episode Day 2, 2013	16	CO	(PPM)	0.90	NA	0.90	3.19
GRDS	8	Episode Day 2, 2013	17	CO	(PPM)	0.93	NA	0.93	3.74
GRDS	8	Episode Day 2, 2013 Episode Day 2, 2013	10	CO	(PPM) (DDM)	0.91	NA NA	0.91	5.34 7 09
GRDS	8	Episode Day 2, 2013 Episode Day 2, 2013	20	CO	(DDM)	0.90	NΔ	0.90	8 34
GRDS	8	Episode Day 2, 2013	21	CO	(PPM)	0.85	NA	0.85	8.21
GRDS	8	Episode Day 2, 2013	22	CO	(PPM)	0.79	NA	0.79	8.32
GRDS	8	Episode Day 2, 2013	23	CO	(PPM)	0.63	NA	0.63	8.18
GRDS	8	Episode Day 3, 2013	0	CO	(PPM)	0.47	NA	0.47	7.71
GRDS	8	Episode Day 3, 2013	1	CO	(PPM)	0.40	NA	0.40	6.46
GRDS	8	Episode Day 3, 2013	2	CO	(PPM)	0.35	NA	0.35	4.81
GRDS	8	Episode Day 3, 2013	3	CO	(PPM)	0.30	NA	0.30	3.06
GRDS	8	Episode Day 3, 2013	4 E	00	(PPM)	0.28	NA NA	0.28	1.74
GRDS	0 8	Episode Day 3, 2013 Episode Day 3, 2013	5	CO	(PPM) (DDM)	0.20	NA NA	0.20	0.95
GRDS	8	Episode Day 3, 2013	7	CO	(PPM)	0.37	NA	0.37	1.62
GRDS	8	Episode Day 3, 2013	8	CO	(PPM)	0.40	NA	0.40	2.50
GRDS	8	Episode Day 3, 2013	9	CO	(PPM)	0.43	NA	0.43	3.00
GRDS	8	Episode Day 3, 2013	10	CO	(PPM)	0.44	NA	0.44	3.13
GRDS	8	Episode Day 3, 2013	11	CO	(PPM)	0.45	NA	0.45	3.25
GRDS	8	Episode Day 3, 2013	12	CO	(PPM)	0.48	NA	0.48	3.38
GRDS	8	Episode Day 3, 2013	13	CO	(PPM)	0.52	NA	0.52	3.50
GRDS	8	Episode Day 3, 2013	14	CO	(PPM)	-9.00	NA	-9.00	3.38
GRDS	0 8	Episode Day 3, 2013 Episode Day 3, 2013	15	CO	(PPM) (DDM)	-9.00	NA NA	-9.00	2.30
GRDS	8	Episode Day 3, 2013 Episode Day 3, 2013	17	CO	(PPM)	-9.00	NA	-9.00	2 13
GRDS	8	Episode Day 3, 2013	18	CO	(PPM)	-9.00	NA	-9.00	2.50
GRDS	8	Episode Day 3, 2013	19	CO	(PPM)	-9.00	NA	-9.00	2.88
GRDS	8	Episode Day 3, 2013	20	CO	(PPM)	-9.00	NA	-9.00	3.88
GRDS	8	Episode Day 3, 2013	21	CO	(PPM)	-9.00	NA	-9.00	4.50
GRDS	8	Episode Day 3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	4.88
GRDS	8	Episode Day 3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	5.25
ARV	8	Episode Day 1, 2013	0	CO	(PPM)	0.00	NA	0.00	-9.00
ARV	8	Episode Day 1, 2013	1	CO	(PPM)	0.00	NA	0.00	-9.00
ARV	8	Episode Day 1, 2013	2	00	(PPM)	0.00	NA	0.00	-9.00
ARV ARV	δ Q	Episode Day 1, 2013 Episode Day 1 2012	3 4	C0	(PPM) (DDM)	0.00	NA NA	0.00	-9.00
ARV	о Я	Episode Day 1, 2013		CO	(PPM)	0.00	NΔ	0.00	-9.00
ARV	8	Episode Day 1, 2013	6	CO	(PPM)	0.00	NA	0.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867	.2tpd;1.7;	80;I/M 240	w/newest 4myr	exempt;	0010	1000
פדידי איז	VC	ጉልጥም	ЧR		2013 תידים דרי דרי דרי	2013 DRFDICTFD	2013 PREDICTED	1988 Observed
PI	ERIOD	DATE	IIIX	FOLLOTAN	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
	211202				(0111)	(011110 g110)	(0111)01120)	
ARV	8	Episode Day 1, 2013	7	CO (PPM) -9.00	NA	-9.00	2.01
ARV	8	Episode Day 1, 2013	8	CO (PPM) -9.00	NA	-9.00	2.20
ARV	8	Episode Day 1, 2013	9	CO (PPM) -9.00	NA	-9.00	2.04
ARV	8	Episode Day 1, 2013	10	CO (PPM) -9.00	NA	-9.00	1.94
ARV	8	Episode Day 1, 2013	12	CO (PPM) -9.00	NA NA	-9.00	1.98
ARV	8	Episode Day 1, 2013 Episode Day 1 2013	13	CO (PPM) -9.00	NA NA	-9.00	2.05
ARV	8	Episode Day 1, 2013	14	CO (PPM) -9.00	NA	-9.00	1.98
ARV	8	Episode Day 1, 2013	15	CO (PPM) -9.00	NA	-9.00	1.83
ARV	8	Episode Day 1, 2013	16	CO (PPM) -9.00	NA	-9.00	1.58
ARV	8	Episode Day 1, 2013	17	CO (PPM) -9.00	NA	-9.00	1.80
ARV	8	Episode Day 1, 2013	18	CO (PPM) -9.00	NA	-9.00	2.05
ARV	8	Episode Day 1, 2013	19	CO (PPM) -9.00	NA	-9.00	2.30
ARV ARV	8	Episode Day 1, 2013 Episode Day 1, 2013	∠0 21	CO (PPM) -9.00	INA NA	-9.00	2.08
ARV	8	Episode Day 1, 2013	22	CO (PPM) -9.00	NA	-9.00	3,91
ARV	8	Episode Day 1, 2013	23	CO (PPM) -9.00	NA	-9.00	4.05
ARV	8	Episode Day 2, 2013	0	CO (PPM) -9.00	NA	-9.00	3.99
ARV	8	Episode Day 2, 2013	1	CO (PPM) -9.00	NA	-9.00	3.68
ARV	8	Episode Day 2, 2013	2	CO (PPM) -9.00	NA	-9.00	3.40
ARV	8	Episode Day 2, 2013	3	CO (PPM) 1.42	NA	1.42	3.09
ARV	8	Episode Day 2, 2013	4	CO (PPM) 1.2/	NA NA	1.2/	2.68
ARV	0 8	Episode Day 2, 2013 Episode Day 2 2013	5	CO (PPM) 1.10	NA NA	1.10	2.09
ARV	8	Episode Day 2, 2013	7	CO (PPM) 0.66	NA	0.66	2.79
ARV	8	Episode Day 2, 2013	8	CO (PPM) 0.59	NA	0.59	3.95
ARV	8	Episode Day 2, 2013	9	CO (PPM) 0.60	NA	0.60	4.61
ARV	8	Episode Day 2, 2013	10	CO (PPM) 0.58	NA	0.58	4.98
ARV	8	Episode Day 2, 2013	11	CO (PPM) 0.61	NA	0.61	5.08
ARV	8	Episode Day 2, 2013	12	CO (PPM) 0.68	NA	0.68	5.14
ARV	8	Episode Day 2, 2013 Episode Day 2 2013	14	CO (PPM) 0.77	NA NA	0.77	4 85
ARV	8	Episode Day 2, 2013	15	CO (PPM) 0.96	NA	0.96	3.98
ARV	8	Episode Day 2, 2013	16	CO (PPM) 1.24	NA	1.24	3.25
ARV	8	Episode Day 2, 2013	17	CO (PPM) 1.42	NA	1.42	3.21
ARV	8	Episode Day 2, 2013	18	CO (PPM) 1.45	NA	1.45	3.44
ARV	8	Episode Day 2, 2013	19	CO (PPM) 1.41	NA	1.41	3.91
ARV	8	Episode Day 2, 2013	20	CO (PPM) 1.34	NA	1.34	4.34
ARV	8	Episode Day 2, 2013 Episode Day 2 2013	21	CO (PPM) 1.27	NA NA	1 17	4.84
ARV	8	Episode Day 2, 2013	23	CO (PPM) 1.03	NA	1.03	4.80
ARV	8	Episode Day 3, 2013	0	CO (PPM) 0.71	NA	0.71	4.34
ARV	8	Episode Day 3, 2013	1	CO (PPM) 0.47	NA	0.47	3.70
ARV	8	Episode Day 3, 2013	2	CO (PPM) 0.39	NA	0.39	3.06
ARV	8	Episode Day 3, 2013	3	CO (PPM) 0.36	NA	0.36	2.43
ARV	0 8	Episode Day 3, 2013 Episode Day 3, 2013	4 5	CO (PPM) 0.34	NA NA	0.34	1 49
ARV	8	Episode Day 3, 2013 Episode Day 3, 2013	6	CO (PPM) 0.34	NA	0.34	1.45
ARV	8	Episode Day 3, 2013	7	CO (PPM) 0.46	NA	0.46	2.19
ARV	8	Episode Day 3, 2013	8	CO (PPM) 0.51	NA	0.51	2.91
ARV	8	Episode Day 3, 2013	9	CO (PPM) 0.56	NA	0.56	3.33
ARV	8	Episode Day 3, 2013	10	CO (PPM) 0.62	NA	0.62	3.64
ARV	8	Episode Day 3, 2013	12	CO (PPM) 0.68	NA	0.68	3.66
ARV	8	Episode Day 3, 2013 Episode Day 3, 2013	13	CO (PPM) 0.74	NA NA	0.74	3.71
ARV	8	Episode Day 3, 2013	14	CO (PPM) -9.00	NA	-9.00	3.41
ARV	8	Episode Day 3, 2013	15	CO (PPM) -9.00	NA	-9.00	2.39
ARV	8	Episode Day 3, 2013	16	CO (PPM) -9.00	NA	-9.00	1.69
ARV	8	Episode Day 3, 2013	17	CO (PPM) -9.00	NA	-9.00	1.83
ARV	8	Episode Day 3, 2013	18	CO (PPM) -9.00	NA	-9.00	2.25
ARV	8	Episode Day 3, 2013	19	CO (PPM) -9.00	NA NA	-9.00	2./2
ARV	o R	Episode Day 3, 2013	∠∪ 21	CO (PPM) _9.00	NA NA	-9.00	3.46
ARV	8	Episode Day 3, 2013	22	CO (PPM) -9.00	NA	-9.00	3.89
ARV	8	Episode Day 3, 2013	23	CO (PPM) -9.00	NA	-9.00	4.01
HLD	8	Episode Day 1, 2013	0	CO (PPM) 0.00	NA	0.00	-9.00
HLD	8	Episode Day 1, 2013	1	CO (PPM) 0.00	NA	0.00	-9.00
HLD	8	Episode Day 1, 2013	2	CO (PPM) 0.00	NA	0.00	-9.00
HLD	ъ Д	Episode Day 1, 2013 Episode Day 1, 2013	3 4	CO (PPM		INA NA		-9.00
нг.р	о 8	Episode Day 1, 2013	ч 5	CO (PPM) 0.00	NΔ	0.00	-9.00
HLD	8	Episode Day 1, 2013	6	CO (PPM) 0.00	NA	0.00	-9.00
HLD	8	Episode Day 1, 2013	7	CO (PPM) -9.00	NA	-9.00	0.75
HLD	8	Episode Day 1, 2013	8	CO (PPM) -9.00	NA	-9.00	0.71
HLD	8	Episode Day 1, 2013	9	CO (PPM) -9.00	NA	-9.00	0.66

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2tp	d;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0.01.0	1000
SITE AVG PERIOD	DATE	HR	POLLUTANT	2013 PREDICTED (UAM)	2013 PREDICTED (CAL3OHC)	2013 PREDICTED (UAM+CAL3)	1988 OBSERVED
				(/	((,	
HLD 8	Episode Day 1, 2013	10	CO (PPM)	-9.00	NA	-9.00	0.62
HLD 8	Episode Day 1, 2013	11	CO (PPM)	-9.00	NA	-9.00	0.57
HLD 8	Episode Day 1, 2013	12	CO (PPM)	-9.00	NA	-9.00	0.52
HLD 8	Episode Day 1, 2013	13	CO (PPM)	-9.00	NA	-9.00	0.37
HLD 8	Episode Day 1, 2013	14	CO (PPM)	-9.00	NA	-9.00	0.19
HLD 8	Episode Day 1, 2013	15	CO (PPM)	-9.00	NA	-9.00	0.11
HLD 8	Episode Day 1, 2013	16	CO (PPM)	-9.00	NA	-9.00	0.14
HLD 8	Episode Day 1, 2013	17	CO (PPM)	-9.00	NA	-9.00	0.16
HLD 8	Episode Day 1, 2013	18	CO (PPM)	-9.00	NA	-9.00	0.19
HLD 8	Episode Day 1, 2013	19	CO (PPM)	-9.00	NA NA	-9.00	0.21
	Episode Day 1, 2013	20	CO (PPM)	-9.00	NA NA	-9.00	0.24
	Episode Day 1, 2013	21	CO (PPM)	-9.00	NΔ	-9.00	0.20
HLD 8	Episode Day 1, 2013	23	CO (PPM)	-9.00	NA	-9.00	0.30
HLD 8	Episode Day 2, 2013	0	CO (PPM)	-9.00	NA	-9.00	0.27
HLD 8	Episode Day 2, 2013	1	CO (PPM)	-9.00	NA	-9.00	0.25
HLD 8	Episode Day 2, 2013	2	CO (PPM)	-9.00	NA	-9.00	0.21
HLD 8	Episode Day 2, 2013	3	CO (PPM)	0.23	NA	0.23	0.20
HLD 8	Episode Day 2, 2013	4	CO (PPM)	0.23	NA	0.23	0.19
HLD 8	Episode Day 2, 2013	5	CO (PPM)	0.23	NA	0.23	0.17
HLD 8	Episode Day 2, 2013	6	CO (PPM)	0.23	NA	0.23	0.15
HLD 8	Episode Day 2, 2013	7	CO (PPM)	0.25	NA	0.25	0.14
HLD 8	Episode Day 2, 2013	8	CO (PPM)	0.25	NA	0.25	0.11
HLD 8	Episode Day 2, 2013	9	CO (PPM)	0.26	NA	0.26	0.09
HLD 8	Episode Day 2, 2013	10	CO (PPM)	0.26	NA	0.26	0.07
HLD 8	Episode Day 2, 2013		CO (PPM)	0.26	NA	0.26	0.05
HLD 8	Episode Day 2, 2013	12	CO (PPM)	0.28	NA	0.28	0.04
	Episode Day 2, 2013	11	CO (PPM)	0.31	NA NA	0.31	0.02
0 ULD 8	Episode Day 2, 2013	15	CO (PPM)	0.30	NA NA	0.30	0.01
HLD 8	Episode Day 2, 2013 Episode Day 2, 2013	16	CO (PPM)	0.44	NA	0.44	0.09
HLD 8	Episode Day 2, 2013	17	CO (PPM)	1 10	NA	1 10	1 14
HLD 8	Episode Day 2, 2013	18	CO (PPM)	1.20	NA	1.20	1.34
HLD 8	Episode Day 2, 2013	19	CO (PPM)	1.22	NA	1.22	1.42
HLD 8	Episode Day 2, 2013	20	CO (PPM)	1.21	NA	1.21	1.49
HLD 8	Episode Day 2, 2013	21	CO (PPM)	1.18	NA	1.18	1.52
HLD 8	Episode Day 2, 2013	22	CO (PPM)	1.14	NA	1.14	1.56
HLD 8	Episode Day 2, 2013	23	CO (PPM)	1.04	NA	1.04	1.52
HLD 8	Episode Day 3, 2013	0	CO (PPM)	0.75	NA	0.75	1.07
HLD 8	Episode Day 3, 2013	1	CO (PPM)	0.38	NA	0.38	0.57
HLD 8	Episode Day 3, 2013	2	CO (PPM)	0.27	NA	0.27	0.44
HLD 8	Episode Day 3, 2013	3	CO (PPM)	0.25	NA	0.25	0.41
	Episode Day 3, 2013	4 5	CO (PPM)	0.24	NA NA	0.24	0.40
0 ULH 8	Episode Day 3, 2013	6	CO (PPM)	0.24	NΑ NΔ	0.24	0.40
HLD 8	Episode Day 3, 2013	7	CO (PPM)	0.21	NA	0.21	0.10
HLD 8	Episode Day 3, 2013	8	CO (PPM)	0.38	NA	0.38	0.79
HLD 8	Episode Day 3, 2013	9	CO (PPM)	0.44	NA	0.44	0.87
HLD 8	Episode Day 3, 2013	10	CO (PPM)	0.47	NA	0.47	0.81
HLD 8	Episode Day 3, 2013	11	CO (PPM)	0.49	NA	0.49	0.75
HLD 8	Episode Day 3, 2013	12	CO (PPM)	0.53	NA	0.53	0.70
HLD 8	Episode Day 3, 2013	13	CO (PPM)	0.57	NA	0.57	0.66
HLD 8	Episode Day 3, 2013	14	CO (PPM)	-9.00	NA	-9.00	0.62
HLD 8	Episode Day 3, 2013	15	CO (PPM)	-9.00	NA	-9.00	0.39
нцр 8	Episode Day 3, 2013	17	CO (PPM)	-9.00	NA	-9.00	0.22
MLD 8	Episode Day 3, 2013	10	CO (PPM)	-9.00	NA NA	-9.00	0.17
ہ میں 8	Episode Day 3, 2013	19		-9.00	NA ND	-9.00	0.20
о дани 9 дани	Episode Day 3 2013	20	CO (DDM)	_9.00	NΔ	_9 00	0.22
HLD 8	Episode Day 3, 2013	21	CO (PPM)	-9.00	NA	-9.00	0.36
HLD 8	Episode Day 3, 2013	22	CO (PPM)	-9.00	NA	-9.00	0.41
HLD 8	Episode Day 3, 2013	23	CO (PPM)	-9.00	NA	-9.00	0.64
AUR 8	Episode Day 1, 2013	0	CO (PPM)	0.00	NA	0.00	-9.00
AUR 8	Episode Day 1, 2013	1	CO (PPM)	0.00	NA	0.00	-9.00
AUR 8	Episode Day 1, 2013	2	CO (PPM)	0.00	NA	0.00	-9.00
AUR 8	Episode Day 1, 2013	3	CO (PPM)	0.00	NA	0.00	-9.00
AUR 8	Episode Day 1, 2013	4	CO (PPM)	0.00	NA	0.00	-9.00
AUR 8	Episode Day 1, 2013	5	CO (PPM)	0.00	NA	0.00	-9.00
AUR 8	Episode Day 1, 2013	6	CO (PPM)	0.00	NA	0.00	-9.00
AUK 8	Episode Day 1, 2013	/	CO (PPM)	-9.00	NA	-9.00	-9.00
AUK 8	Episode Day 1, 2013 Episode Day 1, 2012	8 Q		-9.00	NA NA	-9.00	-9.00
	Episode Day 1, 2013	9 10	CO (PPM) CO (DDM)	-9.00 _0 00	NA NA	-9.00	-9.00
	Episode Day 1, 2013	11	CO (DDM)	-9.00	ND NA	-9.00	_9 00
AUR 8	Episode Day 1, 2013	12	CO (PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.	.2tpd;1.7;	80;I/	M 240 w,	/newest 4myr	exempt;	0010	1000
SITE AV PI	VG ERIOD	DATE	HR	POL	LUTANT	2013 PREDICTED (UAM)	2013 PREDICTED (CAL3QHC)	2013 PREDICTED (UAM+CAL3)	1988 OBSERVED
			10	~~~	(2214)	0.00		0.00	0.00
AUR	8	Episode Day 1, 2013	14	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
AUR	Q Q	Episode Day 1, 2013	15	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
AUR	8	Episode Day 1, 2013 Episode Day 1, 2013	16	CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	-9.00
	0 8	Episode Day 1, 2013	17	CO	(DDM)	-9.00	NA NA	-9.00	-9.00
AUR	8	Episode Day 1, 2013 Episode Day 1 2013	18	CO	(PPM)	-9.00	NA	-9 00	-9 00
AUR	8	Episode Day 1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 1, 2013	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 1, 2013	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 1, 2013	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 1, 2013	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 2, 2013	0	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 2, 2013	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 2, 2013	3	CO	(PPM)	0.56	NA	0.56	-9.00
AUR	8	Episode Day 2, 2013	4	CO	(PPM)	0.53	NA	0.53	-9.00
AUR	8	Episode Day 2, 2013	5	CO	(PPM)	0.51	NA	0.51	-9.00
AUR	8	Episode Day 2, 2013	6	CO	(PPM)	0.48	NA	0.48	-9.00
AUR	8	Episode Day 2, 2013	7	CO	(PPM)	0.52	NA	0.52	-9.00
AUR	8	Episode Day 2, 2013	8	00	(PPM)	0.55	NA	0.55	-9.00
AUR	8	Episode Day 2, 2013	10	CO	(PPM)	0.57	NA NA	0.57	-9.00
AUR	0	Episode Day 2, 2013	11	co	(PPM)	0.58	NA NA	0.58	-9.00
AUR	8	Episode Day 2, 2013 Episode Day 2, 2013	12	CO	(PPM) (DDM)	0.59	NA NΔ	0.59	-9.00
AUR	8	Episode Day 2, 2013	13	CO	(PPM)	0.63	NA	0.63	-9.00
AUR	8	Episode Day 2, 2013	14	CO	(PPM)	0.66	NA	0.66	-9.00
AUR	8	Episode Day 2, 2013	15	CO	(PPM)	0.67	NA	0.67	-9.00
AUR	8	Episode Day 2, 2013	16	CO	(PPM)	0.85	NA	0.85	-9.00
AUR	8	Episode Day 2, 2013	17	CO	(PPM)	1.14	NA	1.14	-9.00
AUR	8	Episode Day 2, 2013	18	CO	(PPM)	1.50	NA	1.50	-9.00
AUR	8	Episode Day 2, 2013	19	CO	(PPM)	1.95	NA	1.95	-9.00
AUR	8	Episode Day 2, 2013	20	CO	(PPM)	2.39	NA	2.39	-9.00
AUR	8	Episode Day 2, 2013	21	CO	(PPM)	2.48	NA	2.48	-9.00
AUR	8	Episode Day 2, 2013	22	CO	(PPM)	2.50	NA	2.50	-9.00
AUR	8	Episode Day 2, 2013	23	CO	(PPM)	2.43	NA	2.43	-9.00
AUR	8	Episode Day 3, 2013	0	CO	(PPM)	2.20	NA	2.20	-9.00
AUR	8	Episode Day 3, 2013	1	CO	(PPM)	1.88	NA	1.88	-9.00
AUR	8	Episode Day 3, 2013	2	00	(PPM)	1.51	NA	1.51	-9.00
AUR	8	Episode Day 3, 2013	3	CO	(PPM)	1.04	NA NA	1.04	-9.00
AUR	0	Episode Day 3, 2013	-4 E	co	(PPM)	0.58	NA NA	0.58	-9.00
AUR	8	Episode Day 3, 2013	5	CO	(PPM)	0.40	NA	0.40	-9 00
AUR	8	Episode Day 3, 2013	7	CO	(PPM)	0.45	NA	0.45	-9.00
AUR	8	Episode Day 3, 2013	8	CO	(PPM)	0.47	NA	0.47	-9.00
AUR	8	Episode Day 3, 2013	9	CO	(PPM)	0.49	NA	0.49	-9.00
AUR	8	Episode Day 3, 2013	10	CO	(PPM)	0.53	NA	0.53	-9.00
AUR	8	Episode Day 3, 2013	11	CO	(PPM)	0.56	NA	0.56	-9.00
AUR	8	Episode Day 3, 2013	12	CO	(PPM)	0.60	NA	0.60	-9.00
AUR	8	Episode Day 3, 2013	13	CO	(PPM)	0.65	NA	0.65	-9.00
AUR	8	Episode Day 3, 2013	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 3, 2013	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 3, 2013	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 3, 2013	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
AUR	8	Episode Day 3, 2013	10	00	(PPM)	-9.00	NA N7	-9.00	-9.00
AUK	Ö	Episode Day 3, 2013	20	00		-9.00	NA NA	-9.00	-9.00
AUK	Ö Q	Episode Day 2, 2013	∠∪ 21	C0	(PPM)	-9.00 _0 00	NA NA	-9.00 _9.00	-9.00
AUK	о Д	Episode Day 3, 2013	∠⊥ 22	CO	(PDM)	_9 00	NΔ	-9.00	-9 00
AUR	R	Episode Day 3 2013	22	CO	(PPM)	-9 00	NΔ	-9 00	-9 00
AURS	8	Episode Day 1, 2013	19	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode Day 1, 2013	1	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode Day 1, 2013	2	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode Day 1, 2013	3	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode Day 1, 2013	4	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode Day 1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode Day 1, 2013	6	CO	(PPM)	0.00	NA	0.00	-9.00
AURS	8	Episode Day 1, 2013	7	CO	(PPM)	-9.00	NA	-9.00	1.00
AURS	8	Episode Day 1, 2013	8	CO	(PPM)	-9.00	NA	-9.00	1.09
AURS	8	Episode Day 1, 2013	9	CO	(PPM)	-9.00	NA	-9.00	1.21
AURS	8	Episode Day 1, 2013	10	CO	(PPM)	-9.00	NA	-9.00	1.32
AURS	8	Episode Day 1, 2013		CO	(PPM)	-9.00	NA	-9.00	1.46
AUKS	8 0	Episode Day 1, 2013 Episode Day 1, 2012	⊥∠ 1 2	00	(PPM)	-9.00	NA NA	-9.00	1.51 1 5/
AUKS	ð o	Episode Day 1, 2013	13 11	0	(PPM)	-9.00 _0 00	INA MTA	-9.00 _0 00	1.04 1.01
AURS	8	Episode Day 1, 2013	15	CO	(PPM)	-9.00	NA	-9.00	1.10
	0			20	·/	2.00		2.00	_ • <i>-</i> •

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.	.2tpd;1.7;	80;I/M	1240 w/	/newest 4myr	exempt;	0.01.0	1000
OT THE	3170		IID	DOTT		2013	2013	2013	1988
SILE	AVG	DATE	HR	POLL	JUTANI	(IIAM)	(CAL3OHC)	(IIAM+CAL3)	OBSERVED
	IBRIOD					(Ohin)	(CALISQUE)	(OAN CALL)	
AURS	8	Episode Day 1, 2013	16	CO	(PPM)	-9.00	NA	-9.00	1.07
AURS	8	Episode Day 1, 2013	17	CO	(PPM)	-9.00	NA	-9.00	1.34
AURS	8	Episode Day 1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	1.36
AURS	8	Episode Day 1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	1.34
AURS	8	Episode Day 1, 2013	20	CO	(PPM)	-9.00	NA	-9.00	1.35
AURS	8	Episode Day 1, 2013 Episode Day 1, 2013	2⊥	C0 C0	(PPM)	-9.00	NA NA	-9.00	1.34 1.20
AURS	8	Episode Day 1, 2013 Episode Day 1, 2013	22	CO	(PPM)	-9.00	NA NA	-9.00	1 42
AURS	8	Episode Day 2, 2013	0	CO	(PPM)	-9.00	NA	-9.00	1.38
AURS	8	Episode Day 2, 2013	1	CO	(PPM)	-9.00	NA	-9.00	0.98
AURS	8	Episode Day 2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	0.81
AURS	8	Episode Day 2, 2013	3	CO	(PPM)	0.39	NA	0.39	0.69
AURS	8	Episode Day 2, 2013	4	CO	(PPM)	0.37	NA	0.37	0.61
AURS	0 8	Episode Day 2, 2013 Episode Day 2 2013	5	CO	(PPM) (DDM)	0.37	NA NA	0.37	0.85
AURS	8	Episode Day 2, 2013	7	CO	(PPM)	0.43	NA	0.43	1.23
AURS	8	Episode Day 2, 2013	8	CO	(PPM)	0.46	NA	0.46	1.46
AURS	8	Episode Day 2, 2013	9	CO	(PPM)	0.47	NA	0.47	1.69
AURS	8	Episode Day 2, 2013	10	CO	(PPM)	0.48	NA	0.48	1.91
AURS	8	Episode Day 2, 2013	11	CO	(PPM)	0.49	NA	0.49	2.21
AURS	8	Episode Day 2, 2013	12	CO	(PPM)	0.51	NA	0.51	2.46
AURS	o g	Episode Day 2, 2013	14	CO	(PPM) (DDM)	0.55	NA NA	0.55	2.00
AURS	8	Episode Day 2, 2013	15	CO	(PPM)	0.62	NA	0.62	2.36
AURS	8	Episode Day 2, 2013	16	CO	(PPM)	0.98	NA	0.98	2.69
AURS	8	Episode Day 2, 2013	17	CO	(PPM)	1.65	NA	1.65	3.80
AURS	8	Episode Day 2, 2013	18	CO	(PPM)	2.39	NA	2.39	4.24
AURS	8	Episode Day 2, 2013	19	CO	(PPM)	2.82	NA	2.82	4.28
AURS	8	Episode Day 2, 2013	20	CO	(PPM)	2.88	NA	2.88	4.26
AURS	0 8	Episode Day 2, 2013 Episode Day 2, 2013	21	CO	(PPM) (PPM)	2.00	NA NA	2.00	4.10
AURS	8	Episode Day 2, 2013	23	CO	(PPM)	2.72	NA	2.72	4.01
AURS	8	Episode Day 3, 2013	0	CO	(PPM)	2.33	NA	2.33	3.45
AURS	8	Episode Day 3, 2013	1	CO	(PPM)	1.65	NA	1.65	2.11
AURS	8	Episode Day 3, 2013	2	CO	(PPM)	0.91	NA	0.91	1.48
AURS	8	Episode Day 3, 2013	3	CO	(PPM)	0.47	NA	0.47	1.16
AURS	8	Episode Day 3, 2013 Episode Day 2, 2012	4	C0 C0	(PPM)	0.38	NA NA	0.38	0.98
AURS	8	Episode Day 3, 2013 Episode Day 3, 2013	6	CO	(PPM)	0.34	NA	0.34	1.36
AURS	8	Episode Day 3, 2013	7	CO	(PPM)	0.42	NA	0.42	2.06
AURS	8	Episode Day 3, 2013	8	CO	(PPM)	0.44	NA	0.44	2.59
AURS	8	Episode Day 3, 2013	9	CO	(PPM)	0.47	NA	0.47	2.94
AURS	8	Episode Day 3, 2013	10	CO	(PPM)	0.49	NA	0.49	2.99
AURS	8	Episode Day 3, 2013 Episode Day 3, 2013	12	C0 C0	(PPM) (DDM)	0.52	NA NA	0.52	3.04
AURS	8	Episode Day 3, 2013	13	CO	(PPM)	0.50	NA	0.60	2.99
AURS	8	Episode Day 3, 2013	14	CO	(PPM)	-9.00	NA	-9.00	2.41
AURS	8	Episode Day 3, 2013	15	CO	(PPM)	-9.00	NA	-9.00	1.65
AURS	8	Episode Day 3, 2013	16	CO	(PPM)	-9.00	NA	-9.00	1.25
AURS	8	Episode Day 3, 2013	17	CO	(PPM)	-9.00	NA	-9.00	1.26
AURS	8	Episode Day 3, 2013 Episode Day 3, 2013	18	C0 C0	(PPM) (DDM)	-9.00	NA NA	-9.00	1.64
AURS	8	Episode Day 3, 2013	2.0	CO	(PPM)	-9.00	NA	-9.00	2.15
AURS	8	Episode Day 3, 2013	21	CO	(PPM)	-9.00	NA	-9.00	2.36
AURS	8	Episode Day 3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	2.45
AURS	8	Episode Day 3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	2.49
PLM	8	Episode Day 1, 2013	0	CO	(PPM)	0.00	NA	0.00	-9.00
PTW M 10	8 0	Episode Day 1, 2013 Episode Day 1, 2012	⊥ 2	CO	(PPM)	0.00	NA NA	0.00	-9.00
PLM	8	Episode Day 1, 2013 Episode Day 1, 2013	2	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	8	Episode Day 1, 2013	4	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	8	Episode Day 1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	8	Episode Day 1, 2013	6	CO	(PPM)	0.00	NA	0.00	-9.00
PLM	8	Episode Day 1, 2013	7	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode Day 1, 2013	8	CO	(PDM)	-9.00	NA NA	-9.00	-9.00
DI.M	d R	Episode Day 1, 2013	9 10	CO	(PPM)	-9.00	ΔM MA	-9.00	-9.00
PLM	8	Episode Day 1, 2013	11	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode Day 1, 2013	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode Day 1, 2013	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode Day 1, 2013	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8	Episode Day 1, 2013	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
PTW DTW	ט ס	Episode Day 1, 2013 Episode Day 1, 2013	10 17	CO	(PPM)	-9.00 _9.00	NA NA	-9.00 _9.00	-9.00
PLM	8	Episode Day 1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.2tp	d;1.7;	80;I/I	M 240 w,	/newest 4myr	exempt;		
SITE AVG PERIC	D D	DATE	HR	POL	LUTANT	2013 PREDICTED (UAM)	2013 PREDICTED (CAL3QHC)	2013 PREDICTED (UAM+CAL3)	1988 OBSERVED
DIM	0 1	Inicada Davi 1 2012	1.0	00		0.00	272	0.00	0.00
PLM	8 E	pisode Day 1, 2013	19	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
PLM DI.M	8 F	Ipisode Day 1, 2013	20	CO	(PPM) (DDM)	-9.00	NΑ NΔ	-9.00	-9.00
DT.M	8 F	Disode Day 1, 2013	22	CO	(DDM)	-9.00	NΔ	-9.00	-9.00
DT.M	8 17	pisode Day 1, 2013	22	CO	(DDM)	-9.00	NΔ	-9.00	-9 00
PLM	8 E	pisode Day 2, 2013	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 E	pisode Day 2, 2013	1	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 E	Episode Day 2, 2013	2	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 E	Episode Day 2, 2013	3	CO	(PPM)	0.73	NA	0.73	-9.00
PLM	8 E	Episode Day 2, 2013	4	CO	(PPM)	0.68	NA	0.68	-9.00
PLM	8 E	Episode Day 2, 2013	5	CO	(PPM)	0.65	NA	0.65	-9.00
PLM	8 E	Episode Day 2, 2013	6	CO	(PPM)	0.59	NA	0.59	-9.00
PLM	8 E	Episode Day 2, 2013	7	CO	(PPM)	0.65	NA	0.65	-9.00
PLM	8 E	Episode Day 2, 2013	8	CO	(PPM)	0.67	NA	0.67	-9.00
PLM	8 E	Episode Day 2, 2013	9	CO	(PPM)	0.71	NA	0.71	-9.00
PLM	8 E	pisode Day 2, 2013	10	CO	(PPM)	0.73	NA	0.73	-9.00
PLM	8 E	Episode Day 2, 2013		CO	(PPM)	0.74	NA	0.74	-9.00
PLM	8 E	Spisode Day 2, 2013	12	00	(PPM)	0.77	NA	0.77	-9.00
PLM		Spisode Day 2, 2013	14	00	(PPM)	0.79	INA NA	0.79	-9.00
PLM DI.M	0 E	Disode Day 2, 2013	15	CO	(PPM)	0.03	NA NA	0.03	-9.00
DT.M	8 F	Disode Day 2, 2013	16	CO	(DDM)	1 09	NΔ	1 09	-9.00
PLM	8 1	pisode Day 2, 2013	17	CO	(PPM)	1 49	NA	1 49	-9 00
PLM	8 E	pisode Day 2, 2013	18	CO	(PPM)	2.01	NA	2.01	-9.00
PLM	8 E	Episode Day 2, 2013	19	CO	(PPM)	2.68	NA	2.68	-9.00
PLM	8 E	Episode Day 2, 2013	20	CO	(PPM)	2.86	NA	2.86	-9.00
PLM	8 E	Episode Day 2, 2013	21	CO	(PPM)	2.90	NA	2.90	-9.00
PLM	8 E	Episode Day 2, 2013	22	CO	(PPM)	2.92	NA	2.92	-9.00
PLM	8 E	Episode Day 2, 2013	23	CO	(PPM)	2.83	NA	2.83	-9.00
PLM	8 E	Episode Day 3, 2013	0	CO	(PPM)	2.51	NA	2.51	-9.00
PLM	8 E	Episode Day 3, 2013	1	CO	(PPM)	2.06	NA	2.06	-9.00
PLM	8 E	Episode Day 3, 2013	2	CO	(PPM)	1.53	NA	1.53	-9.00
PLM	8 E	pisode Day 3, 2013	3	CO	(PPM)	0.83	NA	0.83	-9.00
PLM	8 1	pisode Day 3, 2013	4	CO	(PPM)	0.62	NA	0.62	-9.00
PLM	8 E	Spisode Day 3, 2013	5	00	(PPM)	0.54	NA	0.54	-9.00
PLM DI.M	0 E	Disode Day 3, 2013	7	CO	(PPM)	0.47	NA NA	0.47	-9.00
P LM DI.M	0 E	pisode Day 3, 2013	2 2	CO	(PPM)	0.50	NA NA	0.50	-9.00
PLM	8 E	pisode Day 3, 2013	9	CO	(PPM)	0.63	NA	0.63	-9.00
PLM	8 E	pisode Day 3, 2013	10	CO	(PPM)	0.67	NA	0.67	-9.00
PLM	8 E	Episode Day 3, 2013	11	CO	(PPM)	0.73	NA	0.73	-9.00
PLM	8 E	Episode Day 3, 2013	12	CO	(PPM)	0.79	NA	0.79	-9.00
PLM	8 E	Episode Day 3, 2013	13	CO	(PPM)	0.86	NA	0.86	-9.00
PLM	8 E	Episode Day 3, 2013	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 E	Episode Day 3, 2013	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 E	Episode Day 3, 2013	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 E	pisode Day 3, 2013	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 1	Spisode Day 3, 2013	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
PLM	8 E	Spisode Day 3, 2013	19	00	(PPM)	-9.00	NA NA	-9.00	-9.00
	о E	pisode Day 3, 2013	∠∪ 21	C0 C0	(PPM)	-9.00 _0 00	INA MA	-9.00 _9.00	-9.00
PT.M	л С Т 8	Disode Day 3, 2013	2.2	CO	(PPM)	-9.00	NΔ	-9.00	-9.00
PLM	8 F	pisode Day 3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	Episode Day 1, 2013	Ō	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8 E	pisode Day 1, 2013	1	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8 E	Episode Day 1, 2013	2	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8 E	Episode Day 1, 2013	3	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8 E	Spisode Day 1, 2013	4	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8 E	pisode Day 1, 2013	5	CO	(PPM)	0.00	NA	0.00	-9.00
BTN	8 E	pisode Day 1, 2013	6	CO	(PPM)	0.00	NA	0.00	-9.00
BIN	σ E	pisode Day 1, 2013	1/	CO	(PPM)	-9.00	NA	-9.00	-9.00
BIN	o E	pisode Day 1, 2013	8 Q	CO	(PPM)	-9.00	NA NA	-9.00	-9.00
BTN	0 L 8 L	Disode Day 1, 2013	9 10	CO	(PDM)	-9.00	NA ND	-9.00	-9.00
BTN	л С Т 8	pisode Day 1, 2013	11	CO	(PPM)	-9.00	NΔ	-9.00	-9 00
BTN	ш 8 Я 8	pisode Day 1, 2013	12	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	Episode Day 1, 2013	13	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	Episode Day 1, 2013	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	pisode Day 1, 2013	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	Episode Day 1, 2013	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	Episode Day 1, 2013	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	Episode Day 1, 2013	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	pisode Day 1, 2013	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	pisode Day 1, 2013	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
BTN	8 E	pisode Day I, 2013	21	CO	(PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High: 2013 mob=867.2	2tpd;1.7;	80;I/M 2	240 w/	newest 4myr	exempt;	2012	1000
STTE AV	G	ጉልጥም	НЪ		rδNT	2013 DRFDICTFD	2013 DRFDICTFD	2013 PREDICTED	1988 Observed
PEI	RIOD	DATE	IIIC	гоппот		(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
						(0111)	(01120 giro)	(0111) 01120)	
BTN	8	Episode Day 1, 2013	22	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode Day 1, 2013	23	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode Day 2, 2013	0	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode Day 2, 2013	1	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode Day 2, 2013	2	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BIN	8	Episode Day 2, 2013	3	CO (E	PPM)	0.41	NA	0.41	-9.00
BIN	8	Episode Day 2, 2013	4 F	CO (E	PPM)	0.40	NA	0.40	-9.00
BIN	o g	Episode Day 2, 2013	5	CO (E	DDM)	0.39	NA NA	0.39	-9.00
BTN	8	Episode Day 2, 2013 Episode Day 2 2013	7	CO (F	PDM)	0.40	NA	0.40	-9.00
BTN	8	Episode Day 2, 2013	, 8	CO (F	PPM)	0.43	NA	0.43	-9.00
BTN	8	Episode Day 2, 2013	9	CO (E	PPM)	0.43	NA	0.43	-9.00
BTN	8	Episode Day 2, 2013	10	CO (E	PPM)	0.45	NA	0.45	-9.00
BTN	8	Episode Day 2, 2013	11	CO (E	PPM)	0.49	NA	0.49	-9.00
BTN	8	Episode Day 2, 2013	12	CO (E	PPM)	0.54	NA	0.54	-9.00
BTN	8	Episode Day 2, 2013	13	CO (E	PPM)	0.59	NA	0.59	-9.00
BTN	8	Episode Day 2, 2013	14	CO (E	PPM)	0.65	NA	0.65	-9.00
BTN	8	Episode Day 2, 2013	15	CO (E	PPM)	0.70	NA	0.70	-9.00
BTN	8	Episode Day 2, 2013	16	CO (E	PPM)	0.80	NA	0.80	-9.00
BTN	8	Episode Day 2, 2013	17	CO (E	PPM)	0.91	NA	0.91	-9.00
BIN	8	Episode Day 2, 2013	18	CO (E	PPM)	1.02	NA	1.02	-9.00
DIN	0	Episode Day 2, 2013	19	CO (E		1.00	INA NA	1.00	-9.00
BIN	0 8	Episode Day 2, 2013	20	CO (E	DDM)	1.08	NA NA	1.00	-9.00
BTN	8	Episode Day 2, 2013	22	CO (F	PPM)	1.17	NA	1.17	-9.00
BTN	8	Episode Day 2, 2013	23	CO (E	PPM)	1.26	NA	1.26	-9.00
BTN	8	Episode Day 3, 2013	0	CO (E	PPM)	1.24	NA	1.24	-9.00
BTN	8	Episode Day 3, 2013	1	CO (E	PPM)	1.16	NA	1.16	-9.00
BTN	8	Episode Day 3, 2013	2	CO (E	PPM)	1.04	NA	1.04	-9.00
BTN	8	Episode Day 3, 2013	3	CO (E	PPM)	0.94	NA	0.94	-9.00
BTN	8	Episode Day 3, 2013	4	CO (E	PPM)	0.89	NA	0.89	-9.00
BTN	8	Episode Day 3, 2013	5	CO (E	PPM)	0.82	NA	0.82	-9.00
BTN	8	Episode Day 3, 2013	6	CO (E	PPM)	0.70	NA	0.70	-9.00
BTN	8	Episode Day 3, 2013	.7	CO (E	PPM)	0.54	NA	0.54	-9.00
BIN	8	Episode Day 3, 2013	8	CO (E	PPM)	0.45	NA	0.45	-9.00
BIN	8	Episode Day 3, 2013 Episode Day 2, 2013	10	CO (E	PPM)	0.40	NA	0.40	-9.00
BIN	0 8	Episode Day 3, 2013	11	CO (E	DDM)	0.37	NA NA	0.37	-9.00
BTN	8	Episode Day 3, 2013	12	CO (F	PPM)	0.35	NA	0.35	-9.00
BTN	8	Episode Day 3, 2013	13	CO (E	PPM)	0.36	NA	0.36	-9.00
BTN	8	Episode Day 3, 2013	14	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode Day 3, 2013	15	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode Day 3, 2013	16	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode Day 3, 2013	17	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BTN	8	Episode Day 3, 2013	18	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BIN	8	Episode Day 3, 2013	19	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BIN	8	Episode Day 3, 2013	20	CO (E	PPM)	-9.00	NA	-9.00	-9.00
BIN	8	Episode Day 3, 2013 Episode Day 3, 2013	21	CO (F	DDM)	-9.00	NΑ	-9.00	-9.00
BTN	8	Episode Day 3, 2013	23	CO (E	DDM)	-9.00	NA	-9.00	-9.00
U 1	8	Episode Day 1, 2013	0	CO (E	PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode Day 1, 2013	1	CO (E	PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode Day 1, 2013	2	CO (E	PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode Day 1, 2013	3	CO (E	PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode Day 1, 2013	4	CO (E	PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode Day 1, 2013	5	CO (E	PPM)	0.00	NA	0.00	-9.00
U_1	8	Episode Day 1, 2013	6	CO (E	PPM)	0.00	NA	0.00	-9.00
U_1 TT_1	8	Episode Day 1, 2013	/	CO (E		-9.00	NA NA	-9.00	-9.00
	o g	Episode Day 1, 2013	o Q	CO (E	DDM)	-9.00	NA NA	-9.00	-9.00
U_1	8	Episode Day 1, 2013	10	CO (F	PDM)	-9.00	NA	-9 00	-9.00
U 1	8	Episode Day 1, 2013	11	CO (E	PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode Day 1, 2013	12	CO (E	PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode Day 1, 2013	13	CO (I	PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode Day 1, 2013	14	CO (I	PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode Day 1, 2013	15	CO (E	PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode Day 1, 2013	16	CO (I	PPM)	-9.00	NA	-9.00	-9.00
U_1	8	Episode Day 1, 2013	17	CO (E	PPM)	-9.00	NA	-9.00	-9.00
	8	Episode Day 1, 2013	10			-9.00	NA NA	-9.00	-9.00
	o Q	Episode Day 1, 2013	20			-9.00 _0 00	NA NA	-9.00	-9.00
U_1 TT 1	с Я	Episode Day 1, 2013	20 21	CO (1	PPM)	-9.00	NΔ	-9 00	-9.00
Ŭ 1	8	Episode Day 1, 2013	22	CO (F	PPM)	-9.00	NA	-9.00	-9.00
U 1	8	Episode Day 1, 2013	23	CO (F	PPM)	-9.00	NA	-9.00	-9.00
U1	8	Episode Day 2, 2013	0	CO (I	PPM)	-9.00	NA	-9.00	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2t	pd;1.7;	80;I/M 240 v	/newest 4myr	exempt;	0.01.2	1000
SITE AVG	DATE	HR	POLUUTANT	2013 PREDICTED	2013 PREDICTED	2013 PREDICTED	1988 Observed
PERIOD	DITE	1110	1011011111	(UAM)	(CAL3QHC)	(UAM+CAL3)	ODOLICVLD
U_1 8	Episode Day 2, 2013	1	CO (PPM)	-9.00	NA	-9.00	-9.00
U_1 8	Episode Day 2, 2013	∠ 3	CO (PPM)	-9.00	NA	-9.00	-9.00
U_1 8	Episode Day 2, 2013	4	CO (PPM)	0.70	NA	0.70	-9.00
U_1 8	Episode Day 2, 2013	5	CO (PPM)	0.67	NA	0.67	-9.00
U_1 8	Episode Day 2, 2013	6	CO (PPM)	0.62	NA	0.62	-9.00
	Episode Day 2, 2013 Episode Day 2, 2012	0	CO (PPM)	0.71	NA NA	0.71	-9.00
U 1 8	Episode Day 2, 2013 Episode Day 2, 2013	9	CO (PPM)	0.70	NA	0.70	-9.00
U_1 8	Episode Day 2, 2013	10	CO (PPM)	0.79	NA	0.79	-9.00
U_1 8	Episode Day 2, 2013	11	CO (PPM)	0.81	NA	0.81	-9.00
	Episode Day 2, 2013 Episode Day 2, 2013	12	CO (PPM) CO (PPM)	0.85	NA NA	0.85	-9.00
U_1 8	Episode Day 2, 2013	14	CO (PPM)	1.01	NA	1.01	-9.00
U_1 8	Episode Day 2, 2013	15	CO (PPM)	1.04	NA	1.04	-9.00
U_1 8	Episode Day 2, 2013	16	CO (PPM)	1.52	NA	1.52	-9.00
	Episode Day 2, 2013 Episode Day 2, 2013	1.7 1.8	CO (PPM) CO (PPM)	2.5U 3.52	NA NA	∠.5U 3.52	-9.00
U 1 8	Episode Day 2, 2013	19	CO (PPM)	3.79	NA	3.79	-9.00
U_1 8	Episode Day 2, 2013	20	CO (PPM)	3.84	NA	3.84	-9.00
U_1 8	Episode Day 2, 2013	21	CO (PPM)	3.85	NA	3.85	-9.00
	Episode Day 2, 2013 Episode Day 2, 2012	22	CO (PPM)	3.78	NA NA	3.78	-9.00
U 1 8	Episode Day 3, 2013	23	CO (PPM)	3.02	NA	3.02	-9.00
U_1 8	Episode Day 3, 2013	1	CO (PPM)	2.07	NA	2.07	-9.00
U_1 8	Episode Day 3, 2013	2	CO (PPM)	1.05	NA	1.05	-9.00
	Episode Day 3, 2013 Episode Day 2, 2012	3	CO (PPM)	0.75	NA NA	0.75	-9.00
U 1 8	Episode Day 3, 2013	5	CO (PPM)	0.58	NA	0.58	-9.00
U_1 8	Episode Day 3, 2013	6	CO (PPM)	0.56	NA	0.56	-9.00
U_1 8	Episode Day 3, 2013	7	CO (PPM)	0.75	NA	0.75	-9.00
U_1 8	Episode Day 3, 2013	8	CO (PPM)	0.85	NA	0.85	-9.00
U_1 8	Episode Day 3, 2013	10	CO (PPM) CO (PPM)	0.91	NA	0.91	-9.00
U_1 8	Episode Day 3, 2013	11	CO (PPM)	1.03	NA	1.03	-9.00
U_1 8	Episode Day 3, 2013	12	CO (PPM)	1.13	NA	1.13	-9.00
U_1 8	Episode Day 3, 2013	13	CO (PPM)	1.24	NA	1.24	-9.00
U_1 8	Episode Day 3, 2013	14	CO (PPM) CO (PPM)	-9.00	NA	-9.00	-9.00
U_1 8	Episode Day 3, 2013	16	CO (PPM)	-9.00	NA	-9.00	-9.00
U_1 8	Episode Day 3, 2013	17	CO (PPM)	-9.00	NA	-9.00	-9.00
	Episode Day 3, 2013 Episode Day 2, 2012	18	CO (PPM)	-9.00	NA NA	-9.00	-9.00
U 1 8	Episode Day 3, 2013	20	CO (PPM)	-9.00	NA	-9.00	-9.00
U_1 8	Episode Day 3, 2013	21	CO (PPM)	-9.00	NA	-9.00	-9.00
U_1 8	Episode Day 3, 2013	22	CO (PPM)	-9.00	NA	-9.00	-9.00
U_1 8	Episode Day 3, 2013 Episode Day 1, 2013	23	CO (PPM)	-9.00	NA NA	-9.00	-9.00
FA 8	Episode Day 1, 2013 Episode Day 1, 2013	1	CO (PPM)	0.00	NA	0.00	-9.00
F_A 8	Episode Day 1, 2013	2	CO (PPM)	0.00	NA	0.00	-9.00
F_A 8	Episode Day 1, 2013	3	CO (PPM)	0.00	NA	0.00	-9.00
FA 8	Episode Day 1, 2013 Episode Day 1, 2013	4	CO (PPM)	0.00	NA NA	0.00	-9.00
F_A 8	Episode Day 1, 2013	6	CO (PPM)	0.00	NA	0.00	-9.00
F_A 8	Episode Day 1, 2013	7	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 1, 2013	8	CO (PPM)	-9.00	NA	-9.00	-9.00
FA 8	Episode Day 1, 2013 Episode Day 1, 2013	9 10	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	-9.00
FA 8	Episode Day 1, 2013	11	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 1, 2013	12	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 1, 2013	13	CO (PPM)	-9.00	NA	-9.00	-9.00
г_А 8 F д 9	Episode Day 1, 2013 Episode Day 1, 2013	14 15	CO (PPM)	-9.00 -9.00	NA NA	-9.00 -9.00	-9.00
F_A 8	Episode Day 1, 2013	16	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 1, 2013	17	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 1, 2013	18	CO (PPM)	-9.00	NA	-9.00	-9.00
г_А 8 F Д 9	Episode Day 1, 2013	19 20	CO (PPM)	-9.00 -9.00	NA NA	-9.00 -9.00	-9.00
F_A 8	Episode Day 1, 2013	21	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 1, 2013	22	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 1, 2013	23	CO (PPM)	-9.00	NA	-9.00	-9.00
F A 8	Episode Day 2, 2013 Episode Day 2, 2013	U 1	CO (PPM)	-9.00 -9.00	NA NA	-9.00 -9.00	-9.00
F_A 8	Episode Day 2, 2013	2	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 2, 2013	3	CO (PPM)	0.51	NA	0.51	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2	tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	2012	1000
SITE AVG	DATE	HR	POLLUTANT	2013 PREDICTED	2013 PREDICTED	2013 PREDICTED	OBSERVED
PERIOD		1110	I ODDO IIINI	(UAM)	(CAL3QHC)	(UAM+CAL3)	ODOLICVED
F_A 8	Episode Day 2, 2013	4	CO (PPM)	0.47	NA	0.47	-9.00
F_A 8	Episode Day 2, 2013 Episode Day 2, 2013	5	CO (PPM) CO (PPM)	0.46	NA NA	0.46	-9.00
FA 8	Episode Day 2, 2013	7	CO (PPM)	0.45	NA	0.45	-9.00
F_A 8	Episode Day 2, 2013	8	CO (PPM)	0.49	NA	0.49	-9.00
F_A 8	Episode Day 2, 2013	9	CO (PPM)	0.54	NA	0.54	-9.00
F_A 8	Episode Day 2, 2013	10	CO (PPM)	0.58	NA	0.58	-9.00
F_A 8	Episode Day 2, 2013 Episode Day 2, 2013	12	CO (PPM) CO (PPM)	0.61	NA NA	0.61	-9.00
F A 8	Episode Day 2, 2013	13	CO (PPM)	0.66	NA	0.66	-9.00
F_A 8	Episode Day 2, 2013	14	CO (PPM)	0.67	NA	0.67	-9.00
F_A 8	Episode Day 2, 2013	15	CO (PPM)	0.65	NA	0.65	-9.00
F_A 8	Episode Day 2, 2013	16	CO (PPM)	0.79	NA	0.79	-9.00
F_A 8	Episode Day 2, 2013 Episode Day 2, 2013	18	CO (PPM) CO (PPM)	0.84	NA NA	0.84	-9.00
F_A 8	Episode Day 2, 2013	19	CO (PPM)	0.89	NA	0.89	-9.00
F_A 8	Episode Day 2, 2013	20	CO (PPM)	0.91	NA	0.91	-9.00
F_A 8	Episode Day 2, 2013	21	CO (PPM)	0.91	NA	0.91	-9.00
F_A 8	Episode Day 2, 2013	22	CO (PPM)	0.87	NA	0.87	-9.00
FA 0 FA 8	Episode Day 2, 2013 Episode Day 3, 2013	∠ <i>3</i>	CO (PPM)	0.70	NA NA	0.78	-9.00
F_A 8	Episode Day 3, 2013	1	CO (PPM)	0.48	NA	0.48	-9.00
F_A 8	Episode Day 3, 2013	2	CO (PPM)	0.42	NA	0.42	-9.00
F_A 8	Episode Day 3, 2013	3	CO (PPM)	0.36	NA	0.36	-9.00
F_A 8	Episode Day 3, 2013 Episode Day 2, 2013	4	CO (PPM)	0.31	NA NA	0.31	-9.00
FA 8	Episode Day 3, 2013	6	CO (PPM)	0.29	NA	0.29	-9.00
F_A 8	Episode Day 3, 2013	7	CO (PPM)	0.40	NA	0.40	-9.00
F_A 8	Episode Day 3, 2013	8	CO (PPM)	0.44	NA	0.44	-9.00
F_A 8	Episode Day 3, 2013	9	CO (PPM)	0.47	NA	0.47	-9.00
F_A 8	Episode Day 3, 2013 Episode Day 3, 2013	11	CO (PPM) CO (PPM)	0.47	NA NA	0.47	-9.00
FA 8	Episode Day 3, 2013	12	CO (PPM)	0.51	NA	0.19	-9.00
F_A 8	Episode Day 3, 2013	13	CO (PPM)	0.56	NA	0.56	-9.00
F_A 8	Episode Day 3, 2013	14	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 3, 2013 Episode Day 2, 2013	15 16	CO (PPM)	-9.00	NA	-9.00	-9.00
FA 8	Episode Day 3, 2013	17	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 3, 2013	18	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 3, 2013	19	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 3, 2013	20	CO (PPM)	-9.00	NA	-9.00	-9.00
F_A 8	Episode Day 3, 2013 Episode Day 3, 2013	∠⊥ 22	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	-9.00
F A 8	Episode Day 3, 2013	23	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	0	CO (PPM)	0.00	NA	0.00	-9.00
H_U 8	Episode Day 1, 2013	1	CO (PPM)	0.00	NA	0.00	-9.00
H_U 8	Episode Day 1, 2013 Episode Day 1, 2013	2	CO (PPM)	0.00	NA NA	0.00	-9.00
HU 8	Episode Day 1, 2013	4	CO (PPM)	0.00	NA	0.00	-9.00
H_U 8	Episode Day 1, 2013	5	CO (PPM)	0.00	NA	0.00	-9.00
H_U 8	Episode Day 1, 2013	6	CO (PPM)	0.00	NA	0.00	-9.00
H_U 8	Episode Day 1, 2013	./	CO (PPM)	-9.00	NA	-9.00	-9.00
н <u>и</u> 8	Episode Day 1, 2013	0 9	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	10	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	11	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	12	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013 Episode Day 1, 2013	13 14	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	-9.00
HU 8	Episode Day 1, 2013	15	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	16	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	17	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	18	CO (PPM)	-9.00	NA	-9.00	-9.00
8 U_Л Н П Я	Episode Day 1, 2013	19 20	CO (PPM) CO (DDM)	-9.00	NA NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	21	CO (PPM)	-9.00	NA	-9.00	-9.00
н_0 8	Episode Day 1, 2013	22	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 1, 2013	23	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 2, 2013 Episode Day 2, 2013	U 1	CO (PPM)	-9.00	NA NA	-9.00	-9.00
8 U_П Я II H	Episode Day 2, 2013	⊥ 2	CO (PPM)	-9.00	NA NA	-9.00	-9.00
H_U 8	Episode Day 2, 2013	3	CO (PPM)	0.37	NA	0.37	-9.00
H_U 8	Episode Day 2, 2013	4	CO (PPM)	0.36	NA	0.36	-9.00
H_U 8	Episode Day 2, 2013	5	CO (PPM)	0.35	NA	0.35	-9.00
н_0 8	EPISOUE Day Z, 2013	ь	CO (PPM)	0.33	NA	0.33	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867	.2tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	0010	1000
SITE AVG	DATTE	HR	POLLITANT	2013 PREDICTED	2013 PREDICTED	2013 PREDICTED	1988 Observed
PERIOD	DATE	IIIC	FOLLOTANI	(UAM)	(CAL3OHC)	(UAM+CAL3)	OBSERVED
				(,	(<u>-</u>)	(,	
H_U 8	Episode Day 2, 2013	7	CO (PPM)	0.37	NA	0.37	-9.00
H_U 8	Episode Day 2, 2013	8	CO (PPM)	0.40	NA	0.40	-9.00
H_U 8	Episode Day 2, 2013	9	CO (PPM)	0.40	NA	0.40	-9.00
H_U 8	Episode Day 2, 2013	10	CO (PPM)	0.40	NA	0.40	-9.00
H_U 8	Episode Day 2, 2013 Episode Day 2, 2013	12	CO (PPM) CO (PPM)	0.41	NA NA	0.41	-9.00
HU 8	Episode Day 2, 2013	13	CO (PPM)	0.46	NA	0.46	-9.00
H U 8	Episode Day 2, 2013	14	CO (PPM)	0.53	NA	0.53	-9.00
H_U 8	Episode Day 2, 2013	15	CO (PPM)	0.67	NA	0.67	-9.00
H_U 8	Episode Day 2, 2013	16	CO (PPM)	1.12	NA	1.12	-9.00
H_U 8	Episode Day 2, 2013	17	CO (PPM)	1.63	NA	1.63	-9.00
H_U 8	Episode Day 2, 2013 Epigodo Day 2, 2013	18	CO (PPM)	1.81	NA	1.81	-9.00
нц 8	Episode Day 2, 2013 Episode Day 2 2013	20	CO (PPM)	1 87	NA	1 87	-9.00
H U 8	Episode Day 2, 2013	21	CO (PPM)	1.85	NA	1.85	-9.00
H_U 8	Episode Day 2, 2013	22	CO (PPM)	1.78	NA	1.78	-9.00
H_U 8	Episode Day 2, 2013	23	CO (PPM)	1.59	NA	1.59	-9.00
H_U 8	Episode Day 3, 2013	0	CO (PPM)	1.12	NA	1.12	-9.00
H_U 8	Episode Day 3, 2013 Episode Day 3, 2013	1	CO (PPM)	0.61	NA	0.61	-9.00
н_0 8 н II 8	Episode Day 3, 2013 Episode Day 3, 2013	3	CO (PPM)	0.42	NA	0.42	-9.00
H U 8	Episode Day 3, 2013	4	CO (PPM)	0.33	NA	0.33	-9.00
H_U 8	Episode Day 3, 2013	5	CO (PPM)	0.32	NA	0.32	-9.00
H_U 8	Episode Day 3, 2013	6	CO (PPM)	0.32	NA	0.32	-9.00
H_U 8	Episode Day 3, 2013	7	CO (PPM)	0.41	NA	0.41	-9.00
H_U 8	Episode Day 3, 2013	8	CO (PPM)	0.43	NA	0.43	-9.00
H_U 8	Episode Day 3, 2013 Episode Day 3, 2013	10	CO (PPM) CO (PPM)	0.40	NA NA	0.46	-9.00
HU 8	Episode Day 3, 2013	11	CO (PPM)	0.55	NA	0.55	-9.00
H_U 8	Episode Day 3, 2013	12	CO (PPM)	0.59	NA	0.59	-9.00
H_U 8	Episode Day 3, 2013	13	CO (PPM)	0.64	NA	0.64	-9.00
H_U 8	Episode Day 3, 2013	14	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 3, 2013	15	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 3, 2013 Episode Day 3, 2013	10	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	-9.00
HU 8	Episode Day 3, 2013	18	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 3, 2013	19	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 3, 2013	20	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 3, 2013	21	CO (PPM)	-9.00	NA	-9.00	-9.00
H_U 8	Episode Day 3, 2013	22	CO (PPM)	-9.00	NA	-9.00	-9.00
	Episode Day 3, 2013 Episode Day 1 2013	23 0	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	-9.00
U A 8	Episode Day 1, 2013	1	CO (PPM)	0.00	NA	0.00	-9.00
U_A 8	Episode Day 1, 2013	2	CO (PPM)	0.00	NA	0.00	-9.00
U_A 8	Episode Day 1, 2013	3	CO (PPM)	0.00	NA	0.00	-9.00
U_A 8	Episode Day 1, 2013	4	CO (PPM)	0.00	NA	0.00	-9.00
U_A 8	Episode Day 1, 2013	5	CO (PPM)	0.00	NA	0.00	-9.00
	Episode Day 1, 2013 Episode Day 1, 2013	7	CO (PPM)	-9 00	NA NA	-9.00	-9.00
U A 8	Episode Day 1, 2013	8	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	9	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	10	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	11	CO (PPM)	-9.00	NA	-9.00	-9.00
	Episode Day 1, 2013 Episode Day 1, 2013	12	CO (PPM)	-9.00	NA	-9.00	-9.00
	Episode Day 1, 2013 Episode Day 1 2013	14	CO (PPM)	-9.00	NA	-9.00	-9.00
U A 8	Episode Day 1, 2013	15	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	16	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	17	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	18	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	19	CO (PPM)	-9.00	NA	-9.00	-9.00
о_а 8 и д 11	Episode Day 1, 2013	∠∪ 21	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	22	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 1, 2013	23	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 2, 2013	0	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 2, 2013	1	CO (PPM)	-9.00	NA	-9.00	-9.00
	Episode Day 2, 2013	2	CO (PPM)	-9.00	NA	-9.00	-9.00
A 8	Episode Day 2, 2013	5	CO (PPM)	0.25	NA NA	0.25	-9.00
U_A 8	Episode Day 2, 2013	5	CO (PPM)	0.24	NA	0.24	-9.00
U_A 8	Episode Day 2, 2013	6	CO (PPM)	0.24	NA	0.24	-9.00
U_A 8	Episode Day 2, 2013	7	CO (PPM)	0.27	NA	0.27	-9.00
U_A 8	Episode Day 2, 2013	8	CO (PPM)	0.28	NA	0.28	-9.00
U_A 8	Episode Day 2, 2013	9	CO (PPM)	U.28	NA	U.28	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	High: 2013 mob=867.2	tpd;1.7;	80;I/M 240 w	/newest 4myr	exempt;	2012	1000
SITE AVG	DATE	HR	POLLUTANT	2013 PREDICTED	2013 PREDICTED	2013 PREDICTED	OBSERVED
PERIOD)		1022011211	(UAM)	(CAL3QHC)	(UAM+CAL3)	0202111122
		1.0	<u> </u>			0.00	0.00
	Episode Day 2, 2013 Episode Day 2, 2013	10	CO (PPM) CO (PPM)	0.28	NA NA	0.28	-9.00
UA 8	Episode Day 2, 2013 Episode Day 2, 2013	12	CO (PPM)	0.25	NA	0.20	-9.00
U_A 8	Episode Day 2, 2013	13	CO (PPM)	0.34	NA	0.34	-9.00
U_A 8	Episode Day 2, 2013	14	CO (PPM)	0.39	NA	0.39	-9.00
U_A 8	Episode Day 2, 2013	15	CO (PPM)	0.48	NA	0.48	-9.00
	Episode Day 2, 2013 Episode Day 2, 2013	17	CO (PPM)	1 18	NA	1 18	-9.00
U_A 8	Episode Day 2, 2013	18	CO (PPM)	1.32	NA	1.32	-9.00
U_A 8	Episode Day 2, 2013	19	CO (PPM)	1.34	NA	1.34	-9.00
U_A 8	Episode Day 2, 2013	20	CO (PPM)	1.33	NA	1.33	-9.00
	Episode Day 2, 2013 Episode Day 2, 2013	2⊥ 22	CO (PPM) CO (PPM)	1.31	NA NA	1.31	-9.00
U_A 8	Episode Day 2, 2013	23	CO (PPM)	1.15	NA	1.15	-9.00
U_A 8	Episode Day 3, 2013	0	CO (PPM)	0.82	NA	0.82	-9.00
U_A 8	Episode Day 3, 2013	1	CO (PPM)	0.44	NA	0.44	-9.00
	Episode Day 3, 2013 Episode Day 3, 2013	2 3	CO (PPM) CO (PPM)	0.30	NA NA	0.30	-9.00
UA 8	Episode Day 3, 2013 Episode Day 3, 2013	4	CO (PPM)	0.27	NA	0.27	-9.00
U_A 8	Episode Day 3, 2013	5	CO (PPM)	0.25	NA	0.25	-9.00
U_A 8	Episode Day 3, 2013	6	CO (PPM)	0.26	NA	0.26	-9.00
U_A 8	Episode Day 3, 2013	9	CO (PPM)	0.35	NA NA	0.35	-9.00
U A 8	Episode Day 3, 2013 Episode Day 3, 2013	9	CO (PPM)	0.39	NA	0.43	-9.00
U_A 8	Episode Day 3, 2013	10	CO (PPM)	0.47	NA	0.47	-9.00
U_A 8	Episode Day 3, 2013	11	CO (PPM)	0.50	NA	0.50	-9.00
U_A 8	Episode Day 3, 2013 Episode Day 2, 2013	12	CO (PPM)	0.54	NA	0.54	-9.00
U A 8	Episode Day 3, 2013	14	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 3, 2013	15	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 3, 2013	16	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 3, 2013	17	CO (PPM)	-9.00	NA	-9.00	-9.00
UA 8	Episode Day 3, 2013 Episode Day 3, 2013	10	CO (PPM) CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 3, 2013	20	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 3, 2013	21	CO (PPM)	-9.00	NA	-9.00	-9.00
U_A 8	Episode Day 3, 2013	22	CO (PPM)	-9.00	NA	-9.00	-9.00
PI 8	Episode Day 3, 2013 Episode Day 1, 2013	23 0	CO (PPM) CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 1, 2013	1	CO (PPM)	0.00	NA	0.00	-9.00
P_I 8	Episode Day 1, 2013	2	CO (PPM)	0.00	NA	0.00	-9.00
P_I 8	Episode Day 1, 2013	3	CO (PPM)	0.00	NA	0.00	-9.00
PI 8	Episode Day 1, 2013	5	CO (PPM)	0.00	NA	0.00	-9.00
P_I 8	Episode Day 1, 2013	6	CO (PPM)	0.00	NA	0.00	-9.00
P_I 8	Episode Day 1, 2013	7	CO (PPM)	-9.00	NA	-9.00	-9.00
	Episode Day 1, 2013 Episode Day 1, 2013	8	CO (PPM)	-9.00	NA	-9.00	-9.00
PI 8	Episode Day 1, 2013	10	CO (PPM) CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 1, 2013	11	CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 1, 2013	12	CO (PPM)	-9.00	NA	-9.00	-9.00
	Episode Day 1, 2013 Episode Day 1, 2013	13 14	CO (PPM) CO (PPM)	-9.00	NA NA	-9.00	-9.00
PI 8	Episode Day 1, 2013 Episode Day 1, 2013	15	CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 1, 2013	16	CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 1, 2013	17	CO (PPM)	-9.00	NA	-9.00	-9.00
	Episode Day 1, 2013 Episode Day 1, 2013	18	CO (PPM)	-9.00	NA NA	-9.00	-9.00
PI 8	Episode Day 1, 2013	20	CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 1, 2013	21	CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 1, 2013	22	CO (PPM)	-9.00	NA	-9.00	-9.00
P T 8	Episode Day 1, 2013 Episode Day 2, 2013	23	CO (PPM)	-9.00 _9.00	NA NZ	-9.00 _9.00	-9.00 -9.00
P_I 8	Episode Day 2, 2013	1	CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 2, 2013	2	CO (PPM)	-9.00	NA	-9.00	-9.00
P_I 8	Episode Day 2, 2013	3	CO (PPM)	0.45	NA	0.45	-9.00
	Episode Day 2, 2013 Episode Day 2, 2013	4 5	CO (PPM)	U.43 0 42	NA NA	U.43 0 42	-9.00 _9.00
	Episode Day 2, 2013	6	CO (PPM)	0.41	NA	0.41	-9.00
P_I 8	Episode Day 2, 2013	7	CO (PPM)	0.49	NA	0.49	-9.00
P_I 8	Episode Day 2, 2013	8	CO (PPM)	0.53	NA	0.53	-9.00
	Episode Day 2, 2013 Episode Day 2, 2013	9 10	CO (PPM)	0.54	NA ND	0.54	-9.00
PI 8	Episode Day 2, 2013	11	CO (PPM)	0.55	NA	0.55	-9.00
P_I 8	Episode Day 2, 2013	12	CO (PPM)	0.58	NA	0.58	-9.00

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

		High:	2013 mob=867.	2tpd;1.7;	80;I/I	M 240 w	/newest 4myr	exempt;		
							2013	2013	2013	1988
SITE A	VG	DATE		HR	POL	LUTANT	PREDICTED	PREDICTED	PREDICTED	OBSERVED
P	ERIOD						(UAM)	(CAL3QHC)	(UAM+CAL3)	
ΡI	8	Episode Day	2, 2013	13	CO	(PPM)	0.61	NA	0.61	-9.00
PI	8	Episode Dav	2, 2013	14	CO	(PPM)	0.63	NA	0.63	-9.00
p_I	8	Episode Day	2, 2013	15	CO	(PPM)	0.63	NA	0.63	-9.00
P I	8	Episode Dav	2, 2013	16	CO	(PPM)	0.91	NA	0.91	-9.00
р_т	8	Episode Dav	2, 2013	17	CO	(PPM)	1.47	NA	1.47	-9.00
РТ	8	Episode Day	2. 2013	18	CO	(PPM)	2.17	NA	2.17	-9.00
РТ	8	Episode Day	2. 2013	19	CO	(PPM)	2.51	NA	2.51	-9.00
р_т	8 8	Episode Day	2 2013	20	CO	(DDM)	2 58	NΔ	2 58	-9.00
	8	Episode Day	2 2013	20	CO	(DDM)	2.50	NΔ	2.50	-9.00
	8	Episode Day	2 2013	22	CO	(DDM)	2.59	NΔ	2.55	-9.00
г р т	0	Episode Day	2, 2013	22	co	(PPM)	2.50	NA NA	2.50	-9.00
	0	Episode Day	2, 2013	23	CO	(PPM)	2.40	INA NA	2.40	-9.00
	0	Episode Day	2 2012	1	CO	(PPM)	1 50	INA NA	1 50	-9.00
	0	Episode Day	2, 2013 2, 2012	1	do	(PPM)	1.59	INA NA	1.59	-9.00
P_1	0	Episode Day	2, 2013 2, 2012	2	do	(PPM)	0.07	INA NA	0.07	-9.00
P_1 D_7	0	Episode Day	3, 2013 2, 2012	5	00	(PPM)	0.52	INA	0.52	-9.00
P_1	8	Episode Day	3, 2013	4	00	(PPM)	0.43	NA	0.43	-9.00
P_1	8	Episode Day	3, 2013	5	CO	(PPM)	0.38	NA	0.38	-9.00
P_1	8	Episode Day	3, 2013	6	CO	(PPM)	0.36	NA	0.36	-9.00
P_1	8	Episode Day	3, 2013	7	CO	(PPM)	0.46	NA	0.46	-9.00
P_I	8	Episode Day	3, 2013	8	CO	(PPM)	0.50	NA	0.50	-9.00
P_I	8	Episode Day	3, 2013	9	CO	(PPM)	0.55	NA	0.55	-9.00
P_I	8	Episode Day	3, 2013	10	CO	(PPM)	0.59	NA	0.59	-9.00
P_I	8	Episode Day	3, 2013	11	CO	(PPM)	0.62	NA	0.62	-9.00
P_I	8	Episode Day	3, 2013	12	CO	(PPM)	0.68	NA	0.68	-9.00
P_I	8	Episode Day	3, 2013	13	CO	(PPM)	0.74	NA	0.74	-9.00
P_I	8	Episode Day	3, 2013	14	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	15	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	16	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	17	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	18	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	19	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	20	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	21	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	22	CO	(PPM)	-9.00	NA	-9.00	-9.00
P_I	8	Episode Day	3, 2013	23	CO	(PPM)	-9.00	NA	-9.00	-9.00
		-								
NOTE:										
NA in T	HIS re	port appears	for ALL 8-hr a	avg CAL3Q	HC va	lues				
since 8	-hr ru	nning average	s for CAL3QHC	results	are N	OT				
compute	d; 1-h	r averages fo	r UAM and CAL	3QHC are						
summed	and th	en 8-hour run	ning averages	are comp	uted.					

MET A7, 09-01-99 EI, 01-11-94 PT, 09-09-99 CAL, 09-01-99 UAM High: 2013 mob=867.2tpd;1.7;80;I/M 240 w/newest 4myr exempt;

TIME AND MAGNITUDE OF MAXIMUM CONCENTRATION FOR $\,$ 8-HR AVERAGING PERIOD:

station	max concentration	hour of maximum	hour of maximum
CMP	1988 ODServed) 18.7	(periorm. stats) 43	(HOUL OF day)
WRY	8 9	49	0
CRG	10 4	49	0
NTH	11 3	47	22
TTV	0.0	0	0
TCMP	0.0	0	0
ENC	3.0	47	22
POU	2.1	20	12
CPDS	8 3	45	20
ADV	5 1	27	10
AICV	1.6	27	22
	1.0	±7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AUR	4 3	4.4	19
DLM	1.5	0	19
BUN	0.0	0	0
II 1	0.0	Ő	0
F A	0.0	0	0
H II	0.0	Ő	0
	0.0	0	0
P T	0.0	0	0
1_1	0.0	0	0
station	max concentration	hour of maximum	hour of maximum
	(2013 predicted)	(perform. stats)	(hour of day)
CMP	7.9	48	23
WBY	4.1	50	1
CRG	4.0	48	23
NJH	3.4	47	22
TIV	7.3	47	22
ICMP	9.0	47	22 [No
8.96 ppm]			
ENG	1.6	44	19
BOU	0.8	42	17
GRDS	0.9	42	17
ARV	1.4	43	18
HLD	1.2	44	19
AUR	2.5	47	22
AURS	2.9	45	20
PLM	2.9	47	22
BIN	1.3	48	23
U_I	3.8	46	21
F_A	0.9	45	20
H_U	1.9	45	20
U_A	1.3	44	19
P_1	2.6	46	21
NOTE: The a unique determine based on from "mid if there hour coun	"performance statis hour for the entire when the maximum or the system where HOI night to lam" on the are three calendar of ter increments from	stics hour" refers simulation that is pncentration occurred JR 1 is ALWAYS the p e FIRST day of the days in the simulat: 1 to 72.	to used to ed. It is period simulation; ion; this
The "hour where HOU this hour	of day" refers to t R 0 is the period for counter increments	the actual hour of f rom "midnight to lau from 0 to 23 for ea	the day m;" ach day.
MET A7, 0 High: 201	9-01-99 EI, 01-11-94 3 mob=867.2tpd;1.7;8	4 PT, 09-09-99 CAL, 30;I/M 240 w/newest	09-01-99 UAM 4myr exempt;
TIME AND FOR 1-HR	MAGNITUDE OF MAXIMUN AVERAGING PERIOD:	CONCENTRATION	
station	max concentration (1988 observed)	hour of maximum (perform. stats)	hour of maximum (hour of day)
CMP	50.5	42	1 /
CPC	⊥3.4 16 つ	43 //	10 10
UKG MITU	10.3	44 40	エジ 1 ワ
	22.9	42 0	± /
ICMP	0.0	0	0

ote: With 2 decimal places, this value is

ENG BOU GRDS ARV HLD AUR AURS PLM BTN U_1 F_A H_U U_A P_I	$\begin{array}{c} 9.4 \\ 6.5 \\ 16.6 \\ 11.0 \\ 4.4 \\ 0.0 \\ 11.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	42 44 33 33 42 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 19 8 8 17 0 17 0
station	max concentration	hour of maximum	hour of maximum
CMD	(2015 picatetea) 14 6	(periorm: seaes)	(11041 01 44)
WBY	5 2	48	23
CBG	5.2	43	18
NTH	6.4	44	19
TTV	14 4	43	18
TCMP	15.9	42	17
ENG	3.8	41	16
BOU	1.5	40	15
GRDS	1.6	41	16
ARV	2.9	41	16
HLD	3.2	42	17
AUR	4.1	44	19
AURS	6.2	43	18
PLM	5.9	44	19
BTN	1.7	48	23
U_1	8.6	43	18
F_A	1.8	41	16
H_U	4.4	42	17
U_A	3.3	42	17
P_I	6.0	43	18

NOTE: The "performance statistics hour" refers to a unique hour for the entire simulation that is used to determine when the maximum concentration occurred. It is based on the system where HOUR 1 is ALWAYS the period from "midnight to lam" on the FIRST day of the simulation; if there are three calendar days in the simulation; this hour counter increments from 1 to 72.

The "hour of day" refers to the actual hour of the day where HOUR 0 is the period from "midnight to lam;" this hour counter increments from 0 to 23 for each day.

Appendix H – CAL3QHC Modeling

CAL3OHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221 PAGE 1 JOB: UNIVERSITY & HAMPDEN 2013 SCREENING RUN: UNIVERSITY & HAMPDEN 2013 DATE : 9/14/99 TIME : 9:32:25 The MODE flag has been set to C for calculating CO averages. SITE & METEOROLOGICAL VARIABLES -----VS = .0 CM/S VD = .0 CM/S ZO = 175. CM U = 1.0 M/S CLAS = 4 (D) ATIM = 60. MIN CLAS = 4 (D) ATIM = 60. MINUTES MIXH = 1000. M AMB = .0 PPM LINK VARIABLES _____ * * LINK DESCRIPTION LINK COORDINATES (FT) LENGTH BRG TYPE VPH EF H W V/C OUEUE * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (FT) (FT) (VEH) ------- - - - - - - -1. UNIVERSITY NB APPR * 32.0 -1000.0 32.0 .0 * 1000. 360. AG 1502. 8.0 .0 45.0 2. UNIVERSITY NB Q * 420. 100.0 32.0 -59.0 32.0 -1477.1 * 1418. 180. AG .0 25.0 1.16 72.0 -59.0 .0 19.0 1.74 77.0 9.0 -1574.1 * 1515. 180. AG 573. 100.0 3. UNIVERSITY NB Q LEF* 9.0 4. UNIVERSITY NB DEP. * 32.0 1000.0 * 1000. 360. AG 1986. 8.0 32.0 .0 45.0 5. UNIVERSITY NB FR * .0 * 52.0 -1000.0 52.0 1000. 360. AG 505. 8.0 .0 16.0 6. UNIVERSITY SB APPR * .0 * 1600. 8.0 -24.0 1000.0 -24.0 1000. 180. AG .0 47.0 7. UNIVERSITY SB O * -24.0 74.0 -24.0 2674.3 * 2600. 360. AG 442. 100.0 .0 27.0 1.37 132.1 8. UNIVERSITY SB Q LEFT* .0 74.0 .0 1203.2 * 1129. 360. AG 297. 100.0 .0 11.0 1.86 57.4 .0 9. UNIVERSITY SB DEP. * -24.0 -1000.0 * -24.0 1000. 180. AG 2775. 8.0 .0 47.0 10. UNIVERSITY SB FR * -49.0 .0 * 1000.0 -49.0 240. 8.0 .0 22.0 1000. 180. AG 11. HAMPDEN EB APPR. * -1000.0 -29.5 .0 -29.5 * 1000. 90. AG 3045. 6.8 .0 55.0 12. HAMPDEN EB QUEUE * -29.5 -3417.2 -29.5 * 3357. 270. AG 589. 100.0 -60.0 .0 35.0 1.38 170.5 .0 * -29.5 * 13. HAMPDEN .EB DEP. -29.5 1000.0 1000. 90. AG 3755. 6.8 .0 55.0 .0 -1888.7 1829. 270. AG 14. HAMPDEN EB QUEUE LEF* -60.0 -.3 * 289. 100.0 .0 12.0 2.00 92.9 -53.0 .0
 335.
 90.
 AG
 406.
 6.8

 1000.
 270.
 AG
 3409.
 6.8
 15. HAMPDEN EB FR * -335.0 -53.0 * .0 12.0 .0 43.0 * 16. HAMPDEN WB APPR. * 1000.0 43.0 .0 57.0 43.0 3994.5 43.0 * 17. HAMPDEN WB QUEUE * 60.0
 43.0
 3994.5

 43.0
 -1000.0

 12.0
 1980.0

 96.0
 95.0

 96.0
 104.2
 3934.90. AG1000.270. AG 556. 100.0 .0 37.0 1.42 199.9 * 4254. 6.8 556. 100.0 18. HAMPDEN WB DEP. 43.0 * 270. AG .0 57.0 .0 1920. 19. HAMPDEN WB QUEUE LEF* 60.0 12.0 * 90. AG .0 24.0 1.74 97.5 20. HAMPDEN WB R * 61.0 * 49. 135. AG 168. 6.8 .0 13.0 60.0 .0 13.0 .21 3.2 PAGE 2 21. HAMPDEN WB QUEUE R * 51.8 * 185. 100.0 60.0 62. 135. AG ADDITIONAL QUEUE LINK PARAMETERS LINK DESCRIPTION * CYCLE CLEARANCE APPROACH SATURATION IDLE SIGNAL ARRIVAL RED LOST TIME LENGTH TIME FLOW RATE EM FAC TYPE RATE VOL * (SEC) (SEC) (SEC) (VPH) (VPH) (gm/hr) * _____ 2. UNIVERSITY NB Q * 120 77 2000 121.97 2 2.0 1502 3 3. UNIVERSITY NB Q LEF* 120 105 2.0 605 1900 121.97 2 3 7. UNIVERSITY SB \tilde{Q} * 120 81 1600 2000 121.97 2 3 2.0 8. UNIVERSITY SB Q LEFT* 121.97 2 120 109 2.0 205 1900 3 12. HAMPDEN EB QUEUE * 121.97 120 72 2.0 3045 2000 1 3 14. HAMPDEN EB QUEUE LEF* 120 106 2.0 1900 121.97 2 3 316 17. HAMPDEN WB QUEUE * 120 2.0 3409 2000 121.97 1 3 68 19. HAMPDEN WB OUEUE LEF* 120 102 2.0 770 1900 121.97 2 3 21. HAMPDEN WB QUEUE R * 120 68 2.0 168 2000 121.97 1 3 RECEPTOR LOCATIONS

CDPHE/APCD/Technical Services Program

*			COORDINATE	S	(FT)		*					
	RE	CEPTO	R		*	Х		Y		Z		*
1.	REC 1	(SE	CORNER)	*		60.0		-59.0		6.0	*	
2.	REC 2	(SW	CORNER)	*		-48.0		-60.0		6.0	*	
3.	REC 3	(NW	CORNER)	*		-60.0		72.0		6.0	*	
4.	REC 4	(NE	CORNER)	*		99.0		74.0		6.0	*	
5.	REC 5	(E M	ID-MAIN)	*		60.0	-	159.0		6.0	*	
б.	REC 6	(W M	ID-MAIN)	*		-48.0	- 1	159.0		6.0	*	
7.	REC 7	(N M	ID-LOCAL)	*		-170.0		74.0		6.0	*	
8.	REC 8	(S M	ID-LOCAL)	*		-170.0		-60.0		6.0	*	
9.	REC9			*		54.0		172.0		6.0	*	
10.	REC10			*		-60.0		172.0		6.0	*	
11.	REC11			*		154.0		74.0		6.0	*	
12.	REC12			*		170.0		-60.0		6.0	*	
13.	REC13			*		99.0		84.0		6.0	*	
14.	REC14			*		109.0		74.0		6.0	*	
15.	REC15			*		109.0		84.0		6.0	*	
16.	REC16			*		89.0		84.0		6.0	*	
M	IODEL F	RESULT	S REMARKS	:	In s	search of	the	angle	corres	pond	ing t	0
				th	le ma	ximum con	cent	ration	, only	the	firs	t
						angle,	of t	he ang	les wi	th s	ame n	naximum
				co	ncen	trations,	is	indica	ted as	maxi	.mum.	

JOB: U WIND A WIND	NI\ NGI *	VERSIT LE RANO CONCEI	Y & HAI GE: NTRATIO	MPDEN 5360 ON	2013 :	SCREEN	ING			RUN:	UNIVE	RSITY &	à HAMP	DEN 2	013		
ANGLE (DEGR	*)*	REC1	(PPM) REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16
5.	*	3.5	3.9	2.6	.4	2.6	3.0	.8	3.9	1.4	2.5	.1	2.7	.4	.4	.4	.6
10.	*	2.9	3.7	2.9	.3	1.9	3.1	.9	3.9	.8	2.8	.1	2.6	.3	.2	.2	.3
15.	*	2.7	3.5	2.9	.0	1.8	3.1	1.0	4.1	.5	2.9	.0	2.5	.0	.0	.0	.0
20.	*	2.7	3.0	2.8	.0	1.4	2.8	1.1	4.3	.2	2.8	.0	2.5	.0	.0	.0	.0
25.	*	2.6	2.9	2.8	.0	1.4	3.0	1.1	4.2	.1	2.8	.0	2.5	.0	.0	.0	.0
30.	*	2.6	2.7	2.8	.0	1.5	3.0	1.1	4.3	.1	2.7	.0	2.6	.0	.0	.0	.0
35.	*	2.8	2.9	2.5	.0	1.5	3.3	1.1	4.3	.1	2.4	.0	2.7	.0	.0	.0	.0
40.	*	3.0	2.9	2.5	.0	1.5	3.6	1.2	4.3	.1	2.4	.0	2.9	.0	.0	.0	.0
45.	*	3.0	3.2	2.4	.1	1.6	3.6	1.2	4.2	.1	2.3	.1	3.0	.0	.1	.0	.0
50.	*	3.1	3.2	2.3	.1	1.6	4.0	1.0	4.0	.1	2.3	.1	3.0	.0	.1	.0	.0
55.	*	3.3	3.3	2.2	.1	1.6	4.0	.9	4.2	.0	2.1	.1	3.2	.0	.1	.0	.0
60.	*	3.4	3.7	2.2	.1	1.8	4.2	.9	4.5	.0	2.1	.1	3.4	.0	.1	.0	.0
65.	*	3.6	4.2	2.1	.2	1.8	4.2	.9	4.7	.0	2.0	.2	3.4	.1	.2	.1	.1
70.	*	3.7	4.6	2.2	.4	1.8	4.0	1.2	4.7	.0	2.0	.4	3.7	.2	.4	.2	.2
75.	*	3.8	5.0	2.8	.9	1.7	4.0	1.5	5.3	.1	2.1	.9	3.8	.5	.9	.5	.5
80.	*	3.8	5.0	3.5	1.8	1.5	3.9	2.1	4.9	.3	2.3	1.7	3.7	1.3	1.8	1.3	1.3
85.	*	3.5	4.8	4.1	2.9	1.2	3.6	2.8	4.6	.7	2.7	2.9	3.2	2.1	2.9	2.1	2.1
90.	*	2.8	4.4	5.0	4.0	.8	3.3	3.5	3.8	1.1	3.1	4.0	2.6	3.1	4.0	3.1	3.1
95.	*	1.9	3.9	5.2	4.8	.4	2.9	3.8	3.1	1.5	3.6	4.8	1.9	3.9	4.8	3.8	3.9
100.	*	1.2	3.1	5.3	5.3	.2	2.5	3.8	2.3	1.9	3.9	5.3	1.0	4.3	5.3	4.3	4.3
105.	*	.6	2.6	4.8	5.3	.0	2.2	3.4	1.7	2.0	3.9	5.3	.5	4.4	5.3	4.4	4.4
110.	*	.2	2.4	4.0	5.1	.0	2.2	3.2	1.2	1.9	4.0	5.0	.2	4.3	5.1	4.3	4.3
115.	*	.1	2.4	3.5	4.8	.0	2.4	2.9	1.1	2.1	4.2	4.8	.1	4.1	4.8	4.1	4.1
120.	Ĵ	.1	2.4	3.1	4.5	.0	2.4	2.8	1.2	2.1	4.1	4.5	.1	3.9	4.5	3.9	3.9
120	÷	.1	2.5	2.7	4.2	.0	2.5	2.8	1.2	1.9	3.9	4.2	• 1	3./	4.2	3.7	3.8
1250.	*	.1	2.5	2.8	4.0	.0	2.5	2.8	1.1	1.9	3.1	4.0	• 1	3.5	4.0	3.5	3.0
140	*	• 1	2.0	2.5	2 0	.0	2.0	3.⊥ 2.2	1 2	1.9	2.0	4.0	. 1	2.5	20	2.5	3.7
140.	*	. 1	2.0	2.0	2.2	.0	2.0	2 1	1 2	1 0	2.7	2.0	.0	2.2	2.0	2.2	3.5
150	*	.0	2.0	2.7	20	.0	2.0	2 5	1 2	1 0	2.2	2.0	.0	2.4	2.6	2.2	3.0
155	*	.0	2.1	2.9	2 0	.0	2.7	3.5	1 3	1 8	2.2	3.0	.0	2.1	3.0	3.2	3.0
160	*	. 2	3.5	3.5	3.0	. 2	3.5	3.1	1 3	1 9	3.5	3.5	.0	3.1	3.5	3.0	3.5
165	*	. 1	3.6	4 1	4 0	. 1	3.5	3 4	1 3	23	3.6	3 4	.0	3.5	3 6	3.0	3.9
170	*	1.5	3.4	4.0	4.4	1.5	3.4	3.2	1.0	2.4	3.2	3.7	.2	3.9	3.9	3.5	4.2
175.	*	2.1	3.1	4.0	4.9	2.1	3.0	3.0	6	3.2	3.2	3.9	.2	4.3	4.4	4.0	4.8
180.	*	3.1	2.5	3.7	5.4	3.1	2.4	2.6	.4	3.6	2.9	4.3	.5	4.8	4.8	4.3	5.2
185.	*	3.9	1.9	3.3	5.8	3.8	1.7	2.5	. 2	3.6	2.3	4.6	. 9	5.2	5.5	5.0	5.6
190.	*	4.2	1.1	2.6	6.2	4.2	1.0	2.1	.0	3.4	1.8	4.9	1.1	5.5	5.7	5.2	5.6
195.	*	4.2	.6	2.3	6.0	4.2	.6	2.1	.0	3.0	1.5	5.1	1.4	5.3	5.8	5.4	5.5
200.	*	4.2	.4	2.2	5.8	4.1	.4	2.2	.0	2.5	1.3	5.0	1.5	5.0	5.5	5.1	5.1
205.	*	3.8	.2	2.1	5.4	3.8	.2	2.2	.0	2.6	1.3	5.2	1.5	4.7	5.4	4.7	4.6
210.	*	3.7	.1	2.3	5.0	3.7	.1	2.3	.0	2.6	1.3	5.0	1.5	4.4	5.1	4.4	4.1
215.	*	3.5	.1	2.3	4.7	3.5	.1	2.3	.0	2.6	1.3	4.8	1.4	3.9	4.8	4.2	3.6
220.	*	3.5	.1	2.5	4.3	3.4	.1	2.4	.0	2.6	1.3	4.6	1.4	3.6	4.6	3.8	3.5
225.	*	3.3	.1	2.5	4.2	3.2	.1	2.5	.0	3.0	1.3	4.6	1.4	3.5	4.0	3.8	3.2
230.	*	3.2	.1	2.7	4.0	3.2	.1	2.7	.0	3.0	1.3	4.4	1.3	3.5	4.2	3.5	3.2
235.	*	3.2	.2	2.9	4.4	3.1	.1	2.8	.1	3.1	1.4	4.6	1.3	3.3	4.2	3.5	3.2
240.	*	3.1	.1	2.9	4.1	3.1	.0	2.9	.1	3.1	1.4	4.6	1.3	3.4	4.1	3.3	3.4
245.	*	3.0	.2	3.1	4.2	2.9	.0	3.1	.2	3.2	1.5	4.6	1.2	3.5	4.2	3.5	3.5
250.	*	2.9	.4	3.3	4.4	2.8	.0	3.3	.4	3.3	1.5	4.7	1.4	3.7	4.5	3.7	4.0
255.	*	3.2	1.0	3.5	4.7	2.9	.1	3.4	1.0	3.3	1.6	4.6	1.7	3.9	4.6	3.9	4.1
260.	*	3.9	1.7	3.5	4.6	3.1	.2	3.2	1.7	3.0	1.2	4.5	2.2	4.0	4.5	3.8	4.2
265.	*	4.6	2.6	3.0	4.4	3.5	.6	2.9	2.5	2.8	1.0	4.1	2.9	3.6	4.3	3.5	3.9

270.	*	5.3	3.7	2.5	3.8	3.9	.9	2.3	3.5	2.4	.7	3.6	3.3	3.3	3.7	3.3	3.5
275.	*	5.2	4.4 4.7	1.0	2.6	4.2	$1.3 \\ 1.5$.9	4.4	1.8	.4	2.0	3.4	2.7	2.5	2.0	2.3
285.	*	4.3	4.8	.6	2.1	4.6	1.7	.5	4.9	1.7	.0	1.5	3.3	1.7	1.9	1.5	2.0
290.	*	3.7	4.5	.3	1.9	4.6	1.8	.2	4.6	1.7	.0	1.1	3.0	1.6	1.6	1.3	1.9
295.	*	3.3	4.2	.2	2.0	4.6	1.7	.2	4.4	1.7	.0	1.1	2.8	1.5	1.5	1.3	1.7
300.	*	3.0	4.1	.1	1.9	4.5	1.7	.1	4.1	1.7	.0	1.0	2.8	1.5	1.6	1.3	1.6
305.	*	2.6	3.7	.1	1.8	4.5	1.7	.1	3.8	1.9	.0	1.0	2.8	1.4	1.6	1.4	1.6
310.	*	2.6	3.5	.1	1.7	4.4	1.6	.1	3.7	1.9	.0	1.0	2.9	1.4	1.5	1.3	1.5
315.	*	2.5	3.3	.1	1.6	4.3	1.6	.1	3.6	1.9	.0	1.0	3.4	1.3	1.5	1.3	1.5
320.	*	2.6	3.0	.1	1.4	4.0	1.6	.1	3.4	2.0	.0	.9	3.3	1.3	1.3	1.3	1.6
325.	*	2.6	2.9	.1	1.5	4.1	1.6	.0	3.3	2.2	.0	.9	3.5	1.4	1.3	1.3	1.5
330.	*	2.6	2.6	.1	1.6	4.1	1.5	.0	3.2	2.3	.0	1.0	3.6	1.5	1.3	1.3	1.6
335.	*	2.8	2.5	.0	1.6	3.8	1.5	.0	3.1	2.4	.0	1.1	3.5	1.6	1.4	1.4	1.6
340.	*	3.5	2.5	.1	1.6	3.7	1.6	.0	3.1	2.6	.1	1.1	3.6	1.6	1.4	1.4	1.7
345.	*	3.7	2.6	.6	1.6	4.0	2.0	.0	3.1	2.6	.5	1.0	3.5	1.6	1.4	1.4	1.7
350.	*	3.7	2.9	.9	1.3	3.7	2.2	.1	3.2	2.6	.9	1.0	3.4	1.3	1.3	1.3	1.7
355.	*	4.0	3.4	1.6	1.2	3.5	2.5	.2	3.3	2.3	1.5	.7	3.2	1.2	1.0	1.0	1.3
360.	*	3.8	3.9	2.1	.9	2.9	2.8	.5	3.6	1.8	2.1	.5	3.0	.9	.9	.9	1.0
MAX	*	5.3	5.0	5.3	6.2	4.6	4.2	3.8	5.3	3.6	4.2	5.3	3.8	5.5	5.8	5.4	5.6
DEGR.	*	270	75	100	190	285	60	95	75	180	115	100	75	190	195	195	185

THE HIGHEST CONCENTRATION OF

6.20 PPM OCCURRED AT RECEPTOR REC4 .

CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221 PAGE												
OB: FOOTHILLS & ARAPAHOE SCREENING 2013 DATE : 9/14/99 TIME : 9:11: 6 TE & METEOPOLOGICAL VARIABLES												
VS = .0 CM/S VD = .0 U = 1.0 M/S CLA	CM/S Z(AS = 4 (D)	0 = 175. CM ATIM = 60. M	INUTES	MIXH = 100	00. M AN	MB = .	0 PPM					
LINK VARIABLES												
LINK DESCRIPTION * 1 FOOTHILLS NB APPR * 36	LINK (X1 Y1	COORDINATES (FT) 1 X2 36 0	* Y2 * 0 * 1000	LENGTH (FT) 360 AG	BRG TYPE (DEG) 3 1986	VPH	EF (G/MI) (0 44 (H W (FT) (FT)	V/C	C QUEUE (VEH)		
2. FOOTHILLS NB Q * 3. FOOTHILLS NB Q LEF * 4. FOOTHILLS NB DEP. * 5. FOOTHILLS NB R *	36.0 12.0 36.0 54.0 -7	-72.0 36.0 -72.0 12.0 .0 -464.0 747.0 54.0	-4065.2 * -155.0 * 1000.0 * .0 *	3993. 83. 1118. 747.	180. AG 180. AG 333. AG 360. AG	426. 581. 3026. 266.	100.0 100.0 5.6 5.6	.0 24.0 .0 24.0 .0 44.0 .0 12.0	1.53 .79	202.9 4.2		
6. FOOTHILLS NB Q R * 7. FOOTHILLS SB APPR *	54.0 - -536.0 10	-72.0 54.0 000.0 -36.0	-184.0 *	112. 1118.	180. AG 153. AG	213. 1968.	100.0 5.6	.0 12.0 .0 44.0	.41	5.7		
8. FOOTHILLS SB Q * 9. FOOTHILLS SB Q LEFT * 10. FOOTHILLS SB DEP. * 11. FOOTHILLS SB R *	-36.0 -12.0 -36.0 -202.5 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4104.5 * 937.2 * -1000.0 * .0 *	4581. 967. 1000. 332.	332. AG 333. AG 180. AG 153. AG	448. 603. 3338. 246.	100.0 100.0 5.6 5.6	.0 24.0 .0 24.0 .0 44.0 .0 12.0	1.69	49.1		
12. FOOTHILLS SB Q R * 13. ARAPAHOE EB APPR. *	-54.0 -1000.0 -	$\begin{array}{cccc} 72.0 & -102.7 \\ -42.0 & .0 \\ -42.0 & -221.2 \end{array}$	169.5 * -42.0 * -42.0 *	109. 1000.	333. AG 90. AG	224. 1306.	100.0 6.6	$.0\ 12.0$ $.0\ 56.0$.42	5.5		
15. ARAPANOE EB QUEUE * 15. ARAPAHOE EB DEP. * 16. ARAPAHOE EB QUEUE LE*	-60.0 - -60.0 -	-42.0 1000.0 -12.0 -1289.1	-42.0 * -12.2 *	1000. 1229.	90. AG 270. AG 270. AG	1953. 577.	6.6 100.0	.0 56.0 .0 24.0	1.65	62.4		
17. ARAPAHOE EB R * 18. ARAPAHOE EB QUEUE R*	-110.0 -	-66.0 .0 -66.0 -375.3	-66.0 * -66.0 *	110. 315.	90. AG 270. AG	696. 196.	6.6 100.0	.0 12.0 .0 12.0	.95	16.0		
19. ARAPAHOE WB APPR. * 20. ARAPAHOE WB QUEUE *	1000.0 72.0	42.0 .0 42.0 221.1	42.0 * 42.0 *	1000. 149.	270. AG 90. AG	1205. 556.	6.6 100.0	.0 56.0	.50	7.6		
21. ARAPAHOE WB DEP. * 22. ARAPAHOE WB QUEUE LE* 23. ARAPAHOE WB R *	.0 72.0 156.0	42.0 -1000.0 12.0 1481.4 66.0 .0	42.0 * 12.3 * 66.0 *	1000. 1409. 156.	270. AG 90. AG 270. AG	556. 520.	6.6 100.0 6.6	.0 56.0 .0 24.0 .0 12.0	1.52	71.6		
24. ARAPAHOE WB QUEUE R*	60.0	66.0 253.4	66.0 *	193.	90. AG	185.	100.0	.0 12.0	.65	9.8		
ADDITIONAL QUEUE LINK PARAMETERS LINK DESCRIPTION * * *	CYCLE RE LENGTH TI (SEC) (S	D CLEARANCE IME LOST TIME SEC) (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE					
2. FOOTHILLS NB Q * 3. FOOTHILLS NB Q LEF * 6. FOOTHILLS NB Q R *	120 120 1 120 1	77 2.0 105 2.0 77 2.0	1986 275 266	2000 1900 2000	123.80 123.80 123.80	1 2 1	3 3 3					
8. FOOTHILLS SB Q * 9. FOOTHILLS SB Q LEFT * 12. FOOTHILLS SB Q R * 14 APAPAHOF FB OUTHIE	120 120 1 120 120	81 2.0 109 2.0 81 2.0 72 2.0	1968 380 246 1306	2000 1900 2000 2000	123.80 123.80 123.80 121.83	1 2 1 2	3 3 3 3					
16. ARAPAHOE EB QUEUE LE* 18. ARAPAHOE EB QUEUE LE* 20. ARAPAHOE WB QUEUE * 22. ARAPAHOE WB QUEUE LE*	120 1 120 1 120 1 120 1	106 2.0 72 2.0 68 2.0 102 2.0	520 696 1205	1900 2000 2000	121.83 121.83 121.83 121.83	2 2 2 2	3 3 3					
22. ARAPANOE WE QUEUE LE* 24. ARAPAHOE WE QUEUE R*	120	68 2.0	520	2000	121.83	∠ 2	3					
RECEPTOR LOCATIONS *	COORDI	NATES (FT)	*									

	RECEP	FOR		*	Х		Y		Z	*									
1	. REC 4	(NE CC	RNER)	*		24.5		72.5	(5.0 *									
2	. REC 1	(SE CC	RNER)	*		59.0	- [70.0	6	5.0 *									
3 4	REC Z	(SW CC	RNER)	*	_	97 0		72.0	e A	5.0 * 5.0 *									
5	. REC 5	(E MID)-MAIN)	*		58.0	-17	70.0	é	5.0 *									
6	. REC 6	(W MID	-MAIN)	*	-	25.5	17	70.0	e	5.0 *									
7	. REC 7	(N MID	-LOCAL	」) *	-1	.97.0	5	70.0	6	5.0 *									
8	. REC 8	(S MID	-LOCAL	」) *	-1	58.0	-1	72.0	6	5.0 *									
10	. REC 9			*	- 1	58.5	-17	72.0	6	5.0 *									
11	RECIU RECIU			*	1	24.5		72.0	6	5.0 *									
12	. REC12			*	-1	47.0	17	70.0	é	5.0 *									
13	. REC13			*		59.0	-16	50.0	6	5.0 *									
14	. REC14			*		59.0	-18	30.0	6	5.0 *									
15	. REC15			*		68.0	-16	50.0	6	5.0 *									
17	. RECIS			*		68.0	-1		t	5.0 1 5.0 1									
18	RECIA			*		59 0	-10	50.0	e e e e e e e e e e e e e e e e e e e	5.0 *									
19	. REC19			*		68.0	-15	50.0	6	5.0 *									
ЭЕ З	0B: F00'	PHILLS	S ARAD	лиог о	CREENT	NG 20	13			RIIN:	FOOTH	A P.I.I		i∩∓ 20	113				
0	02.100		u mun	11101 6		.110 20.	1.5			1011	100111			101. 20	110				
IGLE *	()	PPM)																	
DEGR)	* REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19
	*																		
5.	* .1	1.6	3.7	3.1	3.0	.1	1.5	4.9	2.6	2.0	.0	2.9	2.8	2.9	1.6	1.7	1.7	2.7	1.6
15	^ .⊥ * 1	1.7	3.3	3.1	2.6	.1	1.5	4.9	2.0	2.0 1 9	.0	2.8	2.4	2.4	1.3 1.3	1.4	1.4	∠.3 2.2	1.2
0.	* .1	1.8	2.2	2.9	2.2	.1	1.3	4.9	1.9	1.9	.0	2.6	1.8	1.7	1.2	1.3	1.1	1.8	1.2
25.	* .0	1.8	1.9	2.9	1.8	.1	1.3	4.7	2.1	1.9	.0	2.5	1.7	1.6	1.2	1.1	1.1	1.7	1.3
0.	* .0	1.9	1.9	2.9	1.6	.0	1.2	5.0	2.2	1.8	.0	2.5	1.5	1.4	1.2	1.1	1.1	1.6	1.3
5.	* .0	2.0	2.1	2.8	1.5	.0	1.2	4.7	2.4	1.9	.0	2.4	1.4	1.2	1.2	1.1	1.0	1.4	1.2
10. 15	* .0	2.0	2.0	2.6	1.3 1 1	.0	1.3	4.7	2.7	1.8	.0	2.2	1.3	1.2	1.1	1.0	1.0	1.4	1.1
±5. 50	* .0	2.1	2.2	2.4	1 1	.0	13	4.5	3.⊥ 3.2	1.0	.1	2.2	1.1 1 0	1 0	.9	.9	.9	1 0	1.0
55.	* .0	2.0	2.4	2.4	.9	.0	1.3	4.9	3.0	1.6	.1	2.2	1.0	.9	.8	.8	.8	1.1	1.0
60.	* .0	2.0	2.5	2.6	.9	.0	1.4	4.8	3.0	1.6	.1	2.4	1.0	.9	.9	.8	.8	1.0	.9
65.	* .1	1.8	2.8	2.7	.9	.0	1.5	4.8	3.0	1.6	.2	2.4	.9	. 8	.9	.8	.8	.9	.9
70.	* .4	1.8	2.9	2.7	1.0	.0	1.5	4.8	2.9	1.7	.4	2.3	.9	.8	.9	.9	.8	.9	.9
/5.	* .7	1.9	3.⊥ 2.2	2.7	.9	.0	1.4	4.7	2.7	1.8	.8	2.3	.8	.8	.8	.8	.8	.9	.9
85	"⊥.∠ * 18	1.7	3.4 3.1	3 1	.5	.1	2 2	4.4	2.4	1.7	2 0	2.4 2 4	. /	.5	. /	.5	.5	.0	.0
90.	* 2.7	1.3	3.0	3.5	.3	.3	2.3	3.6	1.9	1.1	2.7	2.9	.3	.3	.3	.3	.3	.3	.3
95.	* 3.2	.9	2.7	3.5	.1	.5	2.3	3.0	1.6	.7	3.4	3.3	.1	.1	.1	.1	.1	.2	.2
00.	* 3.6	.5	2.5	3.3	.0	.9	2.2	2.3	1.4	.5	4.0	3.7	.0	.0	.0	.0	.0	.1	.1
)5.	* 3.7	.3	2.4	3.1	.1	1.1	2.1	1.9	1.3	.3	4.4	3.8	.0	.0	.0	.0	.0	.0	.0
10.	* 3.6	.1	2.4	2.5	.1	1.2	2.1	1.5	1.3	.1	4.5	3.9	.0	.0	.0	.0	.0	.0	.0
15. 20	^ 3.3 * ^ ^	.⊥	2.4	2.1	.1	1.3	1.9	1.2	1.3	.1	4.6	3.9	.0	.0	.0	.0	.0	.0	.0
∠∪. 25	× 2.9	•⊥ 1	∠.3 2 1	1.9 1.8	.⊥ 1	1.4 1.4	⊥.9 2 3	1.1 8	⊥.3 1 २	.1	4.4 4 5	3.8 3.2	•⊥ 1	.0	.0	.0	.0	.1	.0
30.	* 2.3	.1	2.2	1.7	.1	1.4	2.4	.0	1.4	.0	4.3	2.8	.1	.0	.0	.0	.0	.1	.0
35.	* 1.8	.1	2.2	2.0	.2	1.3	2.6	.9	1.5	.0	4.1	2.6	.1	.0	. 0	.0	. 0	.1	. 0
L40.	* 1.6	.1	2.2	2.2	.2	1.3	2.6	.9	1.6	.0	4.0	2.3	.1	.0	.0	.0	.0	.1	.0
45.	* 1.4	.1	2.0	2.5	.2	1.4	2.8	.8	1.6	.0	3.8	2.1	.2	.0	.0	.0	.0	.2	.0
.50.	* 1.4	. 3	1.9	2.6	. 4	1.6	2.7	. 8	1.7	. 0	3.7	1.9	. 3	. 1	. 0	. 0	. 0	. 3	. 0

.0

155.	*	1.6	.5	2.0	2.7	.5	1.9	2.7	.8	1.8	.0	3.6	2.1	.5	.2	.0	.0	.0	.5	.0
160.	*	1.8	.8	2.0	2.8	.8	2.4	2.6	.8	1.9	.0	3.5	2.2	.6	.3	.1	.1	.1	.7	.1
165.	*	2.1	1.4	2.0	2.8	1.3	3.0	2.6	.9	2.0	.1	3.7	2.2	1.1	.8	.4	.4	.4	1.2	.4
170.	*	2.6	2.1	2.0	2.9	1.8	3.3	2.6	.7	2.0	.2	3.8	2.1	1.8	1.3	.8	.8	.8	1.9	.8
175.	*	3.0	2.9	1.9	3.0	2.6	4.1	2.4	.6	1.9	.5	4.1	1.9	2.5	1.9	1.2	1.2	1.2	2.6	1.4
180.	*	3.1	3.7	1.6	2.7	3.2	4.1	2.3	.4	1.5	.8	4.4	1.6	3.1	2.5	1.8	1.7	1.6	3.2	1.9
185.	*	2.9	4.2	1.2	2.4	3.5	4.3	2.0	.3	1.0	.9	4.7	1.4	3.6	2.9	2.3	2.2	2.2	3.7	2.4
190.	*	2.6	4.6	.7	2.1	3.9	4.4	1.8	.1	.7	1.1	4.9	1.2	3.8	3.1	2.4	2.3	2.3	4.0	2.5
195.	*	2.4	4.5	.5	1.9	3.9	4.3	1.6	.0	.4	1.2	4.8	1.1	3.9	3.1	2.6	2.5	2.4	4.0	2.7
200.	*	2.2	4.5	.2	2.0	3.7	4.3	1.6	.0	.2	1.2	4.8	1.1	3.8	3.1	2.6	2.4	2.3	3.9	2.7
205.	*	2.1	4.4	.1	2.0	3.7	4.4	1.5	.0	.1	1.2	4.7	1.0	3.6	2.9	2.6	2.4	2.3	3.7	2.8
210.	*	1.9	4.3	.1	2.1	3.5	4.2	1.4	.0	.1	1.2	4.6	.9	3.5	2.8	2.5	2.3	2.1	3.6	2.6
215.	*	2.1	4.3	.1	2.2	3.4	4.3	1.5	.0	.1	1.3	4.3	.9	3.4	2.8	2.5	2.3	2.0	3.5	2.6
220.	*	2.1	4.1	.1	2.1	3.2	4.2	1.4	.1	.1	1.3	4.2	.9	3.2	2.6	2.5	2.3	2.0	3.2	2.6
225.	*	2.3	3.9	.1	2.0	3.0	4.1	1.4	.1	.1	1.4	4.3	.9	3.1	2.6	2.3	2.2	1.9	3.1	2.4
230.	*	2.5	3.7	.2	1.9	2.9	4.1	1.5	.1	.1	1.5	4.3	.8	3.0	2.5	2.3	2.1	1.8	3.0	2.3
235.	*	2.9	3.6	.1	1.9	2.9	4.0	1.6	.1	.0	1.6	4.2	.8	3.0	2.6	2.2	2.0	1.7	3.0	2.2
240.	*	3.0	3.5	.2	1.8	2.9	4.1	1.6	.2	.0	1.5	3.9	.8	2.8	2.5	2.2	2.1	1.7	2.9	2.3
245.	*	3.1	3.3	.4	1.8	2.7	4.0	1.6	.3	.0	1.7	4.2	.9	2.7	2.5	2.2	2.1	1.8	2.8	2.3
250.	*	3.2	3.3	.7	1.9	2.6	4.0	1.7	.5	.0	1.8	4.2	.8	2.8	2.5	2.2	2.0	1.8	2.9	2.3
255.	*	3.2	3.3	1.1	1.7	2.6	3.8	1.7	.8	.0	2.0	4.1	.8	2.8	2.5	2.3	2.2	1.9	3.0	2.5
260.	*	3.3	3.4	1.7	1.6	2.7	3.5	1.6	1.4	.0	2.2	3.9	.5	3.0	2.6	2.5	2.3	2.0	3.2	2.7
265.	*	3.4	4.0	2.7	1.5	2.8	3.5	1.4	2.0	.1	2.4	3.6	.4	3.2	2.8	2.6	2.4	2.1	3.6	2.9
270.	*	3.1	4.2	3.6	1.2	3.0	3.3	1.1	2.8	.2	3.0	3.2	.3	3.7	2.9	3.1	2.7	2.4	4.1	3.4
275.	*	3.2	4.3	4.2	.7	3.5	3.3	.7	3.3	.5	3.1	2.7	.1	4.0	3.4	3.4	3.2	2.8	4.5	3.8
280.	*	3.1	4.2	5.0	.5	3.9	3.2	.5	3.9	.8	2.9	2.2	.0	4.3	3.8	3.8	3.5	3.2	4.7	4.1
285.	*	3.1	3.7	5.3	.3	4.2	3.2	.3	4.3	.9	2.5	2.2	.0	4.8	4.0	4.2	3.8	3.6	5.1	4.5
290.	*	3.3	2.9	5.3	.1	4.5	3.4	.1	4.3	1.0	2.2	1.8	.0	5.0	4.2	4.5	4.1	3.8	5.3	4.7
295.	*	3.5	2.7	5.1	.1	4.9	3.5	.1	4.4	1.2	2.0	1.9	.0	5.1	4.5	4.4	4.3	4.1	5.4	4.7
300.	*	3.7	2.3	5.0	.1	5.2	3.7	.1	4.5	1.2	1.6	1.8	.0	5.3	4.9	4.5	4.4	4.1	5.3	4.5
305.	*	3.9	2.1	4.7	.1	5.1	3.8	.0	4.3	1.3	1.8	1.8	.1	5.3	5.0	4.4	4.2	4.1	5.3	4.2
310.	*	4.2	2.4	4.6	.1	5.3	4.0	.0	4.3	1.5	2.4	1.9	.1	5.3	5.1	4.4	4.5	4.4	5.4	4.4
315.	*	4.4	2.5	4.5	.2	5.5	4.3	.0	4.2	1.5	2.8	1.9	.2	5.6	5.5	4.7	4.7	4.6	5.5	4.3
320.	*	4.5	3.2	4.6	.6	5.9	4.3	.1	4.2	1.7	3.1	1.7	.6	5.6	5.9	4.8	4.7	4.9	5.5	4.8
325.	*	4.2	3.5	4.5	1.2	6.3	4.3	.2	4.2	1.9	3.2	1.5	1.2	6.3	6.0	5.2	5.1	5.1	6.2	5.2
330.	*	3.7	3.9	4.9	1.9	6.7	3.7	.5	4.3	2.3	3.3	1.2	1.9	6.5	6.6	5.1	5.3	5.4	6.3	5.0
335.	*	2.9	3.9	5.0	2.5	6.6	3.0	.9	4.3	2.6	2.9	.7	2.6	6.4	6.7	4.9	5.1	5.3	6.1	4.7
340.	*	2.1	3.2	5.3	3.0	6.2	2.1	1.1	4.6	3.0	2.5	.4	2.9	5.9	6.2	4.3	4.4	4.6	5.6	4.0
345.	*	1.1	2.6	5.3	3.2	5.4	1.2	1.3	4.7	2.9	2.2	.2	3.2	4.9	5.3	3.4	3.5	3.7	4.8	3.4
350.	*	.7	2.1	5.0	3.4	4.8	.7	1.5	4.9	3.2	2.2	.0	3.1	4.6	4.8	2.9	3.0	3.0	4.5	2.7
355.	*	.3	1.7	4.8	3.3	4.0	.3	1.5	5.1	3.0	1.9	.0	3.2	3.7	3.9	2.1	2.2	2.3	3.5	2.0
360.	*	.1	1.6	4.3	3.2	3.7	.1	1.5	5.1	2.7	1.9	.0	2.9	3.3	3.4	1.8	1.9	1.9	3.2	1.6
MAX	*	4.5	4.6	5.3	3.5	6.7	4.4	2.8	5.1	3.2	3.3	4.9	3.9	6.5	6.7	5.2	5.3	5.4	6.3	5.2
DEGR.	*	320	190	285	90	330	190	145	355	50	330	190	110	330	335	325	330	330	330	325

THE HIGHEST CONCENTRATION OF 6.70 PPM OCCURRED AT RECEPTOR REC5 .

CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221

PAGE 1

JOB: PARKER & ILLIF RUN: PARKER & ILLIF 2013 SCREENING DATE : 9/14/99 TIME : 9:22:45 The MODE flag has been set to C for calculating CO averages. SITE & METEOROLOGICAL VARIABLES

VS = .0 CM/S U = 1.0 M/S	VD CLA	= .0 C .S = 4	M/S (D) AT	ZO = 175. IM = 60.	CM MINUTES	I	MIXH = 10	000. M AI	MB =	.0 PPM	
LINK VARIABLES											
LINK DESCRIPTION	*	L	INK COORDI	NATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W V/C QUEUE
	* *_	X1 	¥1	X2	¥2	* _*_	(FT)	(DEG)		(G/MI)	(FT) (FT) (VEH)
1. PARKER NB APPR	*	1024.0	-1000.0	24.0	.0	*	1414.	315. AG	1593.	5.8	.0 49.0
2. PARKER NB Q	*	72.0	-49.0	1078.2	-1055.2	*	1423.	135. AG	403.	100.0	.0 29.0 1.14 72.3
3. PARKER NB Q LEF	*	65.0	-59.0	1941.6	-1935.6	*	2654.	135. AG	278.	100.0	.0 12.0 2.05 134.8
4. PARKER NB DEP.	*	24.0	.0	-976.0	1000.0	*	1414.	315. AG	2053.	5.8	.0 49.0
5. PARKER NB R	*	113.5	-54.0	313.5	-254.0	*	283.	135. AG	34.	5.8	.0 12.0
6. PARKER SB APPR	*	-1030.0	1000.0	-30.0	.0	*	1414.	135. AG	1291.	5.8	.0 64.0
7. PARKER SB Q	*	-92.5	62.0	-313.5	283.0	*	313.	315. AG	403.	100.0	.0 41.0 .92 15.9
8. PARKER SB Q LEFT	*	-75.0	69.0	-1873.8	1858.0	*	2537.	315. AG	278.	100.0	.0 16.0 2.00 128.9
9. PARKER SB DEP.	*	-30.0	.0	970.0	-1000.0	*	1414.	135. AG	1919.	5.8	.0 64.0
10. ILLIF EB APPR.	*	-1000.0	-26.0	.0	-26.0	*	1000.	90. AG	1470.	6.8	.0 45.0
11. ILLIF EB QUEUE	*	-57.0	-26.0	-963.7	-26.0	*	907.	270. AG	409.	100.0	.0 25.0 1.08 46.1
12. ILLIF .EB DEP.	*	.0	-26.0	1000.0	-26.0	*	1000.	90. AG	1947.	6.8	.0 45.0
13. ILLIF EB QUEUE LE	*	-75.0	.0	-977.6	3	*	903.	270. AG	297.	100.0	.0 13.0 1.67 45.9
14. ILLIF EB R	*	-1000.0	-48.5	.0	-48.5	*	1000.	90. AG	542.	6.8	.0 21.0
15. ILLIF EB QUEUE R	*	-26.0	-48.5	-248.3	-48.5	*	222.	270. AG	204.	100.0	.0 21.0 .79 11.3
16. ILLIF WB APPR.	*	1000.0	34.0	.0	34.0	*	1000.	270. AG	1228.	6.8	.0 57.0
17. ILLIF WB QUEUE	*	41.0	34.0	305.9	34.0	*	265.	90. AG	409.	100.0	.0 37.0 .90 13.5
18. ILLIF WB DEP.	*	.0	34.0	-1000.0	34.0	*	1000.	270. AG	1730.	6.8	.0 57.0
19. ILLIF WB QUEUE LE	*	58.0	7.5	114.8	7.5	*	57.	90. AG	297.	100.0	.0 15.0 .78 2.9
20. ILLIF WB R	*	225.0	65.5	.0	65.5	*	225.	270. AG	276.	6.8	.0 27.0
21. ILLIF WB QUEUE R	*	.0	65.5	113.2	65.5	*	113.	90. AG	204.	100.0	.0 27.0 .40 5.8

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
2. PARKER NB Q	*	120	74	2.0	1593	2000	121.97	1	3
3. PARKER NB Q LEF	*	120	102	2.0	454	1900	121.97	2	3
7. PARKER SB Q	*	120	74	2.0	1291	2000	121.97	1	3
8. PARKER SB Q LEFT	*	120	102	2.0	443	1900	121.97	2	3
11. ILLIF EB QUEUE	*	120	75	2.0	1470	2000	121.97	2	3
13. ILLIF EB QUEUE LE	*	120	109	2.0	184	1900	121.97	2	3
15. ILLIF EB QUEUE R	*	120	75	2.0	542	2000	121.97	2	3
17. ILLIF WB QUEUE	*	120	75	2.0	1228	2000	121.97	2	3
19. ILLIF WB QUEUE LE	*	120	109	2.0	86	1900	121.97	2	3
21. ILLIF WB QUEUE R	*	120	75	2.0	276	2000	121.97	2	3

RECEPTOR LOCATIONS

		*	COOR	DINATES (FI])	÷
	RECEPTOR	*	Х	Y	Z	*
		*				*
1.	REC 1 SE CORNER	*	120.0	-48.0	6.0	4
2.	REC 2 (SW CORNER)	*	-17.5	-58.0	6.0	*
3.	REC 3 (NW CORNER)	*	-140.5	64.0	6.0	*
4.	REC 4 (NE CORNER)	*	-15.0	79.0	6.0	*
5.	REC 5 (E MID-MAIN)	*	220.0	-48.0	6.0	*

CDPHE/APCD/Technical Services Program

REC 6 (W	MID-MAIN)	*	-117.5	-58.0	6.0	*
REC 7 (N	MID-LOCAL)	*	-240.5	164.0	6.0	*
REC 8 (S	MID-LOCAL)	*	82.5	-158.0	6.0	*
REC 9		*	220.0	79.0	6.0	*
RECEPTOR	10	*	-115.0	179.0	6.0	*
REC 11		*	-117.5	-58.0	6.0	*
REC12		*	-240.5	64.0	6.0	*
REC13		*	220.0	-148.0	6.0	*
REC15		*	-80.0	-59.0	6.0	*
REC16		*	-80.0	-69.0	6.0	*
REC17		*	-70.0	-59.0	6.0	*
RECEPTOR	18	*	-70.0	-69.0	6.0	*
REC19		*	-60.0	-69.0	6.0	*
REC20		*	-60.0	-59.0	6.0	*
REC21		*	-50.0	-69.0	6.0	*
REC22		*	-50.0	-59.0	6.0	*
	REC 6 (W REC 7 (N REC 8 (S REC 9 RECEPTOR REC12 REC12 REC15 REC15 REC16 REC17 REC20 REC20 REC21 REC22	REC 6 (W MID-MAIN) REC 7 (N MID-LOCAL) REC 8 (S MID-LOCAL) REC 9 RECEPTOR 10 REC11 REC12 REC13 REC15 REC16 REC16 REC17 REC20 REC20 REC21 REC22	REC 6 (W MID-MAIN) * REC 7 (N MID-LOCAL) * REC 8 (S MID-LOCAL) * REC 9 * RECEPTOR 10 * REC11 * REC12 * REC13 * REC16 * REC17 * REC19 * REC19 * REC19 * REC20 * REC21 * REC22 *	$\begin{array}{cccccccc} {\rm REC \ 6} & ({\rm W \ MID-MAIN}) & * & -117.5 \\ {\rm REC \ 7} & ({\rm N \ MID-LOCAL}) & * & -240.5 \\ {\rm REC \ 8} & ({\rm S \ MID-LOCAL}) & * & 82.5 \\ {\rm REC \ 9} & * & 220.0 \\ {\rm RECEPTOR \ 10} & * & -115.0 \\ {\rm REC \ 11} & * & -117.5 \\ {\rm REC \ 12} & * & -240.5 \\ {\rm REC12} & * & -240.5 \\ {\rm REC13} & * & 220.0 \\ {\rm REC15} & * & -80.0 \\ {\rm REC15} & * & -80.0 \\ {\rm REC16} & * & -80.0 \\ {\rm REC17} & * & -70.0 \\ {\rm REC19} & * & -60.0 \\ {\rm REC19} & * & -60.0 \\ {\rm REC20} & * & -60.0 \\ {\rm REC21} & * & -50.0 \\ {\rm REC22} & * & -50.0 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

JOB: PARKER & ILLIF

RUN: PARKER & ILLIF 2013 SCREENING

PAGE 3

MODEL RESULTS ANGLE * (PPM)

(DEGR)*	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
5. *	1.3	1.2	2.1	. 0	1.1	3.5	2.1	2.2	. 0	. 0	3.5	1.1	. 6	3.0	2.6	2.7	2.3	2.0	2.3	1.9
10. *	1.2	1.2	2.1	. 0	1.1	3.4	2.1	2.2	. 0	. 0	3.4	1.1	. 6	2.8	2.4	2.6	2.2	1.8	2.0	1.5
15. *	1.1	1.3	2.0	. 0	1.1	3.2	1.9	2.1	. 0	. 0	3.2	1.0	. 6	2.7	2.3	2.2	1.8	1.7	2.0	1.6
20. *	1.1	1.4	1.9	. 0	1.1	3.1	1.9	2.0	. 0	. 0	3.1	1.0	.5	2.5	2.1	2.2	1.8	1.6	2.0	1.4
25. *	1.1	1.5	1.9	. 0	1.1	3.0	1.9	2.0	. 0	. 0	3.0	1.0	.5	2.4	1.8	2.2	1.7	1.7	1.8	1.7
30 *	1 1	1 5	1 9		1 1	3 1	1 9	2 0			3 1		. 0	2 4	1 8	2 1	1 7	1 7	2 0	1 6
35 *	1 2	1 6	1 9	.0	1 1	2 9	1 9	2 0	.0	.0	2 9	.9	. 1	2 4	2 0	2.1	1 7	1 6	2.0	1 8
40 *	1 3	1 8	1 9	.0	1 1	2.7	1 9	2.0	.0	.0	2.7	. 9	. 1	2.1	1 9	2.2	1 8	1 8	2.1	1 8
45 *	1 3	1 8	1 9	.0	1 1	2 9	1 9	2.0	.0	.0	2 9	. 9	. 1	2.5	1 9	2.2	1 9	1 8	2.1	1 8
50 *	1 2	1 8	1 0	.0	1 0	2.2	1 9	1 0	.0	.0	2.2	. ,		2.5	2 0	2.5	1 0	2 0	2.1	2 0
55 *	1 4	2 2	1 9	.0	1 0	2.5	1 9	1 8	.0	.0	2.1	. 9	. ,	2.7	2.0	2.5	2 1	2.0	2.0	1 9
60 *	1 3	2.2	1 8	.0	1.0	- 3.⊥ 3.3	1 9	1 8	.0	.0	3.1	.9		2.8	2.2	2.0	2 2	1 9	2.0	1 9
65 *	1 3	2.0	1 9	.0	1 0	3.2	1 9	1 8	.0	.0	3.2	1 0		2.0	2 1	2.8	2.0	2 0	2.7	1 9
70 *	1 2	2 0	2 1	2	1.0	3.2	1 9	1 8	.0	.0	3.2	1 0		2 9	2 0	2.8	2 0	1 9	27	1 9
75 *	1 2	2 2	2 1	. 4	1 0	3.3	1 9	1 8	.0	.0	3.3	1 1		2 7	2 0	2 7	2 0	2 0	2 5	1 7
80 *	1 1	2 2	2 2	7	0	3 0	2 1	1 8	. 0		3 0	1 3	.5	27	2 0	2 6	1 8	1 7	2.6	1 6
85 *	1 0	1 9	2 2	1 1	.9	29	2 1	1 8	. 1	.0	2 9	1 6	. 1	2 5	1 6	2 4	1 4	1 5	2 2	1 5
90. *	- 8	1.9	2.7	1.5	. 8	2.6	2.5	1.8	. 4	. 0	2.6	1.5	.1	2.1	1.4	2.0	1.5	1.4	2.1	1.5
95. *	.6	1.8	2.6	1.8	.5	2.3	2.6	1.7	. 4	. 3	2.3	1.8	.0	1.9	1.2	2.0	1.1	1.2	2.0	1.4
100. *	. 4	1.7	2.7	2.2	. 4	1.7	2.9	1.7	. 7	.3	1.7	2.0	.0	1.6	1.1	1.9	1.2	1.4	1.9	1.4
105. *	.3	1.9	2.7	2.4	.3	1.6	2.9	2.0	. 8	.5	1.6	2.2	.0	1.7	1.2	1.8	1.3	1.5	1.8	1.5
110. *	. 2	2.0	2.5	2.3	. 2	1.5	3.0	2.0	. 9	. 6	1.5	2.3	. 0	1.6	1.1	1.6	1.4	1.4	1.6	1.5
115. *	.2	2.0	2.6	2.3	.1	1.3	3.3	2.0	1.1	.8	1.3	2.3	.1	1.6	1.3	1.6	1.5	1.5	1.6	1.6
120. *	.5	2.2	2.6	2.6	.1	1.3	3.2	2.2	1.2	.9	1.3	2.4	.4	1.6	1.4	1.6	1.5	1.5	1.7	1.6
125. *	1.0	2.1	2.7	2.7	.3	1.1	2.9	2.1	1.3	1.6	1.1	2.8	.8	1.4	1.2	1.5	1.3	1.4	1.6	1.5
130. *	1.4	2.0	2.8	2.9	. 4	1.1	3.1	2.0	1.5	1.7	1.1	2.6	1.3	1.1	1.0	1.2	1.0	1.1	1.4	1.3
135. *	2.0	1.5	2.5	3.1	.7	.7	2.6	1.5	1.5	2.1	.7	2.3	2.0	.9	.7	1.0	.8	.9	1.1	1.0
140. *	2.5	1.2	2.1	3.3	1.0	.4	2.1	1.1	1.8	2.2	.4	2.0	2.4	.6	.4	.7	.5	.6	.7	.6
145. *	2.7	.7	1.9	3.1	1.1	.3	1.4	.7	2.0	2.2	.3	1.9	2.7	. 3	. 2	.3	. 3	.3	.3	.3
150. *	2.7	.4	1.8	2.6	1.3	.1	1.3	.4	2.1	1.8	.1	1.7	2.7	.0	.0	.0	.0	.0	.0	.0
155. *	2.7	.1	1.4	2.1	1.3	.0	1.0	.1	2.1	1.9	.0	1.6	2.7	.0	.0	.0	.0	.0	.0	.0
160. *	2.5	.1	1.5	1.6	1.3	.0	.8	.1	2.1	2.0	.0	1.5	2.5	.0	.0	.0	.0	.0	.0	.0
165. *	2.4	.1	1.5	1.3	1.3	.0	.8	.1	2.1	2.1	.0	1.6	2.4	.0	.0	.0	.0	.0	.0	.0
170. *	2.3	.0	1.6	1.3	1.3	.0	.8	.0	2.1	2.2	.0	1.6	2.3	.0	.0	.0	.0	.0	.0	.0
175. *	2.2	.0	1.7	1.0	1.1	.0	.8	.0	2.2	2.1	.0	1.7	2.2	.0	.0	.0	.0	.0	.0	.0
180. *	2.1	.0	1.7	1.3	1.1	.0	.8	.0	2.2	2.4	.0	1.6	2.1	.0	.0	.0	.0	.0	.0	.0
185. *	1.9	.0	1.7	1.2	.9	.0	.8	.0	2.1	2.5	.0	1.6	1.9	.0	.0	.0	.0	.0	.0	.0
190. *	1.9	.0	1.6	1.2	.9	.0	.7	.0	2.1	2.5	.0	1.5	1.9	.0	.0	.0	.0	.0	.0	.0
195. *	1.9	.0	1.6	1.2	.9	.0	.7	.0	2.1	2.5	.0	1.4	1.9	.0	.0	.0	.0	.0	.0	.0
200. *	1.9	.0	1.5	1.3	.9	.0	.7	.0	2.1	2.5	.0	1.3	1.9	.0	.0	.0	.0	.0	.0	.0
205. *	1.9	.0	1.6	1.5	.9	.0	.7	.0	2.1	2.4	.0	1.4	1.9	.0	.0	.0	.0	.0	.0	.0
210. *	1.9	.0	1.7	1.4	.9	.1	.7	.0	2.0	2.4	.1	1.5	1.9	.0	.0	.0	.0	.0	.0	.0
215. *	1.9	.0	1.7	1.7	.9	.1	.8	.0	2.0	2.5	.1	1.5	1.9	.0	.0	.0	.0	.0	.0	.0
220. *	1.9	.0	1.7	1.8	.9	.1	.8	.0	2.0	2.4	.1	1.6	1.9	.1	.0	.1	.0	.0	.1	.0
225. *	1.9	.0	1.7	2.1	.9	.1	.8	.0	2.1	2.5	.1	1.6	1.9	.1	.0	.1	.0	.0	.1	.0
230. *	1.9	.0	1.7	2.2	1.0	.1	.9	.0	2.1	2.5	.1	1.6	1.9	.1	.0	.1	.0	.0	.1	.0
235. *	1.9	.0	1.8	2.3	1.0	.1	.9	.0	2.2	2.5	.1	1.7	1.9	.1	.0	.1	.0	.0	.1	.0
240. *	1.7	.1	1.8	2.3	1.0	.2	.9	.0	2.3	2.4	.2	1.8	1.9	.1	.0	.1	.0	.0	.2	.0
245. *	1.7	.3	1.8	2.5	1.0	.4	.8	.0	2.4	2.4	.4	1.8	1.9	.2	.0	.2	.0	.0	.2	.0
250. *	1.9	.5	2.0	2.6	1.0	.6	.8	.0	2.5	2.5	.6	1.9	1.9	. 5	.1	.5	.1	.2	.5	.2
255. *	2.2	1.0	1.9	2.7	1.4	.9	.6	.0	2.5	2.3	.9	1.9	1.9	. 9	.2	.9	.2	.2	.9	.2
260. *	2.5	1.5	1.7	2.6	1.7	1.5	.4	.0	2.4	2.3	1.5	1.6	2.0	1.3	.8	1.3	.8	.8	1.4	.8

0.65		2 0	0 0	1 -	0.0	1 0	0 0	2	-	~ ~	0 1	0 0	1 -	0 1	~ ~	1 4	0 0		7 4	0 0	1 4
265.	*	3.0	2.2	1.5	2.6	1.9	2.3	.3	• 1	2.0	2.1	2.3	1.5	2.1	2.2	⊥.4	2.3	⊥.4	⊥.4	2.3	⊥.4
270.	*	3.1	3.0	1.2	2.4	2.0	3.1	.0	.4	2.0	2.0	3.1	1.2	2.4	2.8	1.8	2.8	1.8	1.8	2.9	1.8
275.	*	3.2	3.6	. 8	2.1	2.7	3.7	. 0	. 6	1.5	1.9	3.7	. 7	2.9	3.7	2.3	3.7	2.3	2.3	3.7	2.4
280	*	3 3	3 8	5	23	2 4	3 0	0	Q	1 2	2 0	3 0	5	3 0	3 0	2 8	3 0	2 8	2 8	4 0	2 9
200.		5.5	5.0		2.5	2.1	1 1	.0	1 0	1.2	2.0	1 1		5.0	3.5	2.0	3.5	2.0	2.0	1.0	2.2
285.	Ŷ	3.0	3.9	. 2	∠.⊥	2.9	4.1	.0	1.0	• /	1.9	4.1	. 2	2.9	4.0	3.0	4.1	3.0	3.0	4.1	3.0
290.	*	2.6	3.4	.1	2.1	2.3	3.9	.0	1.3	.6	2.0	3.9	.1	3.1	3.8	3.0	3.8	3.0	3.1	3.8	3.1
295.	*	2.6	3.3	.3	2.2	2.3	3.8	.1	1.3	.5	2.0	3.8	.1	3.1	3.7	3.0	3.7	3.0	3.0	3.7	3.0
300.	*	2.7	3.2	.4	2.1	2.3	3.6	.3	1.3	.5	1.9	3.6	.0	3.1	3.6	2.7	3.6	2.8	2.8	3.6	2.8
305.	*	2.6	3.4	.8	2.0	2.3	3.6	.7	1.6	.4	1.7	3.6	.1	2.6	3.7	2.8	3.7	2.9	2.9	3.8	3.0
310.	*	2.5	3.2	1.2	1.8	2.2	3.4	1.0	1.7	.3	1.6	3.4	.1	2.5	3.7	3.1	3.8	3.1	3.2	3.8	3.2
315.	*	2.5	3.4	1.8	1.4	1.9	3.6	1.5	1.8	.1	1.2	3.6	.4	2.3	3.8	3.3	3.9	3.3	3.4	3.9	3.4
320.	*	2.3	3.4	2.2	.9	1.5	3.7	1.9	1.9	.1	.9	3.7	.5	1.6	3.8	3.4	4.1	3.6	3.7	4.2	3.5
325.	*	2.0	3.2	2.6	.6	1.4	3.6	2.2	1.9	.0	.5	3.6	.6	1.3	4.1	3.6	4.1	3.7	3.6	4.3	3.7
330.	*	1.8	2.8	2.7	.3	1.1	3.9	2.4	1.6	.0	.3	3.9	.8	1.1	4.2	3.7	4.2	3.7	3.7	4.2	3.6
335.	*	1.7	2.3	2.8	.1	1.1	3.8	2.5	1.6	.0	.1	3.8	.8	.7	4.1	3.6	4.1	3.6	3.6	3.9	3.3
340.	*	1.6	2.0	2.7	.1	1.1	3.8	2.5	1.3	.0	.1	3.8	.9	.6	4.1	3.6	4.0	3.4	3.2	3.7	3.1
345.	*	1.6	1.8	2.5	. 0	1.1	3.9	2.5	1.5	. 0	. 0	3.9	1.0	. 6	3.8	3.4	3.8	3.4	3.1	3.4	2.8
350	*	1 4	1 6	2 5	0	1 1	3 9	2 4	1 8	0	0	3 9	1 1	7	3 7	2 2	3 5	3 2	2 9	3 1	2 5
250.	+	1 1	1.0	2.5	.0	1 1	2.2	2.1	1.0	.0	.0	2.2	1 1	• 7	2.1	2.5	2.2	2.2	2.2	2.1	2.5
355.		1.4	1.2	2.3	.0	1.1	3.8	2.3	2.0	.0	.0	3.8	1.1	• /	3.4	2.9	3.3	2.9	2.0	2.9	2.1
360.	*	1.4	1.2	2.3	.0	1.1	3.8	2.3	2.2	.0	.0	3.8	1.1	.7	3.3	2.8	3.1	2.5	2.2	2.7	1.9
MAX	*	3.3	3.9	2.8	3.3	2.9	4.1	3.3	2.2	2.5	2.5	4.1	2.8	3.1	4.2	3.7	4.2	3.7	3.7	4.3	3.7
DEGR.	*	280	285	130	140	285	285	115	5	250	185	285	125	290	330	330	330	325	320	325	325
THE H	IGH	EST CO	NCENTR	ATION	OF	4.30 F	PM OCC	URRED .	AT REC	EPTOR	REC19.										

CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221

PAGE 1

PAGE 2

JOB: UNIVERSITY AND ARAPAHOE RUN: UNIVERSITY AND ARAPAHOE 2013 SCREENING DATE : 9/14/99 TIME : 8:18:46 The MODE flag has been set to C for calculating CO averages. SITE & METEOROLOGICAL VARIABLES VS = .0 CM/S VD = .0 CM/S ZO = 175. CM U = 1.0 M/SCLAS = 4 (D) ATIM = 60. MINUTES MIXH = 1000. M AMB = .0 PPM LINK VARIABLES -----* LINK COORDINATES (FT) * LENGTH BRG TYPE VPH EF H W V/C QUEUE * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (FT) (FT) (VEH) LINK DESCRIPTION _____
 1000.
 360. AG
 1704.
 6.5

 1937.
 180. AG
 404.
 100.0

 1674.
 180. AG
 285.
 100.0

 1000.
 360. AG
 2851.
 6.5

 1000.
 180. AG
 2009.
 6.5

 1. UNIVERSITY NB APPR *
 28.0
 -1000.0
 28.0
 .0 *

 2. UNIVERSITY NB Q *
 28.0
 -66.0
 28.0
 -2003.0 *

 3. UNIVERSITY NB Q LEF*
 8.0
 -66.0
 8.0
 -1739.7 *

 .0 47.0

 2. UNIVERSITY NB Q
 *
 28.0
 -66.0

 3. UNIVERSITY NB Q LEF*
 8.0
 -66.0

 4. UNIVERSITY NB DEP.
 *
 28.0
 .0

 5. UNIVERSITY SB APR
 *
 -26.0
 1000.0

 .0 27.0 1.22 98.4 .0 16.0 1.76 85.0 1000.0 * 28.0 .0 47.0 .0 * .0 46.0 -26.0 69.0 -26.0 6. UNIVERSITY SB 0 * -26.0 2557.1 * 2488. 360. AG 371. 100.0 .0 26.0 1.25 126.4 69.0 .0 .0 2449.7 * 2381. 360. AG 7. UNIVERSITY SB Q LEFT* 268. 100.0 .0 12.0 1.73 120.9 .0 -26.0 -1000.0 * 1000. 180. AG 8. UNIVERSITY SB DP. * -26.0 2986. 6.5 .0 46.0 9. UNIVERSITY SB R * -45.5 .0 * 344. 180. AG 344.0 -45.5 513. 6.5 .0 15.0 10. ARAPAHOE EB APPR. * -1000.0 .0 -37.0 * 1111. 7.7 -37.0 1000. 90. AG .0 44.0 11. ARAPAHOE EB QUEUE * -53.0 -37.0 -1098.1 -37.0 * 1045. 270. AG 477. 100.0 .0 24.0 1.16 53.1 12. ARAPAHOE .EB DEP. * .0 -37.0 1000.0 -37.0 * 1000. 90. AG 1768. 7.7 .0 44.0 13. ARAPAHOE EB QUEUE LE* -53.0 -13.0 -732.3 -13.0 * 679. 270. AG 570. 100.0 .0 25.0 1.27 34.5 14. ARAPAHOE EB R * .0 -57.5 * -428.0 -57.5 428. 90. AG 444. 7.7 .0 17.0 15. ARAPAHOE WB APPR. * 1000.0 37.0 * 37.0 1000. 270. AG 1485. 7.7 .0 .0 44.0 16. ARAPAHOE WB QUEUE * 43.0 38.8 * 37.0 5918.0 570. 100.0 5875. 90. AG .0 24.0 3.71 298.5 17. ARAPAHOE WB DEP. * 37.0 -1000.0 37.0 * .0 1000. 270. AG 2334. 7.7 .0 44.0 13.0 147.7 13.0 * 18. ARAPAHOE WB QUEUE LE* 43.0 105. 90. AG 477. 100.0 .0 25.0 .58 5.3 157. 360. AG 205. 270. AG 19. UNIVERSITY SB R QUEU* 186. 100.0 -45.5 69.0 -45.5 226.1 * .0 15.0 .64 8.0 20. ARAPAHOE EB R Q * -53.0 -57.5 -257.8 -57.6 * 239. 100.0 .0 17.0 .93 10.4 21. ARAPAHOE WB FR * 343.0 59.0 .0 59.0 * 343. 270. AG 664. 7.7 .0 20.0

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
2. UNIVERSITY NB O *	100	61	2.0	1704	2000	123.56	1	3
3. UNIVERSITY NB \tilde{Q} LEF*	100	86	2.0	335	1900	123.56	2	3
6. UNIVERSITY SB Q *	100	56	2.0	2009	2000	123.56	1	3
7. UNIVERSITY SB Q LEFT*	100	81	2.0	494	1900	123.56	2	3
11. ARAPAHOE EB QUEUE *	100	72	2.0	1111	2000	123.56	2	3
13. ARAPAHOE EB QUEUE LE*	100	86	2.0	483	1900	123.56	2	3
16. ARAPAHOE WB QUEUE *	100	86	2.0	1485	2000	123.56	2	3
18. ARAPAHOE WB QUEUE LE*	100	72	2.0	533	1900	123.56	2	3
19. UNIVERSITY SB R QUEU*	100	56	2.0	513	2000	123.56	1	3
20. ARAPAHOE EB R Q *	100	72	2.0	444	2000	123.56	2	3
RECEPTOR LOCATIONS								
*	COO	RDINATES	(FT)	*				
RECEPTOR *	Х	Y	Z	*				
**				*				
1.	REC 1	(SE CORNER)	*	52.0	-60.0	6.0	*	
-----	-------	---------------	---	--------	--------	-----	---	
2.	REC 2	(SW CORNER)	*	-50.0	-65.0	6.0	*	
3.	REC 3	(NW CORNER)	*	-54.0	60.0	6.0	*	
4.	REC 4	(NE CORNER)	*	50.0	70.0	6.0	*	
5.	REC 5	(E MID-MAIN)	*	52.0	-160.0	6.0	*	
б.	REC 6	(W MID-MAIN)	*	-54.0	160.0	6.0	*	
7.	REC 7	(N MID-LOCAL)	*	-154.0	60.0	6.0	*	
8.	REC 8	(S MID-LOCAL)	*	-150.0	-65.0	6.0	*	
9.	REC9		*	50.0	170.0	6.0	*	
10.	REC10		*	-50.0	-160.0	6.0	*	
11.	REC11		*	152.0	-60.0	6.0	*	
12.	REC12		*	150.0	70.0	6.0	*	
13.	REC13		*	-140.0	-65.0	6.0	*	
14.	REC14		*	-160.0	-65.0	6.0	*	
15.	REC15		*	-140.0	-75.0	6.0	*	
16.	REC16		*	-150.0	-75.0	6.0	*	
17.	REC17		*	-160.0	-75.0	6.0	*	
18.	REC18		*	-60.0	-65.0	6.0	*	
19.	REC19		*	-50.0	-75.0	6.0	*	
20.	REC20		*	-60.0	-75.0	6.0	*	
21.	REC21		*	-70.0	-65.0	6.0	*	
22.	REC22		*	-70.0	-75.0	6.0	*	

JOB: UNIVERSITY AND ARAPAHOE

RUN: UNIVERSITY AND ARAPAHOE 2013 SCREENING

PAGE 3

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)*	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
5. *	3.0	3.9	3.8	1.5	2.4	3.8	.8	4.5	1.5	3.0	1.8	.3	4.6	4.5	4.0	3.9	3.9	5.2	3.9	4.4
10. *	2.7	3.6	4.1	1.0	2.0	4.1	1.0	4.8	1.0	2.8	1.5	.1	4.9	4.5	4.4	4.3	4.0	4.7	3.7	4.2
15. *	2.3	3.2	4.2	.6	1.5	4.2	1.2	4.8	.6	2.7	1.3	.0	4.9	4.8	4.4	4.4	4.4	4.5	3.1	3.9
20 *	2.0	2.8	3.9	3	1.2	4.1	1.2	4.8	3	2.7	1.3	0	4.8	4.8	4 4	4.4	4 4	3.7	2.8	3 3
25 *	2.0	2.0	3.7	. 5	1 0	2 9	1 3	4 9	.5	2.2	1 3	.0	5 0	4 8	4 3	4 2	4 2	3 4	2.0	2 6
30 *	2.2	2.2	3 4	. 2	1 0	3.9	1 2	4 8	.2	2.2	1 4	.0	4 8	4 8	4 2	4 2	4 2	3.1	2.5	2.0
30. 3E *	2.1	2.1	2.7	• 1	1.0	2.0	1 1	1.0	. 1	2.1	1 5	.0	1.0	1.0	1.2	1.2	1.2	2.1	2.1	2.5
35. "	2.1	2.2	3.4	• 1	.0	3.0	1.1	4.0	• 1	2.4	1.5	.0	4.0	4.9	4.1	4.1	4.1	2.0	2.2	2.2
40. *	2.1	2.3	2.9	• 1	. 9	3.5	1.1	4.9	• 1	2.0	1.4	.0	4.0	4.9	4.1	4.2	4.2	2.7	2.1	2.2
45. *	2.0	2.3	2.8	• 1	.8	3.4	1.3	4.9	.1	2.0	1.4	.0	4.8	4.9	3.9	4.0	4.2	2.1	2.3	2.1
50. *	2.1	2.6	2.5	.1	.8	3.0	1.3	5.1	.1	2.8	1.5	.0	5.1	5.0	4.0	4.2	4.2	3.1	2.5	2.4
55. *	2.0	2.7	2.4	.1	.8	2.9	1.3	5.0	.1	2.7	1.6	.0	4.9	5.2	3.6	3.9	3.9	3.1	2.4	2.5
60. *	1.9	2.8	2.1	.0	.8	2.9	1.3	4.8	.0	2.6	1.6	.0	4.8	4.9	3.8	3.8	3.9	3.⊥	2.7	2.4
65. *	2.0	3.0	2.0	.1	.9	2.9	1.4	5.0	.0	2.6	1.8	.1	5.0	5.0	3.7	3.7	3.8	3.2	2.8	2.6
70. *	1.9	3.0	2.3	.3	.9	2.9	1.2	5.2	.0	2.6	1.8	.3	4.9	5.2	3.6	3.7	3.7	3.2	3.0	2.8
75. *	2.1	3.3	2.3	.6	.9	2.8	1.5	5.0	.1	2.7	2.0	.6	4.7	5.1	3.3	3.4	3.7	3.5	3.0	2.8
80. *	2.0	3.2	2.8	1.2	.9	3.0	1.9	4.9	. 2	2.7	2.0	1.1	4.7	4.9	3.2	3.5	3.4	3.4	2.8	2.8
85. *	1.8	3.0	3.2	1.9	.6	3.2	2.6	4.3	.4	2.4	1.8	1.7	4.1	4.4	2.7	2.7	2.9	3.1	2.7	2.6
90. *	1.5	2.7	3.8	2.4	.5	3.6	3.0	3.8	.7	2.3	1.5	2.3	3.7	3.9	2.4	2.4	2.5	3.1	2.6	2.3
95. *	1.1	2.3	4.0	2.8	. 2	3.8	2.9	3.0	. 8	2.0	1.0	2.8	3.0	3.0	1.6	1.6	1.8	2.5	2.1	2.0
100. *	.7	2.0	3.8	3.2	.1	3.9	2.5	2.3	1.0	1.9	.7	3.1	2.3	2.2	1.3	1.3	1.3	2.1	2.0	1.8
105. *	3	1.9	3.5	3.2	.0	3.9	2.4	1.7	1.0	1.8	3	3.0	1.8	2.0	1.2	1.1	1.1	1.8	1.9	1.7
110 *	2	1 8	3.1	3 2	.0	4 1	23	1 4	1 1	1 7	2	29	1 4	1 4	8		8	1 8	1 7	1 5
115 *	. 1	1 7	2 5	3.2	.0	4 1	2.5	1 2	1 0	1 8	.2	2.2	1 3	1 2	.0	.0	.0	1 5	1 8	1 6
120 *	. 1	1 8	2.5	3 1	.0	4 2	2.2	1 0	1 0	1 8	.1	2.0	1 2	1 0	1 0	.0	.0	1 7	1 8	1 7
105 *	• 1	1 0	2.7	2.1	.0	1.2	2.2	1 1	1 2	1 0	. 1	2.0	1 2	1.0	1.0	.0	.0	1 7	1.0	1 0
120 *		1.9	2.2	3.⊥ 2 1	.0	4.1	2.2	1 1	1 1	1.9	. 1	2.4	1.2	1.0	1.0	1 0	.0	1.7	1.9	1.0
130. *	.0	1.9	2.1	3.1	.0	4.0	2.5	1.1	1.1	1.9	.0	2.3	1.1	.9	1.0	1.0	.0	1.8	1.9	1.8
140 *	.0	2.0	1.9	3.4	.0	4.1	2.7	1.1	1.1	2.0	.0	4.3	1.2	1.1	1.1	1.0	1.0	1.8	2.0	1.8
140. ^	.0	2.2	2.2	3.1	.0	4.1	2.9	1.1	1.1	2.2	.0	2.2	1.2	1.1	1.1	1.0	1.0	1.9	2.2	1.9
145. *	.0	2.2	2.1	3.0	.0	4.3	3.2	1.2	1.2	2.2	.0	2.1	1.2	1.1	1.1	1.1	1.0	1.9	2.2	1.9
150. *	• 1	2.3	2.5	2.9	.1	4.3	3.3	1.2	1.2	2.3	.0	2.0	1.2	1.2	1.1	1.1	1.1	2.1	2.3	2.1
155. *	.2	2.3	2.6	3.0	.2	4.1	3.3	1.1	1.2	2.3	.0	2.0	1.1	1.1	1.1	1.1	1.1	2.2	2.3	2.2
160. *	.3	2.6	3.1	3.1	.3	4.2	3.2	1.1	1.4	2.6	.0	2.1	1.2	1.1	1.2	1.1	1.1	2.2	2.6	2.2
165. *	.7	2.7	3.3	3.3	.7	4.3	3.2	1.1	1.8	2.7	.0	2.1	1.1	1.0	1.1	1.1	1.0	2.3	2.7	2.3
170. *	1.3	2.7	3.6	3.9	1.3	4.1	3.2	1.0	2.2	2.7	.1	2.3	1.0	.9	1.0	1.0	.9	2.2	2.7	2.2
175. *	2.0	2.5	3.5	4.2	2.0	4.2	3.1	.8	2.6	2.5	.3	2.6	.8	.6	.8	.8	.6	1.8	2.5	1.8
180. *	2.7	1.9	3.3	4.5	2.6	3.6	2.7	.4	2.7	1.9	.6	3.1	.4	.4	.4	.4	.4	1.5	1.9	1.5
185. *	3.2	1.4	3.0	4.5	3.2	2.9	2.6	.3	2.9	1.4	.8	3.4	.3	.2	.3	.3	.2	1.0	1.4	1.0
190. *	3.5	.9	2.7	4.4	3.5	2.4	2.2	.0	2.8	.8	1.0	3.6	.0	.0	.0	.0	.0	.6	.9	.6
195. *	3.5	.5	2.4	3.7	3.5	1.9	2.1	.0	2.8	.5	1.3	3.9	.0	.0	.0	.0	.0	.3	.5	.3
200. *	3.4	.2	2.2	3.1	3.4	1.5	2.3	.0	2.7	.2	1.3	3.9	.0	.0	.0	.0	.0	.1	.2	.1
205. *	3.1	.1	2.2	2.9	3.2	1.4	2.3	. 0	2.7	.1	1.2	3.9	. 0	. 0	. 0	. 0	. 0	.0	.1	. 0
210. *	3.0	.1	2.3	2.6	3.1	1.4	2.3	.1	2.4	.1	1.2	3.9	.1	.1	. 0	. 0	. 0	.1	.1	. 0
215 *	2 9		2 4	2 7	3 0	1 4	2 4		2.8		1 2	3.8			.0		.0	1	1	
220 *	2.7	.1	2.1	2.7	2 0	1 4	2.7	• 1	2.0	. 1	1 2	2.0	.1	• 1	.0	.0	.0	.1	.1	.0
225.	2.7	.1	2.1	2.5	2.0	1 2	2.5	• 1	3 0	. 1	1 2	2.7	.1	• 1	.0	.0	.0	.1	.1	.0
220. *	2.0	. 4	2.5	2.4	2.0	1 0	2.4	• 1	2.0	. 1	1.2	2.7	• 1	• 1	.0	.0	.0	.1	.1	.0
∠>U. ^ >>E +	4.3	. 2	4.5	4.0	2.5	1 2	2.4	• 1	.∠ 2.2	• 1	.9	3.7	• 1	• 1	.0	.0	.0	• 1	. 1	.0
235. ^	2.2	• 1	2.0	2.9	2.4	1.3	2.0	. 4	3.4	.0	.9	4.0	. 2	. 4	.0	.0	.0	. 4	.0	.0
240. ^	2.0	. 2	4.7	3.4	2.4	1.3	2.0	. 4	3.3	.0	1.0	3.9	. 2	. 4	.0	.0	.0	. 3	.0	.0
∠45. *	2.1	.5	2.9	3.3	2.3	1.3	2.8	.5	3.2	.0	1.0	4.0	.5	.5	.0	.0	.0	.6	.0	.0
250. *	2.2	.8	2.9	3.6	2.3	1.2	2.8	.8	3.2	.0	1.2	3.9	.8	.8	.1	.1	.1	.8	.2	.2
255. *	2.5	1.3	2.8	3.7	2.2	1.0	2.7	1.3	2.9	.0	1.5	3.8	1.3	1.2	.4	.4	.4	1.3	.5	.5
260. *	2.9	2.2	2.7	3.4	2.3	.7	2.5	2.1	2.8	.1	1.9	3.4	2.1	2.1	.9	.9	.9	2.3	1.0	1.0

0.65	-	2 6	2 2	0 0	2 2	0 5	-	<u> </u>	0 0	0 1	0	0 1	2 0	~ ~	0 0	1 17	1 7	1 -	2 2	1 0	1 0
265.	Ŷ	3.6	3.4	2.3	3.3	2.5	. 5	2.2	2.9	2.4	. 2	2.1	3.2	2.9	2.9	1./	1./	1.5	3.3	1.9	1.9
270.	*	4.1	4.0	1.8	2.8	2.9	.3	1.7	3.9	2.2	.3	2.9	2.4	3.9	3.9	2.3	2.3	2.3	4.1	2.6	2.5
275.	*	4.3	5.0	1.2	2.4	3.3	.1	1.1	4.7	2.0	.8	2.9	2.0	4.8	4.7	3.1	3.1	3.1	5.1	3.3	3.3
280.	*	4.1	5.4	.7	2.1	3.4	.0	.7	5.1	1.9	1.0	2.8	1.4	5.1	5.1	3.7	3.6	3.5	5.5	3.8	3.8
285.	*	3.7	5.5	.4	1.9	3.7	.0	.3	5.5	1.9	1.4	2.5	1.2	5.5	5.5	4.0	3.9	3.9	5.6	4.1	4.1
290.	*	3.1	5.3	.2	1.9	3.9	.0	.2	5.3	1.8	1.5	2.3	1.0	5.4	5.3	4.0	4.0	4.0	5.4	4.2	4.2
295.	*	2.7	5.1	.1	1.9	4.0	.0	.1	5.2	1.8	1.6	2.1	.9	5.2	5.2	4.0	3.9	3.9	5.2	4.1	4.1
300.	*	2.1	4.9	.1	1.9	4.0	.0	.1	5.1	1.8	1.7	2.0	.9	5.1	5.1	4.0	3.9	3.9	5.1	4.0	4.0
305.	*	1.9	4.5	.1	1.9	4.0	.0	.1	4.7	1.9	1.7	2.3	.9	4.7	4.7	3.8	3.8	3.8	4.8	3.8	3.9
310.	*	2.0	4.3	.1	2.1	3.8	.0	.1	4.6	2.0	1.8	2.2	.9	4.6	4.6	3.7	3.7	3.7	4.6	3.7	3.7
315.	*	1.8	4.1	.1	2.1	3.6	.0	.1	4.3	1.9	1.7	2.6	.9	4.3	4.3	3.6	3.6	3.6	4.3	3.6	3.6
320.	*	1.8	3.8	.0	2.3	3.5	.1	.0	4.1	2.1	1.8	2.7	.9	4.1	4.1	3.4	3.4	3.4	4.1	3.4	3.4
325.	*	2.0	3.7	.0	2.3	3.6	.1	.0	4.0	2.2	1.6	3.0	1.0	4.0	4.0	3.1	3.1	3.1	4.1	3.1	3.1
330.	*	2.0	3.5	.1	2.5	3.6	.1	.0	3.8	2.4	1.6	2.9	1.0	3.8	3.8	3.1	3.1	3.1	3.8	3.0	3.1
335.	*	2.5	3.1	.3	2.5	3.4	.3	.0	3.7	2.4	1.6	2.9	1.1	3.7	3.7	3.1	3.1	3.1	3.7	2.8	3.1
340.	*	2.9	3.0	.5	2.5	3.4	.4	.0	3.6	2.5	1.7	2.9	1.1	3.6	3.6	3.1	3.1	3.1	3.6	2.8	3.1
345.	*	3.3	3.2	1.0	2.8	3.5	1.0	.0	3.5	2.8	1.9	2.8	1.1	3.5	3.5	3.1	3.1	3.1	4.0	3.0	3.4
350.	*	3.5	3.7	1.8	2.7	3.4	1.7	.1	3.8	2.6	2.2	2.7	1.0	3.8	3.8	3.2	3.2	3.2	4.5	3.2	3.7
355.	*	3.4	3.8	2.4	2.5	3.1	2.3	.3	4.0	2.5	2.5	2.5	.8	4.1	4.0	3.5	3.4	3.4	4.8	3.6	4.0
360.	*	3.5	4.0	3.3	2.0	2.9	3.2	.5	4.4	2.0	2.7	2.2	.5	4.5	4.3	3.9	3.8	3.7	5.0	3.9	4.2
MAX	*	4.3	5.5	4.2	4.5	4.0	4.3	3.3	5.5	3.3	3.0	3.0	4.0	5.5	5.5	4.4	4.4	4.4	5.6	4.2	4.4
DEGR.	*	275	285	15	180	295	145	150	285	240	5	325	235	285	285	10	15	15	285	290	5
THE H	IGH	EST CO	NCENTRA	ATION	OF	5.60 E	PPM OCC	URRED	AT REC	EPTOR	REC18.										

```
CAL3QHCR (Dated: 95221)
    DATE : 9/14/99
                                                                                                           PAGE: 1
    TIME : 8: 3:10
    JOB: UNIVERSITY & FIRST 2013 SCREENING
                                                                RUN: UNIVERSITY & FIRST 2013
      _____
      General Information
      _____
        Run start date: 1/ 2/99
                                 Julian:
                                          2
             end date: 1/ 2/99
                                 Julian:
                                          2
        A Tier 1 approach was used for input data preparation.
        The MODE flag has been set to C for calculating CO averages.
        Ambient background concentrations are included in the averages below.
      Site & Meteorological Constants
      _____
        VS = .0 CM/S
                            VD = .0 CM/S
                                                Z0 = 175. CM
                                                                ATIM = 60.
         Met. Sfc. Sta. Id & Yr = 99999
                                         99
         Upper Air Sta. Id & Yr = 99999
                                         99
        Rural mixing heights were processed.
        In 1999, Julian day 1 is a Friday.
      Link Data Constants - (Variable data in *.LNK file)
      _____
           LINK DESCRIPTION
                               *
                                        LINK COORDINATES (FT)
                                                                                            Н
                                                                    *
                                                                        LENGTH
                                                                                BRG TYPE
                                                                                                  W NLANES
                               *
                                                                Y2 *
                                    X1
                                          Y1
                                                      X2
                                                                         (FT) (DEG)
                                                                                          (FT) (FT)
         _____*_
                                    42.0
                                          -1000.0
                                                                         1000.
                                                                                            .0 56.0
         1. UNIVERSITY NB APPR *
                                                      42.0
                                                             .0 *
                                                                                360. AG
          2. UNIVERSITY NB Q *
                                    42.0
                                           -50.0
                                                      42.0
                                                             -1000.0 *
                                                                         950.
                                                                                180. AG
                                                                                            .0
                                                                                                36.0
                                                                                                       3
         3. UNIVERSITY NB Q LEF*
                                    12.0
                                            -50.0
                                                      12.0
                                                             -300.0 *
                                                                         250.
                                                                                180. AG
                                                                                            .0
                                                                                                24.0
                                                                                                       2
          4. UNIVERSITY NB DEP. *
                                    42.0
                                            .0
                                                      42.0
                                                              1000.0 *
                                                                         1000.
                                                                                360. AG
                                                                                            .0
                                                                                                56.0
                                                                 .0 *
                                          -1000.0
                                                                                360. AG
          5. UNIVERSITY NB R
                                    66.0
                                                      66.0
                                                                         1000.
                                                                                            .0
                                                                                                12.0
                              *
                                                             -1003.1 *
          6. UNIVERSITY NB Q R
                                                                                180. AG
                                    66.0
                                            -53.1
                                                      66.0
                                                                         950.
                                                                                            .0
                                                                                                12.0
                                                                                                       1
                                                                 .0 *
         7. UNIVERSITY SB APPR *
                                   -42.0
                                           1000.0
                                                                         1000.
                                                                                180. AG
                                                     -42.0
                                                                                            .0
                                                                                                56.0
                               *
                                                              1000.0 *
                                                                                360. AG
                                                                                                36.0
                                                                                                       3
         8. UNIVERSITY SB Q
                                   -42.0
                                             60.0
                                                     -42.0
                                                                          940.
                                                                                            .0
         9. UNIVERSITY SB Q LEFT*
                                                              1000.0 *
                                   -12.0
                                             60.0
                                                     -12.0
                                                                          940.
                                                                                360. AG
                                                                                            .0
                                                                                                24.0
                                                                                                       2
         10. UNIVERSITY SB DEP. *
                                   -42.0
                                             .0
                                                     -42.0
                                                             -1000.0 *
                                                                         1000.
                                                                                180. AG
                                                                                            .0 56.0
         11. UNIVERSITY SB R
                               *
                                           1000.0
                                                                .0 *
                                                                         1000.
                                                                                180. AG
                                                                                            .0 12.0
                                   -66.0
                                                     -66.0
         12. UNIVERSITY SB Q R
                               *
                                                              1000.0 *
                                                                                360. AG
                                                                                            .0 12.0
                                   -66.0
                                            60.0
                                                     -66.0
                                                                         940.
                                                                                                       1
         13. FIRST EB APPR.
                               *
                                                               -25.0 *
                                                                                            .0 50.0
                                 -1000.0
                                            -25.0
                                                        .0
                                                                         1000.
                                                                                 90. AG
         14. FIRST EB QUEUE
                               *
                                                               -25.0 *
                                            -25.0
                                                    -1000.0
                                                                                270. AG
                                                                                            .0 30.0
                                                                                                       3
                                   -72.0
                                                                         928.
                               *
                                                               -25.0 *
         15. FIRST .EB DEP.
                                    .0
                                            -25.0
                                                    1000.0
                                                                         1000.
                                                                                 90. AG
                                                                                            .0 50.0
```

DATE : 9/14/99 TIME : 8: 3:10 PAGE: 2

CAL3QHCR (Dated: 95221)

JOB: UNIVERSITY & FIRST 2013 SCREENING

RUN: UNIVERSITY & FIRST 2013

Link Data Constants - (Variable data in *.LNK file)

LINK DESCRIPTION	*	LI	NK COORDIN	ATES (FT)		*	LENGTH	BRG	TYPE	Н	W	NLANES
	*	X1	Yl	X2	Y2	*	(FT)	(DEG)		(FT)	(FT)	
	_ *					-*						
16. FIRST EB QUEUE LEF	*	-72.0	.0	-322.0	.0	*	250.	270.	AG	.0	10.0	1
17. FIRST EB R	*	-372.0	-45.0	-66.0	-45.0	*	306.	90.	AG	.0	10.0	
18. FIRST EB QUEUE R	*	-72.0	-45.0	-372.0	-45.0	*	300.	270.	AG	.0	10.0	1
19. FIRST WB APPR.	*	1000.0	35.0	.0	35.0	*	1000.	270.	AG	.0	50.0	
20. FIRST WB QUEUE	*	72.0	35.0	1000.0	35.0	*	928.	90.	AG	.0	30.0	3
21. FIRST WB DEP.	*	.0	35.0	-1000.0	35.0	*	1000.	270.	AG	.0	50.0	
22. FIRST WB QUEUE LEF	*	72.0	10.0	447.0	10.0	*	375.	90.	AG	.0	10.0	2
23. FIRST WB R	*	222.0	55.0	67.0	55.0	*	155.	270.	AG	.0	10.0	
24. FIRST WB QUEUE R	*	72.0	55.0	222.0	55.0	*	150.	90.	AG	.0	10.0	1

Receptor Data

	*	COOR	DINATES (FT)	
RECEPTOR	*	Х	Y	Z
1. REC 1 (SE CORNER)	*	72.0	-50.0	6.0
2. REC 2 (SW CORNER)	*	-72.0	-50.0	6.0
REC 3 (NW CORNER)	*	-72.0	60.0	6.0
4. REC 4 (NE CORNER)	*	72.0	60.0	6.0
5. REC 5 (E NB)	*	72.0	-150.0	6.0
6. REC 6 (W NB DEP)	*	-72.0	160.0	6.0
7. REC 7 (N WB DEP)	*	-172.0	60.0	6.0
8. REC 8 (S EB)	*	-172.0	-50.0	6.0
9. REC9 (E NB DEP)	*	72.0	160.0	6.0
10. REC10 (W SB DEP)	*	-72.0	-150.0	6.0
11. REC11 (S EB DEP)	*	172.0	-50.0	6.0
12. REC12 (N WB)	*	172.0	60.0	6.0
13. REC13	*	72.0	70.0	6.0
14. REC14	*	82.0	60.0	6.0
15. REC15	*	82.0	70.0	6.0
16. REC16	*	-82.0	60.0	6.0
17. REC17	*	-72.0	70.0	6.0
18. REC18	*	-82.0	70.0	6.0
19. REC19	*	-72.0	80.0	6.0
20. REC20	*	-82.0	80.0	6.0

CAL3QHCR (Dated: 95221)

DATE : 9/14/99 TIME : 8: 3:10

JOB: UNIVERSITY & FIRST 2013 SCREENING

RUN: UNIVERSITY & FIRST 2013

Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum concentrations, is indicated as the maximum.

	*	MAXIMUM	HOURLY	CONCENTRA	TIONS WITH	ANY	AMBIENT	BACKGROUND	CONCENT	TRATIONS	(BKG) ADDEI
	*	REC1	REC2	REC3	REC4	REC5	RECO	5 REC7	REC8	REC9	REC10
MAX+BKG - BKG	* * *_	4.4 .0	4.2	5.1	5.0	3.0	4.9	9 3.5) .0	5.8 .0	3.0	2.9 .0
MAX WIND DIR JULIAN HOUR	* * *	4.4 186 2 13	4.2 13 2 19	2 5.1 32 2 12	5.0 186 2 13	3.0 186 2 13	4.9 141 2 14	9 3.5 141 2 14	5.8 41 2 22	3.0 186 2 13	2.9 41 2 22
	*	REC11	L REC1	2 REC13	REC14	REC1	.5 REC1	6 REC17	REC18	REC19	REC20
MAX+BKG - BKG	* * -	2.8 .0	4.6	4.6	5.9	5.1	3.8	4.9 0.0	3.6	4.7	3.4

PAGE: 3

MAX	*	2.8	4.6	4.6	5.9	5.1	3.8	4.9	3.6	4.7	3.4
WIND DI	R*	41	186	186	186	186	41	32	41	32	141
JULIAN	*	2	2	2	2	2	2	2	2	2	2
HOUR	*	22	13	13	13	13	22	12	22	12	14

THE HIGHEST CONCENTRATION OF 5.90 PPM OCCURRED AT RECEPTOR REC14.

CAL3QHCR (Dated: 95221)

Output Section

NOTES PERTAINING TO THE REPORT

- 1. THE HIGHEST AVERAGE IN EACH OF THE FIRST TWO COLUMNS OF EACH TABLE BELOW ARE SUFFIXED BY AN ASTERISK (*). FOR PM OUTPUT, THERE IS ONLY ONE COLUMN AND ASTERISK FOR THE ANNUAL AVERAGE/PERIOD OF CONCERN TABLE.
- 2. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE.
- 3. THE NUMBER OF CALM HOURS USED IN PRODUCING EACH AVERAGE ARE PREFIXED BY A C.

PRIMARY AVERAGES.

MAXIMUM 8-HOUR RUNNING NONOVERLAPPING AVERAGE CONCENTRATIONS IN PARTS PER MILLION (PPM), INCLUDING AMBIENT BACKGROUND CONCENTRATIONS.

Receptor Number	Conc	Highest Ending Day Hr Calm	Second highest Ending Conc Day Hr Calm
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ \end{array} $	$\begin{array}{c} 2.11\\ 2.91\\ 4.19*\\ 3.25\\ 1.44\\ 3.64\\ 2.33\\ 3.61\\ 1.56\\ 2.22\\ 1.83\\ 3.13\\ 2.90\\ 3.50\\ 2.98\\ 3.09\\ 4.14\\ 2.95\\ 4.08\\ 2.83\end{array}$	(2,24) C 0 $(2,24) C 0$ $(2,24) C 0$ $(2,19) C 0$ $(2,24) C 0$ $(2,19) C 0$ $(2,18) C 0$ $(2,19) C 0$ $(2,24) C 0$ $(2,24) C 0$ $(2,19) C 0$ $(2,24) C 0$ $(2,19) C 0$ $(2,23) C 0$ $(2,23) C 0$ $(2,24) C 0$ $(2,24) C 0$ $(2,23) C 0$ $(2,24) C 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

FIVE HIGHEST 1-HOUR END-TO-END AVERAGE CONCENTRATIONS IN PARTS PER MILLION INCLUDING AMBIENT BACKGROUND CONCENTRATIONS.

Highest Second Highest Third Highest Fourth Highest Fifth Highest Rcptr Ending Ending Ending Ending Ending No. Conc Day Hr Calm 1 4.40 (2,13) C 0 2.90 (2,22) C 0 2.70 (2,12) C 0 2.70 (2,19) C 0 2.70 (2,23) C 0 CAL3QHCR (Dated: 95221)

DATE : 9/14/99 TIME : 8: 3:10

JOB: UNIVERSITY & FIRST 2013 SCREENING

RUN: UNIVERSITY & FIRST 2013

FIVE HIGHEST 1-HOUR END-TO-END AVERAGE CONCENTRATIONS IN PARTS PER MILLION INCLUDING AMBIENT BACKGROUND CONCENTRATIONS.

	Highest Reptr Ending				Highest		Third	Highest		Fourth H	lighest	F	ifth Hig	ghest	
Rcptr		Ending			Ending			Ending			Ending			Ending	
No.	Conc	Day Hr	Calm	Conc	Day Hr	Calm	Conc	Day Hr	Calm	Conc	Day Hr	Calm	Conc	Day Hr	Calm
2	4.20	(2,19)	C 0	4.00	(2,24)	C 0	3.50	(2,1)	C 0	2.90	(2,12)	C 0	2.90	(2,23)	C 0
3	5.10	(2,12)	C 0	5.00	(2,23)	C 0	4.90	(2,22)	C 0	4.50	(2,19)	C 0	4.20	(2,20)	C 0
4	5.00	(2,13)	C 0	4.60	(2,14)	C 0	4.40	(2,18)	C 0	4.20	(2,15)	C 0	4.20	(2,17)	C 0
5	3.00	(2,13)	C 0	2.40	(2,19)	C 0	2.30	(2,24)	C 0	2.00	(2,1)	C 0	1.60	(2,12)	C 0
6	4.90	(2, 14)	C 0	4.80	(2, 18)	C 0	4.10	(2, 15)	C 0	4.10	(2, 17)	C 0	3.50	(2, 16)	C 0

PAGE: 5

2.40 (2,16) C 0 7 3.50 (2,14) C 0 3.40 (2,18) C 0 2.80 (2,15) C 0 2.80 (2,17) C 0 8 5.80 (2,22) C 0 5.30*(2,12) C 0 5.20 (2,23) C 0 4.60 (2,20) C 0 4.20 (2,21) C 0 9 3.00 (2,13) C 0 2.10 (2,15) C 0 2.10 (2,17) C 0 1.80 (2,18) C 0 1.70 (2,14) C 0 10 2.90 (2,22) C 0 2.70 (2,12) C 0 2.60 (2,19) C 0 2.60 (2,23) C 0 2.30 (2,20) C 0 2.80 (2,22) C 0 2.60 (2,12) C 0 2,23) C 0 2,19) C O 11 2.60 (2.40 (2.40 (2,24) C 0 12 4.60 (2,13) C 0 4.40 (2,18) C 0 4.30 (2,14) C 0 4.20 (2,15) C O 4.20 (2,17) C 0 2,15) C 0 13 4.60 (2,13) C 0 3.90 (3.90 (2,17) C 0 3.80 (2,14) C O 3.70 (2,18) C O 4.70 (2,14) C 0 5.90*(2,13) C 0 2,18) C 0 2,15) C 0 14 4.60 (4.50 (4.50 (2,17) C 0 5.10 (2,13) C 0 4.00 (2,14) C 0 2,15) C 0 15 3.90 (3.90 (2,17) C O 3.70 (2,18) C 0 3.70 (2,12) C 0 3.80 (2,22) C 0 2,23) C 0 16 3.70 (3.30 (2,15) C 0 3.30 (2,17) C 0 4.00 (2,18) C 0 17 4.90 (2,12) C 0 4.90 (2,23) C 0 4.80 (2,22) C 0 4.20 (2,19) C O 18 3.60 (2,22) C 0 3.40 (2,12) C 0 3.40 (2,23) C 0 3.20 (2,18) C 0 3.10 (2,14) C 0 19 4.70 (2,12) C 0 4.70 (2,23) C 0 4.60 (2,22) C O 4.50 (2,14) C 0 4.30 (2,18) C 0 3.20 (2,12) C 0 20 3.40 (2,14) C 0 3.30 (2,22) C 0 3.20 (2,18) C 0 3.10 (2,23) C 0 CALM DURATION FREQUENCY Hours of Frequency Consecutive of Calm Winds Occurrence (Julian day/hour ending) of Significant Occurrences No calm wind hours were encountered during this processing period. Program terminated normally CAL3QHCR (Dated: 95221) DATE : 8/ 5/99 PAGE: 1 TIME : 10:39:57 JOB: UNIVERSITY & FIRST 2006 SCREENING RUN: UNIVERSITY & FIRST 2006 _____ General Information ------Run start date: 1/ 2/99 Julian: 2 end date: 1/ 2/99 Julian: 2 A Tier 1 approach was used for input data preparation. The MODE flag has been set to C for calculating CO averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants _____ VS = .0 CM/SVD = .0 CM/SZ0 = 175. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) _____

LINK DESCRIPT	ION	*	LI	INK COORDIN	NATES (FT)		*	LENGTH	BRG	TYPE	Н	W	NLANES
		*	Xl	Yl	X2	Y2	*	(FT)	(DEG)		(FT)	(FT)	
		* _					_ *						
 UNIVERSITY NE 	B APPR	*	42.0	-1000.0	42.0	.0	*	1000.	360.	AG	.0	56.0	
UNIVERSITY NE	вQ	*	42.0	-50.0	42.0	-1000.0	*	950.	180.	AG	.0	36.0	3
UNIVERSITY NE	b q lef	*	12.0	-50.0	12.0	-300.0	*	250.	180.	AG	.0	24.0	2
4. UNIVERSITY NE	B DEP.	*	42.0	.0	42.0	1000.0	*	1000.	360.	AG	.0	56.0	
5. UNIVERSITY NE	BR	*	66.0	-1000.0	66.0	.0	*	1000.	360.	AG	.0	12.0	
6. UNIVERSITY N	BQR	*	66.0	-53.1	66.0	-1003.1	*	950.	180.	AG	.0	12.0	1
7. UNIVERSITY SH	B APPR	*	-42.0	1000.0	-42.0	.0	*	1000.	180.	AG	.0	56.0	
8. UNIVERSITY SH	вQ	*	-42.0	60.0	-42.0	1000.0	*	940.	360.	AG	.0	36.0	3
9. UNIVERSITY SH	B Q LEFT	*	-12.0	60.0	-12.0	1000.0	*	940.	360.	AG	.0	24.0	2
10. UNIVERSITY SH	B DEP.	*	-42.0	.0	-42.0	-1000.0	*	1000.	180.	AG	.0	56.0	
11. UNIVERSITY SH	BR	*	-66.0	1000.0	-66.0	.0	*	1000.	180.	AG	.0	12.0	
12. UNIVERSITY SH	BQR	*	-66.0	60.0	-66.0	1000.0	*	940.	360.	AG	.0	12.0	1
13. FIRST EB API	PR.	*	-1000.0	-25.0	.0	-25.0	*	1000.	90.	AG	.0	50.0	
14. FIRST EB QUE	UE	*	-72.0	-25.0	-1000.0	-25.0	*	928.	270.	AG	.0	30.0	3
15. FIRST .EB DEP	Ρ.	*	.0	-25.0	1000.0	-25.0	*	1000.	90.	AG	.0	50.0	
					CAL3QHCR	(Dated:	952	21)					

DATE : 8/ 5/99 TIME : 10:39:57 PAGE: 2

JOB: UNIVERSITY & FIRST 2006 SCREENING

RUN: UNIVERSITY & FIRST 2006

Link Data Constants - (Variable data in *.LNK file) - - -

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

LI	NK DESCRIPTION	*	LIN	K COORDIN	IATES (FT)		*	LENGTH	BRG	TYPE	Н	W	NLANES
		* _*	X1	¥1 	X2	¥2	*_*_	(FT)	(DEG)		(FT)	(FT)	
16. F	IRST EB QUEUE LEF	*	-72.0	.0	-322.0	.0	*	250.	270.	AG	.0	10.0	1
17. F	IRST EB R	*	-372.0	-45.0	-66.0	-45.0	*	306.	90.	AG	.0	10.0	
18. F	IRST EB QUEUE R	*	-72.0	-45.0	-372.0	-45.0	*	300.	270.	AG	.0	10.0	1
19. F	IRST WB APPR.	*	1000.0	35.0	.0	35.0	*	1000.	270.	AG	.0	50.0	
20. F	IRST WB QUEUE	*	72.0	35.0	1000.0	35.0	*	928.	90.	AG	.0	30.0	3
21. F	IRST WB DEP.	*	.0	35.0	-1000.0	35.0	*	1000.	270.	AG	.0	50.0	
22. F	IRST WB QUEUE LEF	*	72.0	10.0	447.0	10.0	*	375.	90.	AG	.0	10.0	2
23. F	IRST WB R	*	222.0	55.0	67.0	55.0	*	155.	270.	AG	.0	10.0	
24. F	IRST WB QUEUE R	*	72.0	55.0	222.0	55.0	*	150.	90.	AG	.0	10.0	1

Receptor Data

	* COORDINATES (FT)									
RECEPTOR	*	Х	Y	Z						
	*									
1. REC 1 (SE CORNER)	*	72.0	-50.0	6.0						
2. REC 2 (SW CORNER)	*	-72.0	-50.0	6.0						
3. REC 3 (NW CORNER)	*	-72.0	60.0	6.0						
4. REC 4 (NE CORNER)	*	72.0	60.0	6.0						
5. REC 5 (E NB)	*	72.0	-150.0	6.0						
6. REC 6 (W NB DEP)	*	-72.0	160.0	6.0						

CDPHE/APCD/Technical Services Program

7.	REC 7	(N	WΒ	DEP)	*	-172.0	60.0	6.0
8.	REC 8	(S	EΒ)	*	-172.0	-50.0	6.0
9.	REC9	(E	NB	DEP)	*	72.0	160.0	6.0
10.	REC10	(W	SB	DEP)	*	-72.0	-150.0	6.0
11.	REC11	(S	EΒ	DEP)	*	172.0	-50.0	6.0
12.	REC12	(N	WΒ)	*	172.0	60.0	6.0
13.	REC13				*	72.0	70.0	6.0
14.	REC14				*	82.0	60.0	6.0
15.	REC15				*	82.0	70.0	6.0
16.	REC16				*	-82.0	60.0	6.0
17.	REC17				*	-72.0	70.0	6.0
18.	REC18				*	-82.0	70.0	6.0
19.	REC19				*	-72.0	80.0	6.0
20.	REC20				*	-82.0	80.0	6.0
								(Dotoo

CAL3QHCR (Dated: 95221)

DATE : 8/ 5/99 TIME : 10:39:57

JOB: UNIVERSITY & FIRST 2006 SCREENING

RUN: UNIVERSITY & FIRST 2006

Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum concentrations, is indicated as the maximum.

*	MAXIMUM	HOURLY (PPM)	CONCENTRA	TIONS WITH	ANY	AMBIENT	BACKGROUND	CONCEN	TRATIONS	(BKG)	ADDED
**	REC1	REC2	2 REC3	REC4	REC5	5 REC6	5 REC7	REC8	REC9	REC1	0
MAX+BKG * - BKG * *	4.6 .0	4.6	5 5.1) .0	5.4	3.3 .0	3	2 3.6) .0	6.1 .0	3.2	3.1	
MAX * WIND DIR* JULIAN * HOUR *	4.6 186 2 13	4.6 13 2 19	5 5.1 32 2 12	5.4 186 2 13	3.3 186 2 13	3 5.2 146 2 18	2 3.6 141 2 14	6.1 41 2 22	3.2 186 2 13	3.1 41 2 22	
*	REC1	1 REC1	L2 REC13	REC14	REC1	L5 REC1	6 REC17	REC18	REC19	REC2	0
MAX+BKG * - BKG * *	3.0	4.8	4.8 0.0	6.3 .0	5.5 .0	5 4.0) .0) 4.9) .0	3.7	4.7 .0	3.4	
MAX * WIND DIR* JULIAN *	3.0 41 2	4.8 186 2	3 4.8 186 2	6.3 186 2	5.5 186 2	5 4.0 41 2) 4.9 32 2	3.7 41 2	4.7 32 2	3.4 141 2	
HOUR *	22	13	13	13	13	22	12	22	12	14	

THE HIGHEST CONCENTRATION OF 6.30 PPM OCCURRED AT RECEPTOR REC14.

CAL3QHCR (Dated: 95221)

PAGE: 4

PAGE: 3

DATE : 8/ 5/99 TIME : 10:39:58

JOB: UNIVERSITY & FIRST 2006 SCREENING

RUN: UNIVERSITY & FIRST 2006

- FOR PM OUTPUT, THERE IS ONLY ONE COLUMN AND ASTERISK FOR THE ANNUAL AVERAGE/PERIOD OF CONCERN TABLE.
 - 2. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE.
 - 3. THE NUMBER OF CALM HOURS USED IN PRODUCING EACH AVERAGE ARE PREFIXED BY A C.

PRIMARY AVERAGES.

MAXIMUM 8-HOUR RUNNING NONOVERLAPPING AVERAGE CONCENTRATIONS IN PARTS PER MILLION (PPM), INCLUDING AMBIENT BACKGROUND CONCENTRATIONS.

Receptor		Highest Ending	Second highest Ending				
Number	Conc	Day Hr Calm	Conc Day Hr Calm	1			
1 2 3 4 5 6 7 8 9 10 11 12 12 13	2.28 3.10 4.30 3.50 1.54 3.84 2.44 3.84 1.63 2.40 1.96 3.25 3.10	(2,24) C 0 (2,24) C 0 (2,24) C 0 (2,19) C 0 (2,19) C 0 (2,19) C 0 (2,19) C 0 (2,18) C 0 (2,18) C 0 (2,24) C 0 (2,19) C 0 (2,24) C 0 (2,19) C 0 (2,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			
14	3.74	(2,19) C 0	1.74 (2,23) C 0				
15	3.23	(2,19) C 0	1.48 (2,23) C 0				
16	3.21	(2,23) C 0	2.81 (2,16) C 0				
17	4.32*	(2,24) C 0	3.50 (2,16) C 0				
18	3.06	(2,18) C 0	2.69 (2,16) C 0				
19	4.27	(2,24) C 0	3.56* (2,16) C 0				
20	2.97	(2,18) C 0	2.57 (2,16) C 0				

FIVE HIGHEST 1-HOUR END-TO-END AVERAGE CONCENTRATIONS IN PARTS PER MILLION INCLUDING AMBIENT BACKGROUND CONCENTRATIONS.

Highest			Second Highest			Third Highest			Fourth H	Fifth Highest					
Rcptr		Ending			Ending			Ending			Ending			Ending	
No.	Conc	Day Hr	Calm	Conc	Day Hr	Calm	Conc	Day Hr	Calm	Conc	Day Hr	Calm	Conc	Day Hr	Calm
1	4.60	(2,13)	C 0	3.10	(2,22)	C 0	3.00	(2,12)	C 0	3.00	(2,23)	C 0	2.90	(2, 19)	C 0
2	4.60	(2,19)	C 0	4.20	(2,24)	C 0	3.70	(2,1)	C 0	3.30	(2,23)	C 0	3.10	(2,12)	C 0
3	5.10	(2, 12)	C 0	5.10	(2,23)	C 0	5.00	(2, 22)	C 0	4.60	(2, 19)	C 0	4.50	(2, 20)	C 0
4	5.40	(2, 13)	C 0	5.00	(2, 14)	C 0	4.80	(2, 18)	C 0	4.50	(2, 15)	C 0	4.50	(2, 17)	C 0
5	3.30	(2, 13)	C 0	2.60	(2, 24)	C 0	2.40	(2, 19)	C 0	2.10	(2, 1)	C 0	1.60	(2, 12)	C 0
б	5.20	(2, 18)	C 0	5.10	(2, 14)	C 0	4.20	(2, 15)	C 0	4.20	(2, 17)	C 0	3.70	(2,16)	C 0
7	3.60	(2, 14)	C 0	3.60	(2, 18)	C 0	3.00	(2, 15)	C 0	3.00	(2, 17)	C 0	2.40	(2, 13)	C 0
8	6.10	(2, 22)	C 0	5.70*	(2, 12)	C 0	5.70	(2, 23)	C 0	4.70	(2,20)	C 0	4.60	(2,21)	C 0
9	3.20	(2, 13)	C 0	2.10	(2, 15)	C 0	2.10	(2, 17)	C 0	1.90	(2, 14)	C 0	1.90	(2, 18)	C 0

0 / F /	0.0									DAGE ·
				(CAL3QHCR (Date	d: 95221;)			
20	3.40 (2,14) C O	3.40 (2,18) C 0	3.40 (2,2	2) C 0	3.20 (2,12) C 0	3.20 (2,15) C O
19	4.70 (2,12) C O	4.70 (2,18) C O	4.70 (2,2	2) C 0	4.70 (2,23) C O	4.60 (2,14) C O
18	3.70 (2,22) C 0	3.40 (2,12) C 0	3.40 (2,1	5) C 0	3.40 (2,17) C 0	3.40 (2,23) C 0
Τ./	4.90 (2,12) C O	4.90 (2,23) C O	4.80 (2,2	2) C 0	4.40 (2,19) C O	4.30 (2,20) C O
16	4.00 (2,22) C U	3.70 (2,12) C U	3.70 (2,2	3) C U	3.40 (2,15) C U	3.40 (2,17) C U
15	5.50 (2,13) C U	4.30 (2,15) C U	4.30 (2,1		4.20 (2,14) C 0	4.00 (2,18) C U
1 -	C.50 (2,13) < 0	4 20 ($2,11) \subset 0$	4 20 (2,1	7) 0 0	1.00 (2,11) = 0	1.00 (2,10) C 0
14	6 30*1	2 13) C 0	5 00 0	2 14) 0 0	4 90 (21	5) 0 0	4 90 i	217) C 0	4 90 (218) C 0
13	4.80 (2,13) C 0	4.20 (2,14) C 0	4.10 (2.1	5) C 0	4.10 (2,17) C 0	4.10 (2,18) C 0
12	4.80 (2,13) C O	4.50 (2,14) C O	4.40 (2,1	5) C 0	4.40 (2,17) C O	4.40 (2,18) C O
11	3.00 (2,22) C O	2.80 (2,12) C O	2.80 (2,1	9) C 0	2.80 (2,23) C O	2.40 (2,20) C O
10	3.10 (2,22) C O	2.90 (2,23) C O	2.80 (2,1	2) C U	2.80 (2,19) C O	2.40 (2,20) C O
	o	0 0 0 1 - 0	a a a í	0 0 0 1 0 0			<u> </u>	0 1 0 1 0 0	o 10 /	0 0 0 \ m 0

DATE : 8/5/99 TIME : 10:39:58 PAGE: 6

JOB: UNIVERSITY & FIRST 2006 SCREENING

RUN: UNIVERSITY & FIRST 2006

CALM DURATION FREQUENCY

Hours of	Frequency						
Consecutive	of						
Calm Winds	Occurrence	(Julian	day/hour	ending)	of	Significant	Occurrences

No calm wind hours were encountered during this processing period.

Program terminated normally

CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221

PAGE 1

JOB: HAMPDEN 2006 SCREENING

RUN: HAMPDEN 2006

DATE : 8/ 3/99 TIME : 13: 3:35

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	ZO = 175. CM				
U =	1.0 M/S	CLAS =	4 (D)	ATIM = 60. MINUTES	MIXH =	1000. M	AMB =	.0 PPM

LINK VARIABLES

	LINK DESCRIPTION *	L	INK COORDIN	JATES (FT)	,	* LENGTH	BRG TYPE	VPH EF	H W V/C	QUEUE
	*	X1	Y1	X2	¥2 *	* (FT)	(DEG)	(G/MI)	(FT) (FT)	(VEH)
	*-				;	*				
1.	UNIVERSITY NB APPR *	32.0	-1000.0	32.0	.0	* 1000.	360. AG	1104. 8.7	.0 45.0	
2.	UNIVERSITY NB Q *	32.0	-59.0	32.0	-291.4	* 232.	180. AG	446. 100.0	.0 25.0 .85	11.8
3.	UNIVERSITY NB O LEF*	9.0	-59.0	9.0	-719.1	* 660.	180. AG	609. 100.0	.0 19.0 1.28	33.5
4.	UNIVERSITY NB DEP. *	32.0	.0	32.0	1000.0	* 1000.	360. AG	1459. 8.7	.0 45.0	
5.	UNIVERSITY NB FR *	52.0	-1000.0	52.0	.0 3	* 1000.	360. AG	371. 8.7	.0 16.0	
6.	UNIVERSITY SB APPR *	-24.0	1000.0	-24.0	.0 3	* 1000.	180. AG	1175. 8.7	.0 47.0	
7.	UNIVERSITY SB Q *	-24.0	74.0	-24.0	454.2	* 380.	360. AG	469. 100.0	.0 27.0 1.01	19.3
8.	UNIVERSITY SB Q LEFT*	.0	74.0	.0	620.5	* 547.	360. AG	316. 100.0	.0 11.0 1.37	27.8
9.	UNIVERSITY SB DEP. *	-24.0	.0	-24.0	-1000.0	* 1000.	180. AG	2039. 8.7	.0 47.0	
10.	UNIVERSITY SB FR *	-49.0	1000.0	-49.0	.0 3	* 1000.	180. AG	176. 8.7	.0 22.0	
11.	HAMPDEN EB APPR. *	-1000.0	-29.5	.0	-29.5	* 1000.	90. AG	2238. 7.3	.0 55.0	
12.	HAMPDEN EB QUEUE *	-60.0	-29.5	-615.4	-29.5	* 555.	270. AG	626. 100.0	.0 35.0 1.02	28.2
13.	HAMPDEN .EB DEP. *	.0	-29.5	1000.0	-29.5	* 1000.	90. AG	2759. 7.3	.0 55.0	
14.	HAMPDEN EB QUEUE LEF*	-60.0	.0	-989.2	2 3	* 929.	270. AG	307. 100.0	.0 12.0 1.47	47.2
15.	HAMPDEN EB FR *	-335.0	-53.0	.0	-53.0 3	* 335.	90. AG	298. 7.3	.0 12.0	
16.	HAMPDEN WB APPR. *	1000.0	43.0	.0	43.0	* 1000.	270. AG	2505. 7.3	.0 57.0	
17.	HAMPDEN WB QUEUE *	60.0	43.0	868.3	43.0	* 808.	90. AG	591. 100.0	.0 37.0 1.05	41.1
18.	HAMPDEN WB DEP. *	.0	43.0	-1000.0	43.0	* 1000.	270. AG	3126. 7.3	.0 57.0	
19.	HAMPDEN WB QUEUE LEF*	60.0	12.0	895.0	12.0	* 835.	90. AG	591. 100.0	.0 24.0 1.28	42.4
20.	HAMPDEN WB R *	60.0	96.0	95.0	61.0 3	* 49.	135. AG	123. 7.3	.0 13.0	
21.	HAMPDEN WB QUEUE R *	60.0	96.0	92.3	63.7	* 46.	135. AG	197. 100.0	.0 13.0 .15	2.3
									PAGE 2	

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
2. UNIVERSITY NB Q	*	120	77	2.0	1104	2000	129.64	2	3
3. UNIVERSITY NB Q	LEF*	120	105	2.0	445	1900	129.64	2	3
7. UNIVERSITY SB Q	*	120	81	2.0	1175	2000	129.64	2	3
8. UNIVERSITY SB Q L	EFT*	120	109	2.0	151	1900	129.64	2	3
12. HAMPDEN EB QUEUE	*	120	72	2.0	2238	2000	129.64	1	3
14. HAMPDEN EB QUEUE	LEF*	120	106	2.0	232	1900	129.64	2	3
17. HAMPDEN WB QUEUE	*	120	68	2.0	2505	2000	129.64	1	3
19. HAMPDEN WB QUEUE	LEF*	120	102	2.0	566	1900	129.64	2	3
21. HAMPDEN WB QUEUE	R *	120	68	2.0	123	2000	129.64	1	3

RECEPTOR LOCATIONS

CDPHE/APCD/Technical Services Program

-						
		*	COOF	RDINATES (FT)	*
	RECEPTOR	*	Х	Y	Z	*
		*				*
1.	REC 1 (SE CORNER)	*	60.0	-59.0	6.0	*
2.	REC 2 (SW CORNER)	*	-48.0	-60.0	6.0	*
3.	REC 3 (NW CORNER)	*	-60.0	72.0	6.0	*
4.	REC 4 (NE CORNER)	*	99.0	74.0	6.0	*
5.	REC 5 (E MID-MAIN) *	60.0	-159.0	6.0	*
б.	REC 6 (W MID-MAIN) *	-48.0	-159.0	6.0	*
7.	REC 7 (N MID-LOCA	L) *	-170.0	74.0	6.0	*
8.	REC 8 (S MID-LOCA	L) *	-170.0	-60.0	6.0	*
9.	REC9	*	54.0	172.0	6.0	*
10.	REC10	*	-60.0	172.0	6.0	*
11.	REC11	*	154.0	74.0	6.0	*
12.	REC12	*	170.0	-60.0	6.0	*
13.	REC13	*	99.0	84.0	6.0	*
14.	REC14	*	109.0	74.0	6.0	*
15.	REC15	*	109.0	84.0	6.0	*
16.	REC16	*	89.0	84.0	6.0	*

i	JOB:	HAM	PDEN 20	006 SCI	REENING	G					RI	UN: HAN	MPDEN 2	2006			
WIND AN	NGLE	RAN	GE:	5360													
ANGLE	*		(PPM)														
(DEGR)* R	EC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16
5.	*	2.9	3.2	2.0	.2	2.0	2.6	. 2	3.4	. 8	1.8	.0	2.5	.1	.1	.1	.2
10	*	2.7	2 9	2.0	. 2	1 0	2.0	. 4	3 5	.0	2 2	.0	2.5				1
10.	*	2/	2.9	2.5		1 6	2.1		2.5		2.2	.0	2.5	• -	.0	.0	• -
15.	 +	2.5	3.0	2.5	.0	1.0	2.4	. 5	2.1		2.5	.0	2.5	.0	.0	.0	.0
20.		2.5	2.0	2.0	.0	1.5	4.5	. /	3.8	. 4	2.5	.0	2.5	.0	.0	.0	.0
25.	*	2.5	2.5	2.6	.0	1.5	2.7	.8	3.8	.1	2.5	.0	2.6	.0	.0	.0	.0
30.	*	2.6	2.2	2.5	.0	1.5	2.8	. 8	3.9	.1	2.5	.0	2.6	.0	.0	.0	.0
35.	*	2.6	2.4	2.5	.0	1.5	2.9	.9	3.9	.1	2.4	.0	2.6	.0	.0	.0	.0
40.	*	2.7	2.3	2.3	.0	1.5	3.3	.9	3.8	.0	2.2	.0	2.7	.0	.0	.0	.0
45.	*	2.8	2.5	2.3	.0	1.5	3.6	1.0	4.1	.0	2.2	.0	2.8	.0	.0	.0	.0
50.	*	3.0	2.6	2.2	.0	1.6	3.7	1.0	3.9	.0	2.1	.0	2.9	.0	.0	.0	.0
55.	*	3.0	3.0	2.2	.1	1.7	3.9	1.0	4.1	.0	2.1	.1	3.0	.0	.1	.0	.0
60.	*	3.2	3.3	2.1	.1	1.7	4.0	. 9	4.4	. 0	2.1	.1	3.0	. 0	.1	. 0	. 0
65.	*	3.3	3.6	2.2	2	1.6	3.9	. 9	4.2	. 0	2.1	2	3.2	. 0	2	. 0	. 0
70	*	3 4	3 9	2 2		1 5	37	1 1	4 4		2 1	. 2	2 2	.°	. 2	.°	.*
75	*	3.1	4 2	2.2	. 1	1 2	3 6	1 4	4 4	.0	2.1	. 1	3.5	. 2	. 1	. 2	.2
×0.	*	2 1	1.2	2.5	1 4	1.2	2.0	1 0	1.1	.0	2.1	1 2	2.1		1 /	. 1	.5
00.	*	2.1	4.0	2.1	1.T 2.2	. ,	2.2	2.1	2.1	• 1	2.2	1.5	2.2	1 6	1.1	1 5	1 6
05.	 +	2.0	4.0	5.7	2.5	• /	3.⊥ 2.⊂	2.4	3.0	. 5	2.4	2.3	2.4	1.0	2.5	1.5	1.0
90.	т	2.0	3.7	4.4	3.3	. 3	2.0	2.9	3.3	.4	2.1	3.1	1./	2.3	3.3	2.3	2.3
95.	î.	1.4	3.2	4.6	4.0	. 2	2.5	3.3	2.4	.9	3.1	4.0	1.2	3.1	4.0	3.1	3.2
100.	*	. 8	2.5	4.6	4.6	.0	2.2	3.⊥	1.9	1.3	3.4	4.6	.7	3.7	4.6	3.7	3.7
105.	*	.4	2.3	4.4	4.9	.0	2.2	2.9	1.5	1.7	3.8	4.8	.4	4.1	4.8	4.1	4.1
110.	*	.2	2.1	3.7	4.9	.0	2.2	2.8	1.2	1.9	4.0	4.9	.2	4.0	4.9	4.0	4.0
115.	*	.1	2.2	3.3	4.7	.0	2.2	2.5	1.1	1.9	4.1	4.7	.1	3.9	4.7	3.9	3.9
120.	*	.1	2.3	2.6	4.6	.0	2.4	2.4	1.2	1.9	4.0	4.6	.1	3.8	4.6	3.8	3.8
125.	*	.1	2.4	2.4	4.2	.0	2.4	2.4	1.1	1.9	3.8	4.2	.1	3.6	4.2	3.6	3.6
130.	*	.1	2.4	2.2	4.1	.0	2.4	2.6	1.1	1.9	3.7	4.1	.0	3.5	4.1	3.5	3.5
135.	*	.1	2.6	2.2	3.8	.0	2.5	2.9	1.0	1.8	3.3	3.8	.0	3.4	3.8	3.4	3.4
140.	*	.0	2.7	2.2	3.7	.0	2.5	2.9	1.0	1.6	3.2	3.7	.0	3.2	3.7	3.2	3.3
145.	*	. 0	2.6	2.3	3.6	. 0	2.4	3.0	. 9	1.8	3.2	3.6	. 0	3.2	3.6	3.2	3.3
150.	*	. 0	2.8	2.5	3.5	. 0	2.5	2.9	. 9	1.8	3.0	3.5	. 0	3.1	3.5	3.1	3.3
155	*	.0	2.8	2 8	3.3	.0	2 6	3 0	. 8	1 7	29	3 3	.0	3 1	3 3	3 1	3.3
160	*	.0	2.0	3 0	2 2	.0	2.0	2 8	.0	1 8	3 0	2.2	.0	3 0	2.2	3 0	3.3
165	*	.5	2.7	3.0	2.2	. 2	2.5	2.0	. ,	1 0	2.0	2.2	.0	3.0	2.2	3.0	3.5
170	*	1 0	2.7	2.2	2.5	. 1	2.7	2.7	.0	2 1	2.0	2.2	.0	2.0	2.1	2 1	2.2
170.	+	1.0	2.5	2.4	3.5	1 2	2.5	2.0	. 5	2.4	2.4	3.3	.0	2.4	2.4	2.1	3.7
100	 +	1.0	2.1 1 7	2.0	3.9	1.5	1.9	2.3	. 4	2.4	2.5	3.5	.0	2.0	2.9	3.5	4.2
100.	÷	2.2	1.7	2./	4.3	2.0	1.0	2.2	. 4	2.7	2.2	3.8	• 1	3.9	4.1	3./	4.0
185.		2.9	1.2	2.4	4.8	2.4	1.2	2.0	.0	2.7	1.8	4.0	.4	4.4	4./	4.3	4.8
190.		3.4	. 7	2.2	4.9	3.0	. 7	2.0	.0	2.8	1.4	4.1	.5	4.6	4.8	4.5	4.9
195.	*	3.7	.4	2.1	5.1	3.3	.4	1.9	.0	2.6	1.2	4.3	.7	4.7	4.8	4.5	5.1
200.	*	3.8	.2	2.0	4.9	3.6	.2	2.0	.0	2.1	1.1	4.5	.9	4.7	4.8	4.6	4.8
205.	*	3.8	.1	2.0	4.7	3.6	.1	2.0	.0	2.2	1.2	4.6	1.0	4.4	4.8	4.3	4.2
210.	*	3.5	.1	2.0	4.5	3.4	.1	2.0	.0	2.2	1.2	4.8	1.1	4.0	4.4	3.9	3.8
215.	*	3.5	.1	2.1	4.1	3.4	.1	2.1	.0	2.2	1.2	4.6	1.2	3.7	4.4	3.7	3.5
220.	*	3.4	.1	2.4	3.9	3.3	.1	2.3	.0	2.5	1.2	4.6	1.2	3.1	4.1	3.4	3.1
225.	*	3.2	.1	2.4	3.8	3.1	.1	2.4	.0	2.8	1.3	4.5	1.2	3.0	3.6	3.1	2.9
230.	*	3.1	.0	2.5	3.8	3.0	.0	2.4	.0	2.9	1.3	4.2	1.2	3.0	3.7	3.2	2.9
235.	*	3.0	.0	2.5	3.6	2.9	. 0	2.5	. 0	2.9	1.2	4.3	1.3	2.9	3.7	3.0	2.9
240.	*	2.9	.1	2.7	3.7	2.9	.0	2.6	.1	2.8	1.2	4.4	1.3	3.0	3.7	3.0	3.1
245.	*	2.9	.2	2.8	3.8	2.9	.0	2.6	.2	3.0	1.2	4.1	1.3	3.1	3.7	3.2	3.3
250	*	2 9	. <u>-</u> 2	2 8	39	2 8	.0	2 6	ים. ג	2 8	1 0	4 1	1 4	3 2	3 9	3.2	3 6
255	*	2 1	.5	2.0	2.0	2.0	.0	2.0		2.0	τ.0 Ω	4 0	1 6	2.2	2.2 2 Q	2.2	3.5
255.	*	3.1	1 2	2.0	3.9	2.0	.0	2.5	1 2	2.5	.0	3 5	2 1	2 1	2.0	2 1	2.2
200. 265	*	2.4	1.3	2.4	3.9 2 1	2.0	.0	2.3	1 0	2.5	• • • • •	3.5	2.1	2.1	3.0	2.1	2.2
∠05.	~	3.1	∠.0	∠.⊥	3.4	3.0	.1	1.9	1.9	۷.۷	.5	3.3	4.3	∠.8	3.4	4.1	3.4

PAGE 3

270.	*	4.2	2.9	1.7	3.0	3.3	.4	1.4	2.8	2.0	.2	2.6	2.6	2.5	2.7	2.4	2.7
275.	*	4.4	3.6	1.2	2.6	3.4	.6	1.0	3.4	1.8	.1	2.3	2.8	2.1	2.6	2.0	2.4
280.	*	4.3	4.1	.8	2.3	3.9	.9	.6	3.9	1.7	.0	1.7	2.7	1.7	2.0	1.6	2.1
285.	*	3.8	4.2	.4	1.9	4.0	1.2	.3	4.2	1.6	.0	1.2	2.7	1.4	1.6	1.2	1.9
290.	*	3.3	4.1	.2	1.8	4.2	1.4	.2	4.2	1.6	.0	1.1	2.6	1.5	1.5	1.3	1.8
295.	*	2.8	3.9	.2	1.8	4.4	1.5	.1	4.1	1.7	.0	1.1	2.4	1.3	1.5	1.2	1.6
300.	*	2.6	3.8	.1	1.7	4.4	1.5	.1	4.0	1.7	.0	1.0	2.5	1.3	1.5	1.2	1.6
305.	*	2.2	3.5	.1	1.5	4.1	1.5	.1	3.7	1.7	.0	1.0	2.6	1.2	1.3	1.2	1.5
310.	*	1.9	3.2	.1	1.4	4.0	1.4	.1	3.6	1.8	.0	.9	2.6	1.2	1.2	1.1	1.4
315.	*	1.9	3.2	.1	1.4	4.0	1.5	.1	3.5	1.9	.0	.9	3.0	1.2	1.2	1.1	1.4
320.	*	2.3	2.9	.1	1.4	3.8	1.4	.0	3.3	1.9	.0	.9	3.3	1.2	1.1	1.1	1.5
325.	*	2.1	2.7	.1	1.3	3.9	1.4	.0	3.1	2.0	.0	.9	3.3	1.2	1.2	1.2	1.5
330.	*	2.5	2.5	.0	1.4	3.7	1.4	.0	3.1	2.0	.0	.8	3.3	1.3	1.2	1.2	1.4
335.	*	2.5	2.3	.0	1.3	3.6	1.3	.0	3.0	2.0	.0	.7	3.2	1.2	1.1	1.1	1.4
340.	*	2.9	2.3	.1	1.2	3.3	1.4	.0	3.0	2.0	.1	.7	3.1	1.2	1.0	1.0	1.3
345.	*	3.1	2.3	.2	1.0	3.5	1.5	.0	3.0	1.9	.2	.6	3.2	1.0	.9	.9	1.1
350.	*	3.2	2.5	.6	.8	3.1	1.6	.0	3.0	1.7	.5	.4	2.9	.8	.7	.6	.9
355.	*	3.1	2.7	1.0	.6	2.6	2.0	.0	3.0	1.3	.9	.2	2.7	.6	.5	.5	.7
360.	*	2.9	2.8	1.4	.5	2.2	2.2	.0	3.1	1.1	1.3	.1	2.6	.4	.2	.2	.5
MAX	*	4.4	4.3	4.6	5.1	4.4	4.0	3.3	4.4	3.0	4.1	4.9	3.3	4.7	4.9	4.6	5.1
DEGR.	*	275	80	95	195	295	60	95	60	245	115	110	70	195	110	200	195

The highest concentration of 5.10 PPM occurred at receptor rec4 .

JOB: I	CAL3 PARKER & ILLIF DATE : 8/ 3/99 TIME : 12:24:43	QHC:	LINE SOUR	CE DISPER	SION MODEL RUN:	- VERSION PARKER &	2.0 Dated 9 ILLIF 2006 ;	5221 SCREENING			PAGE 1		
SITE &	The MODE flag has k METEOROLOGICAL VARIAE	een s SLES	set to C f	or calcul	ating CO av	erages.							
	VS = .0 CM/S U = 1.0 M/S	VD : CLAS	= .0 CM S = 4 (I/S D) AT	ZO = 175. C IM = 60. M	M IINUTES	MIXH = 10	00. M A	MB =	.0 PPM			
	LINK VARIABLES												
	LINK DESCRIPTION	* *	X1	NK COORDI Yl	NATES (FT) X2	* Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
	 PARKER NB APPR PARKER NB Q PARKER NB Q LEF PARKER NB DEP. PARKER NB R PARKER SB APPR PARKER SB Q LEFT PARKER SB DEP. ILLIF EB APPR. ILLIF EB QUEUE ILLIF EB QUEUE LE ILLIF EB R ILLIF EB QUEUE R 	* * * * * * * * * * * *	$1024.0 \\ 72.0 \\ 65.0 \\ 24.0 \\ 113.5 \\ -1030.0 \\ -92.5 \\ -75.0 \\ -30.0 \\ -1000.0 \\ -57.0 \\ .0 \\ -75.0 \\ -1000.0 \\ -26.0 \\ \end{array}$	$\begin{array}{c} -1000.0\\ -49.0\\ -59.0\\ 0\\ -54.0\\ 1000.0\\ 62.0\\ 69.0\\ -26.0\\ -26.0\\ -26.0\\ -26.0\\ -26.0\\ -26.0\\ -26.0\\ -26.0\\ -48.5\\ -48.5\end{array}$	$\begin{array}{c} 24.0\\ 938.1\\ 1858.9\\ -976.0\\ 313.5\\ -30.0\\ -300.2\\ -1798.4\\ 970.0\\ 0\\ -776.9\\ 1000.0\\ -923.6\\ 0\\ -242.9\end{array}$	0 * -915.1 * -1852.9 * -254.0 * -254.0 * -254.0 * -254.0 * -269.7 * 1782.9 * -1000.0 * -26.0 * -26.0 * -26.0 * -26.0 * -26.0 * -26.5 * -48.5 * -48.5 *	$1414. \\ 1225. \\ 2537. \\ 1414. \\ 283. \\ 1414. \\ 294. \\ 2431. \\ 1414. \\ 1000. \\ 720. \\ 1000. \\ 849. \\ 1000. \\ 217. \\ 1000. \\ 217. \\ 1000. \\ 217. \\ 1000. \\ 217. \\ 1000. \\ 1000. \\ 217. \\ 1000. \\ 1000. \\ 217. \\ 1000. $	315. AG 135. AG 135. AG 135. AG 135. AG 315. AG 315. AG 135. AG 90. AG 270. AG 90. AG 270. AG 90. AG 270. AG	1555. 429. 296. 2004. 33. 1260. 429. 296. 1873. 1435. 435. 1900. 316. 529. 217.	$\begin{array}{c} 6.3\\ 100.0\\ 100.0\\ 6.3\\ 6.3\\ 100.0\\ 100.0\\ 100.0\\ 7.3\\ 100.0\\ 7.3\\ 100.0\\ 7.3\\ 100.0\\ 7.3\\ 100.0\\ \end{array}$	$\begin{array}{c} .0 & 49.0 \\ .0 & 29.0 & 1 \\ .0 & 12.0 & 2 \\ .0 & 49.0 \\ .0 & 12.0 \\ .0 & 64.0 \\ .0 & 41.0 \\ .0 & 16.0 & 1 \\ .0 & 64.0 \\ .0 & 45.0 \\ .0 & 25.0 & 1 \\ .0 & 45.0 \\ .0 & 13.0 & 1 \\ .0 & 21.0 \\ .0 & 21.0 \end{array}$.11 .00 1 .90 .96 1 .05 .63 .77	62.2 28.9 14.9 23.5 36.6 43.1 11.0
م م	16. ILLIF WB APPR. 17. ILLIF WB QUEUE 18. ILLIF WB DEP. 19. ILLIF WB QUEUE LE 20. ILLIF WB R 21. ILLIF WB QUEUE R IONAL QUEUE LINK DADAME	* * * * *	$1000.0 \\ 41.0 \\ .0 \\ 58.0 \\ 225.0 \\ .0 \\ .0 \\$	34.0 34.0 34.0 7.5 65.5 65.5	.0 291.6 -1000.0 112.4 .0 110.3	34.0 * 34.0 * 34.0 * 7.5 * 65.5 * 65.5 *	1000. 251. 1000. 54. 225. 110.	270. AG 90. AG 270. AG 90. AG 270. AG 90. AG	1198. 435. 1689. 316. 269. 217.	7.3 100.0 7.3 100.0 7.3 100.0	.0 57.0 .0 37.0 .0 57.0 .0 15.0 .0 27.0 .0 27.0 PAGE	.88 .76 .39 2	12.7 2.8 5.6
100111	LINK DESCRIPTION	*	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVA RATE	NL		
	2. PARKER NB Q 3. PARKER NB Q LEF 7. PARKER SB Q 8. PARKER SB Q LEFT 11. ILLIF EB QUEUE 13. ILLIF EB QUEUE LE 15. ILLIF WB QUEUE R 17. ILLIF WB QUEUE LE 21. ILLIF WB QUEUE R	* * * * * * * * *	120 120 120 120 120 120 120 120 120 120	74 102 74 102 75 109 75 75 109 75	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1555 443 1260 433 1435 179 529 1198 84 269	2000 1900 2000 1900 2000 1900 2000 2000	129.64 129.64 129.64 129.64 129.64 129.64 129.64 129.64 129.64 129.64 129.64	1 2 1 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3			
	RECEPTOR LOCATIONS	*		COORDINAT	ES (FT)	*							

	RECEPTOR	*	Х	Y	Z	*
1.	REC 1 SE CORNER	*	120.0	-48.0	6.0	*
2.	REC 2 (SW CORNER)	*	-17.5	-58.0	6.0	*
3.	REC 3 (NW CORNER)	*	-140.5	64.0	6.0	*
4.	REC 4 (NE CORNER)	*	-15.0	79.0	6.0	*
5.	REC 5 (E MID-MAIN)	*	220.0	-48.0	6.0	*
6.	REC 6 (W MID-MAIN)	*	-117.5	-58.0	6.0	*
7.	REC 7 (N MID-LOCAL)	*	-240.5	164.0	6.0	*
8.	REC 8 (S MID-LOCAL)	*	82.5	-158.0	6.0	*
9.	REC 9	*	220.0	79.0	6.0	*
10.	RECEPTOR 10	*	-115.0	179.0	6.0	*
11.	REC 11	*	-117.5	-58.0	6.0	*
12.	REC12	*	-240.5	64.0	6.0	*
13.	REC13	*	220.0	-148.0	6.0	*
14.	REC15	*	-80.0	-59.0	6.0	*
15.	REC16	*	-80.0	-69.0	6.0	*
16.	REC17	*	-70.0	-59.0	6.0	*
17.	RECEPTOR 18	*	-70.0	-69.0	6.0	*
18.	REC19	*	-60.0	-69.0	6.0	*
19.	REC20	*	-60.0	-59.0	6.0	*
20.	REC21	*	-50.0	-69.0	6.0	*
21.	REC22	*	-50.0	-59.0	6.0	*

		VED C								DIDI.		-						PAGE	3	
ANGLE *	B: PAR	(PPM)	TTTTE							RUN:	PARKEI	х & ТП	JTF 200	J6 SCRI	SENING					
(DEGR)	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
5. *	1.6	1.3	2.3	.0	1.4	3.7	2.3	2.2	.0	.0	3.7	1.2	.6	3.3	2.8	2.9	2.4	2.1	2.5	2.0
10. *	1.4	1.3	2.2	.0	1.2	3.6	2.2	2.4	.0	.0	3.6	1.2	.6	2.9	2.4	2.8	2.3	1.8	2.1	1.6
15. *	• 1.3	1.3	2.1	.0	1.2	3.4	2.1	2.4	.0	.0	3.4	1.1	.6	2.8	2.4	2.2	1.9	1.8	2.1	1.6
20. *	1.2	1.4	2.1	.0	1.2	3.3	2.1	2.3	.0	.0	3.3	1.1	.5	2.5	2.1	2.2	2.0	1.7	2.0	1.6
25. *	1.3	1.5	2.0	.0	1.2	3.1	1.9	2.3	.0	.0	3.1	1.1	.5	2.5	2.2	2.3	1.9	1.7	1.8	1.8
30. 7	5 1.4	1.7	1.9	.0	1.2	3.1	1.9	2.3	.0	.0	3.1	1.1	.4	2.5	2.1	2.2	1.9	1.9	2.1	1.6
35. 1	· 1.4	1.8	2.0	.0	1.2	3.1	1.9	2.2	.0	.0	3.1	1.1	.4	2.7	2.1	2.4	1.9	1./	2.3	1.8
40. 7	· 1.4	2.0	2.1	.0	1.1	3.∠ 2 1	2.1	2.3	.0	.0	3.Z	1.1	. 3	2.7	2.0	2.0	2.0	1.9	2.5	1.9
	1 4	2.0	2.1	.0	1 0	- J.⊥ 3 3	2.1	2.2	.0	.0	3.1 3.3	1 1	د. ۲	2.7	2.2	2.5	2.0	2.0	2.5	2 0
55. *	1.4	2.2	1.9	.0	1.0	3.3	1.9	2.0	.0	.0	3.3	1.1	.3	2.8	2.2	2.7	2.2	2.2	2.8	1.9
60. *	1.4	2.1	1.9	.0	.9	3.4	1.9	2.0	.0	.0	3.4	1.1	.3	2.9	2.2	3.0	2.2	2.1	2.8	2.0
65. *	1.3	2.2	2.0	.1	.9	3.4	2.1	1.8	.0	.0	3.4	1.2	.3	3.1	2.3	3.0	2.2	2.1	2.9	2.0
70. *	1.3	2.0	2.2	.2	.9	3.5	2.1	1.9	.0	.0	3.5	1.0	.3	2.9	2.1	2.8	2.0	2.1	2.9	2.1
75. *	1.2	2.3	2.2	.4	1.0	3.4	2.1	2.0	.0	.0	3.4	1.1	.3	2.9	2.2	2.8	2.2	2.1	2.8	2.0
80. *	1.1	2.3	2.3	.7	1.0	3.2	2.2	1.9	.1	.0	3.2	1.4	.2	2.9	2.0	2.7	1.8	1.8	2.8	1.7
85. 7	5 I.U	2.1	2.6	1.2	.9	2.9	2.3	1.8	• 1	.0	2.9	1.6	•1	2.5	1.7	2.6	1.5	1.6	2.4	1.6
90. 7	· .8	2.0	2.7	2.0	.8	2.0	2.7	1.8	. 3	.0	2.0	1.0	.1	2.3	1.5	2.4	1.5	1.5	2.4	1.0
100 *	·	2.0	2.0	2.0	. /	1 9	3 0	2 0	. 5		1 9	2.0	.0	1 9	1 2	2.2	1 4	1 4	1 9	1 5
105. *	.3	1.9	2.7	2.4	.3	1.8	3.1	2.0	.0	.5	1.8	2.3	.0	1.8	1.4	1.9	1.5	1.5	1.8	1.5
110. *	· .2	2.1	2.6	2.4	.2	1.6	3.3	2.1	. 8	.7	1.6	2.3	.0	1.6	1.4	1.7	1.4	1.5	1.7	1.6
115. *	· .2	2.2	2.9	2.4	.1	1.4	3.4	2.2	1.0	.8	1.4	2.4	.1	1.7	1.5	1.7	1.5	1.6	1.7	1.6
120. *	· .5	2.3	2.9	2.8	.1	1.3	3.4	2.3	1.1	1.0	1.3	2.8	.4	1.6	1.5	1.6	1.5	1.5	1.8	1.7
125. *	1.1	2.2	3.0	2.8	.3	1.2	3.2	2.2	1.2	1.6	1.2	2.8	1.0	1.4	1.3	1.6	1.3	1.5	1.6	1.5
130. *	1.6	2.0	2.9	2.9	.5	1.0	3.2	2.0	1.5	1.9	1.0	2.7	1.4	1.1	1.0	1.4	1.0	1.3	1.4	1.3
135. 7	2.2	1.5	2.5	3.2	.8	. 7	2.7	1.5	1.6	2.3	. 7	2.4	2.0	1.0	.8	1.0	.9	.9	1.1	1.0
140. 7	່ 2.5 ເ ົ	1.2	2.3	3.4	.9	.4	2.2	1.1	1.9	2.2	.4	2.1	2.5	.0	. 5	. /	. 5	.0	. /	.0
150 *	· 2.0	.0	2.2	29	1 4	. 3	1.5	.0	2.1 2.2	1 9	. 3	2.0	2.0	. 4	. 3	.4	. 3	. 3	.4	. 3
155. *	2.7	.1	1.7	2.2	1.4	.0	1.1	.1	2.2	1.9	.0	1.8	2.7	.0	.0	.0	.0	.0	.0	.0
160. *	2.7	.1	1.6	1.6	1.3	.0	.9	.1	2.2	2.0	.0	1.7	2.7	.0	.0	.0	. 0	.0	.0	.0
165. *	2.6	.1	1.7	1.4	1.3	.0	.9	.1	2.2	2.2	.0	1.7	2.6	.0	.0	.0	.0	.0	.0	.0
170. *	2.5	.0	1.7	1.3	1.3	.0	.9	.0	2.2	2.2	.0	1.7	2.5	.0	.0	.0	.0	.0	.0	.0
175. *	2.3	.0	1.7	1.0	1.3	.0	.9	.0	2.3	2.4	.0	1.6	2.3	.0	.0	.0	.0	.0	.0	.0
105 1	2.3	.0	1.7	1.3	1.3	.0	.9	.0	2.3	2.6	.0	1.6	2.3	.0	.0	.0	.0	.0	.0	.0
100. 1	2.1	.0	1 7	1.2	1.1	.0	.9	.0	2.3	2.0	.0	1.0	2.1	.0	.0	.0	.0	.0	.0	.0
195 *	2.0	.0	1 7	1 4	1 0	.0	.0	.0	2.5	2.0	.0	1 5	2.0	.0	.0	.0	.0	.0	.0	.0
200. *	1.9	.0	1.7	1.4	.9	.0	.8	.0	2.2	2.7	.0	1.5	1.9	.0	.0	.0	.0	.0	.0	.0
205. *	1.9	.0	1.8	1.6	.9	.0	.8	.0	2.2	2.6	.0	1.6	1.9	.0	.0	.0	. 0	.0	.0	.0
210. *	1.9	.0	1.8	1.6	.9	.1	.8	.0	2.2	2.6	.1	1.6	1.9	.0	.0	.0	.0	.0	.0	.0
215. *	1.9	.0	1.8	1.8	.9	.1	.8	.0	2.1	2.6	.1	1.6	1.9	.1	.0	.1	.0	.0	.1	.0
220. *	1.9	.0	1.7	2.0	.9	.1	.9	.0	2.1	2.7	.1	1.6	1.9	.1	.0	.1	.0	.0	.1	.0
225. *	2.0	.0	1.7	2.2	1.0	.1	.9	.0	2.3	2.7	.1	1.6	1.9	.1	.0	.1	.0	.0	.1	.0
∠3U. "	2.0	.0	1.9	2.3	1.0	.1	1.0	.0	2.3	2.8	.1	1.8	1.9	• 1	.0	.1	.0	.0	• 1	.0
∠35. ° 240 ¥	· ∠.0	.1	1.8 1 0	∠.5 2 4	1.0	· 1 2	1.U a	.0	2.4	2.1	.1	⊥.8 1 0	1 Q	• 1	.0	.1	.0	.0	· 1 2	.0
245 *	× 1.8	. 1	2.0	2.4	1.0	. 4	. 8	.0	2.5	2.7	. 4	1.9	1.9	.2	.0	. 2	.0	.0	.2	. 0
250. *	2.0	.5	2.0	2.8	1.2	.6	.7	.0	2.6	2.7	.6	1.9	1.9	.5	.2	.5	.2	.2	.5	.2
255. *	2.3	1.0	1.9	2.7	1.5	.9	.7	.0	2.6	2.5	.9	1.9	2.0	.9	.2	1.0	.2	.2	1.0	. 2
260. *	2.5	1.6	1.9	2.6	1.6	1.6	.4	.0	2.7	2.3	1.6	1.6	2.1	1.5	.8	1.5	.8	.8	1.6	.8
265. *	• 3.0	2.3	1.5	2.5	2.0	2.3	.3	.1	2.2	2.2	2.3	1.4	2.3	2.3	1.4	2.3	1.4	1.4	2.3	1.4

270.	*	3.1	3.0	1.1	2.5	2.2	3.1	.1	.4	1.9	2.0	3.1	1.1	2.7	3.0	1.8	3.0	1.8	1.8	3.0	1.8
275.	*	3.4	3.6	.8	2.2	2.7	3.7	.0	.6	1.6	2.0	3.7	.7	3.1	3.7	2.4	3.7	2.4	2.5	3.8	2.5
280.	*	3.4	4.0	.5	2.3	2.7	4.2	.0	.9	1.3	2.1	4.2	.4	3.2	4.0	2.8	4.1	2.9	2.9	4.1	3.0
285.	*	3.0	4.0	. 2	2.2	2.9	4.3	. 0	1.1	. 7	2.1	4.3	. 2	3.3	4.3	3.2	4.3	3.3	3.3	4.3	3.3
290	*	2.7	3.7	.1	2.2	2.4	4.3	. 0	1.5	. 6	2.1	4.3	.1	3.3	4.1	3.3	4.1	3.3	3.3	4.1	3.3
295	*	2 8	3 4	3	23	2 4	3 9	. 0	1 5		2 1	3 9	1	3 4	3 9	3 1	3 9	3 1	3 1	3 9	3 1
300	*	2.0	2 2	.5	2.3	2.1	3 9		1 2	.0	2.1	3 8	1	2 2	37	3 0	37	3 0	3 0	3.9	2 1
305	*	2.0	3.5		2.5	2.5	3.0	. 5	1 8	.0	1 0	3.0	.1	2.2	3.0	3.0	3.0	3.0	2 1	3.0	3.1
210	*	2.0	2 /	1 2	1 0	2.1	2.6	1 1	1 0	. 1	1 6	2.6	.1	2.0	1 0	2.0	1 1	2.1	2.1	1 1	2.2
31U.	4	2.7	2.4	1.5	1.0	2.4	2.0	1.1	1.9	. 5	1.0	2.0	• ⊥	2.9	2.0	2.4	4.1	2.4	3.3 2 F	4.1	3.3
315.	<u>т</u>	2.0	3.0	1.9	1.5	2.0	3.8	1.5	1.8	• 1	1.2	3.8	.4	2.3	3.9	3.4	4.1	3.4	3.5	4.2	3.5
320.	Â	2.3	3.0	2.3	1.0	1./	3.8	1.8	∠.⊥	. 1	.9	3.8	.5	1.9	4.3	3.5	4.3	3.8	3.8	4.4	3.9
325.	*	2.3	3.3	2.7	.7	1.6	4.1	2.2	1.9	.0	.5	4.⊥	.7	1.3	4.3	3.8	4.4	3.9	4.0	4.5	3.9
330.	*	2.1	2.9	2.9	. 3	1.4	4.1	2.4	1.7	.0	.3	4.1	.9	1.2	4.3	3.8	4.4	3.9	3.9	4.3	3.8
335.	*	1.8	2.3	2.9	.1	1.3	4.1	2.6	1.8	.0	.1	4.1	1.0	.8	4.2	3.9	4.2	3.8	3.7	4.1	3.5
340.	*	1.7	2.1	2.9	.1	1.2	4.2	2.6	1.5	.0	.1	4.2	1.1	.7	4.2	3.9	4.1	3.8	3.6	4.0	3.2
345.	*	1.7	1.9	2.7	.0	1.3	4.0	2.5	1.7	.0	.0	4.0	1.0	.7	4.0	3.6	3.8	3.6	3.3	3.5	3.0
350.	*	1.6	1.6	2.7	.0	1.3	4.0	2.6	1.9	.0	.0	4.0	1.1	.7	3.9	3.5	3.7	3.3	3.0	3.3	2.7
355.	*	1.7	1.4	2.5	.0	1.4	3.9	2.5	2.1	.0	.0	3.9	1.1	.7	3.7	3.3	3.4	3.1	2.7	3.0	2.4
360.	*	1.6	1.3	2.5	.0	1.4	3.9	2.4	2.2	.0	.0	3.9	1.2	.7	3.5	3.0	3.3	2.8	2.4	2.7	2.1
	*																				
MAX	*	3.4	4.0	3.0	3.4	2.9	4.3	3.4	2.4	2.7	2.8	4.3	2.8	3.4	4.3	3.9	4.4	3.9	4.0	4.5	3.9
DEGR.	*	275	280	125	140	285	285	115	10	260	230	285	120	295	285	335	325	325	325	325	320
THE H	IGH	EST CO	NCENTR	ATION	OF	4.50 E	PPM OCC	URRED	AT REC	EPTOR	REC19.										

PAGE 1

JOB: FOOTHILLS & ARAPAHOE SCREENING 2006

RUN: FOOTHILLS & ARAPAHOE. 2006

DATE : 8/ 3/99

TIME : 12: 1:52 The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 175. CM			
U =	1.0 M/S	CLAS =	4 (D)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB =	.0 PPM

LINK VARIABLES

	 	 	_	_	_	_	_	_

LINK DESCRIPTION	* LI	NK COORDI	NATES (FT)	*	LENGTH	BRG TYPE	VPH	EF	H W	V/(C QUEUE
	* X1 *	Y1	X2	Y2 *	(FT)	(DEG)		(G/MI)	(FT) (FT)	(VEH)
1. FOOTHILLS NB APPR	* 36.0	-1000.0	36.0	.0 *	1000.	360. AG	1819.	6.0	.0 44.0		
2. FOOTHILLS NB Q	* 36.0	-72.0	36.0	-3187.0 *	3115.	180. AG	453.	100.0	.0 24.0	1.40	158.2
3. FOOTHILLS NB Q LEF	* 12.0	-72.0	12.0	-144.4 *	72.	180. AG	618.	100.0	.0 24.0	.72	3.7
4. FOOTHILLS NB DEP.	* 36.0	.0	-464.0	1000.0 *	1118.	333. AG	2772.	6.0	.0 44.0		
5. FOOTHILLS NB R	* 54.0	-747.0	54.0	.0 *	747.	360. AG	244.	6.0	.0 12.0		
6. FOOTHILLS NB Q R	* 54.0	-72.0	54.0	-174.7 *	103.	180. AG	226.	100.0	.0 12.0	.38	5.2
7. FOOTHILLS SB APPR	* -536.0	1000.0	-36.0	.0 *	1118.	153. AG	1803.	6.0	.0 44.0		
8. FOOTHILLS SB Q	* -36.0	72.0	-1795.8	3338.2 *	3710.	332. AG	476.	100.0	.0 24.0	1.55	188.5
9. FOOTHILLS SB Q LEFT ³	* -12.0	72.0	-367.4	782.8 *	795.	333. AG	641.	100.0	.0 24.0	1.58	40.4
10. FOOTHILLS SB DEP.	* -36.0	.0	-36.0	-1000.0 *	1000.	180. AG	3057.	6.0	.0 44.0		
11. FOOTHILLS SB R	* -202.5	297.0	-54.0	.0 *	332.	153. AG	225.	6.0	.0 12.0		
12. FOOTHILLS SB Q R	* -54.0	72.0	-98.6	161.1 *	100.	333. AG	238.	100.0	.0 12.0	.39	5.1
13. ARAPAHOE EB APPR.	* -1000.0	-42.0	.0	-42.0 *	1000.	90. AG	1197.	7.2	.0 56.0		
14. ARAPAHOE EB QUEUE	* -60.0	-42.0	-217.1	-42.0 *	157.	270. AG	624.	100.0	.0 36.0	.54	8.0
15. ARAPAHOE .EB DEP.	* .0	-42.0	1000.0	-42.0 *	1000.	90. AG	1789.	7.2	.0 56.0		
16. ARAPAHOE EB QUEUE LE	* -60.0	-12.0	-1053.5	-12.2 *	993.	270. AG	613.	100.0	.0 24.0	1.51	50.5
17. ARAPAHOE EB R	* -110.0	-66.0	.0	-66.0 *	110.	90. AG	637.	7.2	.0 12.0		
18. ARAPAHOE EB QUEUE R	* -60.0	-66.0	-312.0	-66.0 *	252.	270. AG	208.	100.0	.0 12.0	.87	12.8
19. ARAPAHOE WB APPR.	* 1000.0	42.0	.0	42.0 *	1000.	270. AG	1103.	7.2	.0 56.0		
20. ARAPAHOE WB QUEUE	* 72.0	42.0	208.5	42.0 *	136.	90. AG	590.	100.0	.0 36.0	.46	6.9
21. ARAPAHOE WB DEP.	* .0	42.0	-1000.0	42.0 *	1000.	270. AG	1580.	7.2	.0 56.0		
22. ARAPAHOE WB QUEUE LE	* 72.0	12.0	1183.6	12.2 *	1112.	90. AG	590.	100.0	.0 24.0	1.40	56.5
23. ARAPAHOE WB R	* 156.0	66.0	.0	66.0 *	156.	270. AG	477.	7.2	.0 12.0		
24. ARAPAHOE WB QUEUE R	* 60.0	66.0	237.4	66.0 *	177.	90. AG	197.	100.0	.0 12.0	.60	9.0
ADDITIONAL OUEUE LINK PARAMETER	RS								PAGE	2	
LINK DESCRIPTION	* CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIV	AL		
,	* LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE			
•	* (SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)					
2. FOOTHILLS NB Q * 12	20 77	2.0	1819	2000	131.57	1	3				
3. FOOTHILLS NB Q LEF	* 120	105	2.0	252	1900	131.57	2	3			
6. FOOTHILLS NB Q R	* 120	77	2.0	244	2000	131.57	1	3			
8. FOOTHILLS SB Q	* 120	81	2.0	1803	2000	131.57	1	3			
9. FOOTHILLS SB Q LEFT 3	* 120	109	2.0	348	1900	131.57	2	3			
12. FOOTHILLS SB Q R	* 120	81	2.0	225	2000	131.57	1	3			
14. ARAPAHOE EB QUEUE	* 120	72	2.0	1197	2000	129.33	2	3			
16. ARAPAHOE EB QUEUE LE	* 120	106	2.0	477	1900	129.33	2	3			
18. ARAPAHOE EB QUEUE R	* 120	72	2.0	637	2000	129.33	2	3			
20. ARAPAHOE WB QUEUE	* 120	68	2.0	1103	2000	129.33	2	3			
22. ARAPAHOE WB QUEUE LE	* 120	102	2.0	618	1900	129.33	2	3			
24. ARAPAHOE WB QUEUE R	* 120	68	2.0	477	2000	129.33	2	3			

RE	ECEPTOR LOCATIONS					
	*		COORI	DINATES (FT)		*
	RECEPTOR	*	Х	Y	Z	*
1.	REC 4 (NE CORNER)	*	24.5	72.5	6.0	*
2.	REC 1 (SE CORNER)	*	58.0	-70.0	6.0	*
3.	REC 2 (SW CORNER)	*	-58.5	-72.0	6.0	*
4.	REC 3 (NW CORNER)	*	-97.0	70.0	6.0	*
5.	REC 5 (E MID-MAIN)	*	58.0	-170.0	6.0	*
б.	REC 6 (W MID-MAIN)	*	-25.5	170.0	6.0	*
7.	REC 7 (N MID-LOCAL)	*	-197.0	70.0	6.0	*
8.	REC 8 (S MID-LOCAL)	*	-158.0	-72.0	6.0	*
9.	REC 9	*	-58.5	-172.0	6.0	*
10.	REC10	*	124.5	-72.0	6.0	*
11.	REC11	*	124.5	72.5	6.0	*
12.	REC12	*	-147.0	170.0	6.0	*
13.	REC13	*	58.0	-160.0	6.0	*
14.	REC14	*	58.0	-180.0	6.0	*
15.	REC15	*	68.0	-160.0	6.0	*
16.	REC16	*	68.0	-170.0	6.0	*
17.	REC17	*	68.0	-180.0	6.0	*
18.	REC18	*	58.0	-150.0	6.0	*
19.	REC19	*	68.0	-150.0	6.0	*

																			PAGE	3
J	ов:	FOOT	HILLS	& ARAI	PAHOE	SCREEN	ING 20	06			RUN:	FOOTHI	ILLS &	ARAPA	HOE. 20	06				
ANGLE	*	(PPM)																	
(DEGR)	* R	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19
5.	*	.1	1.6	3.9	3.3	3.2	.1	1.5	5.4	2.6	2.1	.0	3.0	3.2	2.9	1.7	1.7	1.7	3.1	1.6
10.	*	.1	1.7	3.2	3.1	2.7	.1	1.5	5.3	2.1	2.0	.0	2.9	2.7	2.4	1.4	1.4	1.4	2.6	1.4
15.	*	.1	1.8	2.7	3.1	2.5	.1	1.5	5.1	1.9	2.0	.0	2.8	2.4	2.2	1.3	1.3	1.2	2.4	1.3
20.	*	.1	1.9	2.2	3.1	2.2	.1	1.5	5.2	1.9	2.0	. 0	2.7	2.0	2.0	1.3	1.3	1.3	2.0	1.3
25.	*	.0	2.0	1.9	2.9	1.8	.1	1.4	5.1	2.0	2.0	.0	2.6	1.9	1.6	1.3	1.2	1.1	1.9	1.3
30.	*	.0	2.0	2.0	2.9	1.7	.0	1.4	5.1	2.2	1.9	.0	2.6	1.7	1.4	1.2	1.2	1.2	1.8	1.3
35.	*	.0	2.1	2.1	2.8	1.5	.0	1.2	5.1	2.4	1.8	.0	2.4	1.5	1.2	1.2	1.1	1.1	1.5	1.2
40.	*	.0	2.0	2.0	2.7	1.2	.0	1.3	5.0	2.7	1.7	.0	2.3	1.3	1.1	1.0	1.0	.9	1.3	1.1
45.	*	. 0	2.2	2.2	2.6	1.1	. 0	1.3	4.9	3.1	1.7	.1	2.2	1.1	.9	. 9	. 9	. 9	1.3	1.0
50.	*	.0	2.1	2.3	2.7	1.1	.0	1.3	4.9	3.2	1.6	.1	2.2	1.1	.9	.9	.9	.8	1.2	1.0
55.	*	. 0	2.0	2.4	2.7	.9	. 0	1.3	5.1	3.1	1.6	.1	2.3	1.0	. 8	.9	. 8	. 8	1.1	.9
60.	*	.0	2.1	2.6	2.7	1.0	.0	1.4	5.1	3.0	1.5	.1	2.4	1.0	. 8	.9	. 9	. 8	1.0	. 9
65.	*	.1	1.9	2.8	2.6	1.0	.0	1.5	5.0	3.0	1.7	.2	2.4	1.0	. 8	.9	.9	.8	1.0	.9
70.	*	.4	1.8	3.0	2.6	1.0	.0	1.5	5.0	2.8	1.7	.4	2.3	1.0	. 8	.9	. 8	. 8	1.0	.9
75.	*	.7	1.8	3.1	2.7	.9	.0	1.7	5.0	2.6	1.8	.8	2.3	.9	.8	.8	.8	.8	1.0	.9
80.	*	1.2	1.7	3.1	2.8	.6	.0	1.9	4.6	2.2	1.7	1.3	2.3	.6	.5	.6	.5	.5	.8	.8
85.	*	1.9	1.6	3.1	3.2	.4	.1	2.2	4.2	1.9	1.4	1.9	2.5	.4	.3	.4	.4	.3	.4	.4
90.	*	2.7	1.3	3.0	3.3	.3	.2	2.3	3.6	1.8	1.0	2.7	2.7	.3	.2	.3	.3	.2	.3	.3
95.	*	3.2	.8	2.8	3.4	.1	.5	2.4	2.9	1.5	.7	3.3	3.4	.1	.1	.1	.1	.1	.2	.2
100.	*	3.7	.5	2.5	3.3	.0	.8	2.2	2.4	1.4	.5	3.9	3.8	.0	.0	.0	.0	.0	.0	.0
105.	*	3.9	.3	2.4	3.1	.0	1.1	2.0	1.9	1.3	.3	4.4	4.0	.1	.0	.0	.0	.0	.1	.0
110.	*	3.6	.1	2.5	2.6	.0	1.2	2.1	1.5	1.3	.1	4.6	4.1	.1	.0	.0	.0	.0	.1	.0
115.	*	3.4	.1	2.4	2.1	.0	1.3	1.9	1.2	1.4	.1	4.6	3.9	.1	.0	.0	.0	.0	.1	.0
120.	*	3.1	.1	2.3	1.9	.0	1.4	2.0	1.0	1.4	.1	4.6	3.8	.1	.0	.0	.0	.0	.1	.0
125.	*	2.7	.2	2.2	1.9	.0	1.6	2.4	.9	1.4	.0	4.5	3.3	.1	.0	.0	.0	.0	.1	.0
130.	*	2.3	.1	2.2	1.7	.0	1.4	2.6	.9	1.5	.0	4.6	2.8	.2	.0	.0	.0	.0	.2	.0
135.	*	2.0	.1	2.1	2.0	.0	1.4	2.8	.8	1.5	.0	4.3	2.7	.2	.0	.0	.0	.0	.2	.0
140.	*	1.6	.2	2.0	2.2	.0	1.3	2.8	.9	1.5	.0	4.2	2.3	.2	.0	.0	.0	.0	.2	.0
145.	*	1.4	.2	1.9	2.4	.0	1.5	2.8	.8	1.6	.0	4.1	2.1	.2	.0	.0	.0	.0	.3	.0
150.	*	1.4	.4	1.9	2.6	.2	1.5	2.9	.8	1.7	.0	4.0	1.9	.4	.1	.0	.0	.0	.4	.0
155.	ж т	1.6	. 7	1.9	2.8	.3	2.0	2.7	.8	1.8	.0	3.7	2.1	.5	.2	.0	.0	.0	.6	.0
160.	Ĵ	1.8	1.1	2.0	3.0	.5	2.3	2.8	.9	1.9	.0	3./	2.1	.8	.4	. 1	• 1	• 1	.9	• 1
170	÷	2.2	1./	2.1	2.9	1.0	3.1	2.8	.9	2.1	.1	3.8	2.3	1.3	.8	.4	.4	.4	1.4	.4
175	*	2.5	2.4	∠.⊥ 1 0	3.0	1.5	3.5	2.8	. /	∠.⊥ 1 0	. 4	3.9	2.0	1.9	1.3	.0	.0	.0	2.1	.0
100	 +	3.⊥ 2.1	3.4	1.0	3.0	2.2	4.1	2.5	.0	1.0	. 5	4.2	1.9	2.0	1.9	1.5	1.3	1.5	2.0	1.5
100.	*	2.1	4.0	1.5	2.9	2.0	4.2	2.4	.4	1.5	.0	4.5	1 5	2.2	2.5	1.1	1./	1./	3.5	1.0
100.	*	2.0	4.5	1.1	2.5	2.4	4.5	∠.⊥ 1 0	. 2	1.0	.9	4.0	1.5	2.0	2.9	2.2	2.2	2.2	4.0	2.5
105	*	2.0	4.0	. /	2.5	2 1	4.0	1 7		. /	1 2	1 0	1 1	1 0	2 1	2.4	2.4	2.4	4.3	2.0
200	*	2.4	4.0	.4	2.1	2 4	4.5	1.7	.0	. 4	1 3	5 0	1.1	3 9	3.1	2.0	2.5	2.5	4.2	2.7
200.	*	2.2	4.4	. 2	2.1	3.7	45	1 4	.0	. 2	1 2	4 8	1 0	3.7	2.8	2.5	2.7	2.7	4 0	2.7
203.	*	2.1	4 4	.1	2.1	2 1	4 5	1 5	.0	.1	1 2	4 7	1.0	3.7	2.0	2.1	2.2	2.2	3 8	2.0
215	*	2.0	4 3	. 1	2.2	3.1	4 4	1 4	.0	.1	1 3	4 6	. 9	3.6	2.7	2.1	2.2	2.2	3.0	2.0
220	*	2.1	4 2	. 1	2.2	2 9	4 5	1 5	.0	.1	1 4	4 3	. 2	2.2	2.0	2.1	2.1	2.1	3.4	2.0
225	*	2.2	4 0	.1	2.2	2.9	4 4	1 5	.1	. 1	1 2	4 5	.0 .0	3.5	2.1	2.2	2.1	1 9	3.1	2.5
230	*	2.8	ייי ג מ	.1	1 9	2.9 2 R	4 4	1 4	.1	. 1	1 4	4 4	.0 8	3.1	2.5	2.5	1 8	1 7	3.2	2.3
235	*	2.9	3.8	.1	2.0	2.8	4.3	1.6	.1	. 1	1.5	4.3	.0	3.0	2.2	2.2	1.8	1.7	3,1	2.3
240	*	3,1	3.7	.2	1.9	2.8	4.3	1.6	.2	.0	1.6	4.0	.9	2.9	2.1	2.2	1.9	1.7	2.9	2.3
245	*	3.2	3.4	. 4	1.8	2.6	4.2	1.6	.2	. 0	1.8	4.2	. 9	2.8	2.0	2.3	1.9	1.7	2.8	2.3
250.	*	3.1	3.4	.7	1.8	2.6	4.1	1.7	.5	.0	1.8	4.4	.8	2.8	2.0	2.2	1.9	1.6	2.9	2.3
255.	*	3.3	3.3	1.1	1.7	2.6	4.0	1.7	.8	.0	2.1	4.2	.7	2.7	1.9	2.2	2.0	1.6	2.8	2.3
260.	*	3.3	3.4	1.8	1.6	2.6	3.7	1.6	1.4	.0	2.3	4.0	.4	2.7	1.9	2.4	2.1	1.7	2.9	2.6
265.	*	3.4	3.8	2.7	1.4	2.8	3.5	1.4	1.9	.1	2.7	3.7	.3	2.9	2.1	2.5	2.3	1.9	3.1	2.7
270.	*	3.1	4.1	3.7	1.1	3.0	3.3	1.1	2.7	. 2	3.0	3.2	. 2	3.1	2.2	2.6	2.4	1.8	3.7	3.1

275. 280. 285. 290. 300. 315. 320. 325. 330. 325. 340. 345. 355. 360.	* * * * * * * * * * * * * * * *	3.1 3.2 3.3 3.6 4.2 4.5 4.6 4.4 3.7 3.0 2.1 1.1 1.1 .7 .3	4.2 3.8 3.0 2.4 2.2 2.6 2.7 3.1 3.4 3.9 3.2 2.7 2.2 2.1 8 1.6	$\begin{array}{c} 4.3\\ 5.1\\ 5.5\\ 5.5\\ 5.5\\ 5.2\\ 4.7\\ 4.5\\ 4.7\\ 5.2\\ 5.0\\ 5.4\\ 5.4\\ 5.4\\ 5.4\\ 5.4\\ 5.1\\ 4.6\end{array}$	$ \begin{array}{r} .7 \\ .5 \\ .3 \\ .1 \\ .1 \\ .1 \\ .2 \\ .6 \\ .2 \\ .9 \\ 2.6 \\ 3.0 \\ 3.3 \\ 3.4 \\ 3.3 \\ \end{array} $	$\begin{array}{c} 3.5\\ 3.8\\ 4.0\\ 4.4\\ 7\\ 5.1\\ 5.2\\ 5.4\\ 5.7\\ 5.9\\ 6.8\\ 6.8\\ 6.5\\ 5.0\\ 4.2\\ 3.8 \end{array}$	3.4 3.2 3.4 3.5 3.6 4.0 4.2 4.5 4.5 4.5 3.8 3.0 2.1 1.2 7 .3 .1	.7 .4 .3 .1 .1 .0 .0 .0 .0 .1 .2 .4 .8 1.0 1.2 1.5 1.6 1.6	$\begin{array}{c} 3.3\\ 3.8\\ 4.1\\ 4.3\\ 4.5\\ 4.4\\ 4.3\\ 4.4\\ 4.3\\ 4.4\\ 4.5\\ 4.7\\ 8.0\\ 5.3\\ 5.4\end{array}$.4 .6 .9 1.0 1.2 1.3 1.5 1.6 1.8 1.9 2.3 2.7 3.0 3.1 3.2 3.1 2.9	3.0 3.0 2.6 2.3 2.0 2.3 2.8 3.1 3.1 3.3 3.0 2.6 2.3 2.2 2.0 2.0	2.6 2.3 2.2 2.0 1.8 1.9 1.9 1.9 1.9 1.9 1.7 1.4 1.2 .6 .4 .10 .0 .0	.1 .0 .0 .0 .1 .2 .6 .2 1.8 2.5 2.8 3.2 3.3 3.2 3.1	$\begin{array}{c} 3.6\\ 4.0\\ 4.4\\ 5.3\\ 5.4\\ 5.5\\ 9\\ 5.8\\ 6.8\\ 6.3\\ 2\\ 4.1\\ 3.8\end{array}$	$\begin{array}{c} 2.4\\ 2.8\\ 3.2\\ 3.5\\ 4.5\\ 4.6\\ 5.0\\ 5.3\\ 5.8\\ 6.4\\ 6.1\\ 5.3\\ 4.7\\ 4.0\\ 3.4 \end{array}$	3.1 3.7 3.9 4.3 4.4 4.5 4.6 4.6 4.7 4.9 5.3 5.1 4.4 3.6 2.9 2.3 1.9	3.0 3.4 3.6 3.81 4.3 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.7 3.8 2.9 2.4 1.9	$\begin{array}{c} 2.1\\ 2.9\\ 3.1\\ 3.3\\ 3.7\\ 3.8\\ 4.0\\ 4.2\\ 4.6\\ 5.0\\ 5.1\\ 5.6\\ 5.3\\ 4.8\\ 3.2\\ 2.3\\ 2.0\\ \end{array}$	$\begin{array}{c} 4.0\\ 4.4\\ 5.3\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 6.5\\ 1\\ 5.9\\ 6.6\\ 5.4\\ 9.9\\ 3.6\end{array}$	$\begin{array}{c} 3.4\\ 4.0\\ 4.3\\ 4.6\\ 4.6\\ 4.6\\ 4.6\\ 5.0\\ 5.3\\ 4.9\\ 4.2\\ 3.4\\ 2.9\\ 2.1\\ 1.7\end{array}$
MAX DEGR.	-*- * *	4.6 320	4.8 190	5.5 285	3.4 95	 6.8 330	4.6 190	2.9 150	5.4 5	3.2 50	3.3 330	5.1 190	4.1 110	6.8 330	 6.4 330	5.4 325	5.4 325	5.6 330	6.6 330	5.3 325

THE HIGHEST CONCENTRATION OF 6

6.80 PPM OCCURRED AT RECEPTOR REC5 .

CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221 PAGE 1 JOB: UNIVERSITY AND ARAPAHOE RUN: UNIVERSITY AND ARAPAHOE 2006 SCREENING DATE : 8/ 3/99 TIME : 11:39: 3 The MODE flag has been set to C for calculating CO averages. SITE & METEOROLOGICAL VARIABLES VS = .0 CM/SVD = .0 CM/SZ0 = 175. CM U = 1.0 M/SCLAS = 4 (D) ATIM = 60. MINUTES MIXH = 1000. M AMB = .0 PPM LINK VARIABLES LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE VPH EF H W V/C OUEUE Y2 * * (G/MI) (FT) (FT) X1 Y1 X2 (FT) (DEG) (VEH) .0 * 1. UNIVERSITY NB APPR * 28.0 -1000.0 28.0 1000. 360. AG 1242. 7.0 .0 47.0 2. UNIVERSITY NB Q * 28.0 -66.0 28.0 -306.4 * 240. 180. AG 431. 100.0 .0 27.0 .89 12.2 -777.1 * 3. UNIVERSITY NB O LEF* 8.0 -66.0 8.0 711. 180. AG 304. 100.0 .0 16.0 1.28 36.1 1000.0 * 4. UNIVERSITY NB DEP. * 28.0 28.0 1000. 360. AG 2078. 7.0 .0 47.0 .0 .0 * 1464. 7.0 5. UNIVERSITY SB APR * -26.0 1000.0 -26.0 1000. 180. AG .0 46.0 6. UNIVERSITY SB Q * 395. 100.0 -26.0 69.0 -26.0 341.2 * 272. 360. AG .0 26.0 .92 13.8 7. UNIVERSITY SB Q LEFT* 69.0 1043.0 * 974. 360. AG 286. 100.0 .0 12.0 1.26 49.5 .0 .0 8. UNIVERSITY SB DP. * -1000.0 * 180. AG -26.0 .0 -26.0 1000. 2176. 7.0 .0 46.0 * .0 * 9. UNIVERSITY SB R -45.5 -45.5 180. AG 374. 7.0 .0 15.0 344.0 344. -37.0 * 810. 8.2 10. ARAPAHOE EB APPR. * -1000.0 -37.0 .0 1000. 90. AG .0 44.0 11. ARAPAHOE EB QUEUE * -37.0 * -53.0 -37.0 -217.8 165. 270. AG 508. 100.0 .0 24.0 .84 8.4 * 90. AG 12. ARAPAHOE .EB DEP. .0 -37.0 1000.0 -37.0 * 1000. 1288. 8.2 .0 44.0 -53.0 .0 25.0 .93 5.6 13. ARAPAHOE EB QUEUE LE* -13.0 -162.7-13.0 * 110. 270. AG 607. 100.0 14. ARAPAHOE EB R * -428.0 -57.5 .0 -57.5 * 428. 90. AG 323. 8.2 .0 17.0 15. ARAPAHOE WB APPR. * 1000.0 37.0 37.0 * 1000. 270. AG 1082. 8.2 .0 .0 44.0 16. ARAPAHOE WB QUEUE * 38.2 * 43.0 37.0 3793.3 3750. 90. AG 607. 100.0 .0 24.0 2.70 190.5 * 37.0 * 17. ARAPAHOE WB DEP. 37.0 -1000.0 270. AG 1700. 8.2 .0 1000. .0 44.0 18. ARAPAHOE WB OUEUE LE* 13.0 119.4 13.0 * 90. AG 508. 100.0 .0 25.0 .43 43.0 76. 3.9 217.2 * 360. AG 19. UNIVERSITY SB R QUEU* -45.5 69.0 -45.5 148. 198. 100.0 .0 15.0 .61 7.5 20. ARAPAHOE EB R Q * -53.0 -57.5 -180.2 -57.5 * 127. 270. AG 254. 100.0 .0 17.0 .67 6.5 21. ARAPAHOE WB FR * 343.0 59.0 .0 59.0 * 343. 270. AG 484. 8.2 .0 20.0 ADDITIONAL QUEUE LINK PARAMETERS _____ LINK DESCRIPTION * CLEARANCE APPROACH SATURATION CYCLE RED IDLE SIGNAL ARRIVAL * LOST TIME FLOW RATE EM FAC LENGTH TIME VOL TYPE RATE * (SEC) (SEC) (SEC) (VPH) (VPH) (gm/hr) -----_____ _ _ _ _ _ _ _ ------2. UNIVERSITY NB O * 100 61 2.0 1242 2000 131.61 1 3 3. UNIVERSITY NB O LEF* 100 86 2.0 244 1900 131.61 2 3 6. UNIVERSITY SB Q * 2000 131.61 100 56 2.0 1464 1 3 7. UNIVERSITY SB Q LEFT* 100 81 1900 131.61 2 3 2.0 360 11. ARAPAHOE EB QUEUE * 2000 131.61 100 72 810 3 2.0 2 13. ARAPAHOE EB QUEUE LE* 131.61 100 1900 3 86 2.0 352 2 16. ARAPAHOE WB QUEUE * 131.61 100 86 2.0 1082 2000 2 3 18. ARAPAHOE WB QUEUE LE* 100 72 2.0 388 1900 131.61 2 3 19. UNIVERSITY SB R QUEU* 100 484 2000 131.61 3 56 2.0 1 20. ARAPAHOE EB R Q 100 72 2.0 323 2000 131.61 2 3 RECEPTOR LOCATIONS _____ COORDINATES (FT) * RECEPTOR Х Y Ζ _____* 1. REC 1 (SE CORNER) * 52.0 -60.0 6.0 *

2.	REC 2	(SW CORNER)	*	-50.0	-65.0	6.0 *
3.	REC 3	(NW CORNER)	*	-54.0	60.0	6.0 *
4.	REC 4	(NE CORNER)	*	50.0	70.0	6.0 *
5.	REC 5	(E MID-MAIN)	*	52.0	-160.0	6.0 *
б.	REC 6	(W MID-MAIN)	*	-54.0	160.0	6.0 *
7.	REC 7	(N MID-LOCAL)	*	-154.0	60.0	6.0 *
8.	REC 8	(S MID-LOCAL)	*	-150.0	-65.0	6.0 *
9.	REC9		*	50.0	170.0	6.0 *
10.	REC10		*	-50.0	-160.0	6.0 *
11.	REC11		*	152.0	-60.0	6.0 *
12.	REC12		*	150.0	70.0	6.0 *
13.	REC13		*	-140.0	-65.0	6.0 *
14.	REC14		*	-160.0	-65.0	6.0 *
15.	REC15		*	-140.0	-75.0	6.0 *
16.	REC16		*	-150.0	-75.0	6.0 *
17.	REC17		*	-160.0	-75.0	6.0 *

	JOB:	UNIVI	ERSITY	AND AF	RAPAHOE						RUN:	UNIVERS	SITY AN	ID ARAI	PAHOE 2	2006 SC	REENIN	IG
(DEGR)* RE	C1 RI	EC2 RI	EC3 RI	EC4 RE	C5 RI	EC6 RI	EC7 RI	EC8 RI	EC9 R	EC10 RI	EC11 RE	EC12 RE	EC13 RE	EC14 RI	EC15 RE	C16 RE	C17
5.	*	2.4	3.2	3.2	.9	1.9	2.9	. 3	4.0	.9	2.4	1.1	.0	4.2	3.8	3.7	3.5	3.4
10.	*	2.1	3.0	3.6	.6	1.7	3.3	.5	4.4	.6	2.3		.0	4.5	4.0	3.9	3.9	3.5
20	*	2.0	2.7	3.7	.4	1.2	3.0	.5	4.4	.4	2.1	1 1	.0	4.9	4.5	4.3	3.9 4 3	3.0 4 1
25.	*	1.7	2.0	3.6	.1	1.0	3.7	1.0	4.9	.1	2.1	1.1	.0	5.0	4.6	4.4	4.3	4.1
30.	*	1.7	1.8	3.3	.1	.8	3.6	.9	4.8	.1	2.0	1.1	.0	5.0	4.8	4.2	4.3	4.2
35.	*	1.7	1.8	3.1	.1	.8	3.4	1.0	4.8	.1	2.2	1.2	.0	4.7	4.8	4.2	4.2	4.3
40.	*	1.8	1.7	2.8	.1	.7	3.3	1.0	5.0	.1	2.3	1.3	.0	4.7	5.0	4.2	4.2	4.1
45. 50	*	1.7 1.6	1.9 2 1	2.0	.1	• / 7	3.3	1.1	4.8	• 1	2.4	1.3 1.3	.0	4.8	4.8	3.7	3.9 4 1	4.⊥ 3.9
55.	*	1.7	2.2	2.1	.0	.8	2.9	1.0	5.0	.0	2.3	1.5	.0	4.9	4.8	3.9	4.1	4.1
60.	*	1.7	2.4	2.0	.0	.9	2.8	1.1	4.9	.0	2.6	1.6	.0	4.7	5.1	3.7	3.7	3.8
65.	*	1.7	2.4	2.0	.1	.9	2.7	1.2	5.2	.0	2.5	1.6	.1	5.0	5.2	3.4	3.7	3.8
70.	*	1.8	2.6	2.0	.3	.9	2.7	1.2	4.8	.0	2.5	1.8	.3	4.8	5.1	3.5	3.4	3.6
/5. 80	*	1.8	2.7	2.2	.0	.8	2.8	1.4 1.7	4.9	.1	2.4	$\frac{1.7}{1.7}$.0	4.0	4.0	3.3	3.4	3.0
85.	*	1.6	2.6	2.9	1.7	.6	3.1	2.1	4.3	.3	2.2	1.6	1.7	4.2	4.4	2.7	2.7	2.8
90.	*	1.3	2.4	3.4	2.3	.5	3.4	2.5	3.7	.5	2.1	1.3	2.3	3.6	3.9	2.1	2.3	2.4
95.	*	.9	2.2	3.5	2.6	.2	3.6	2.5	2.8	.8	1.8	. 9	2.6	2.8	2.9	1.6	1.7	1.6
100.	*	.5	1.8	3.4	2.9	.1	3.8	2.4	2.3	1.0	1.7	.5	2.9	2.3	2.3	1.2	1.3	1.3
1105.	*	. 3	1.7	3.4	3.0	.0	3.8	2.0	1.8	1.0	1.0	. 3	2.9	1.8	1.9	1.1	1.0	1.0
115.	*	.1	1.6	2.3	2.9	.0	3.8	1.8	1.2	1.0	1.6	.1	2.7	1.3	1.2	.9	.8	.8
120.	*	.1	1.6	1.9	2.8	.0	3.8	1.9	1.1	.9	1.6	.1	2.5	1.2	1.1	.9	.8	.8
125.	*	.0	1.7	1.8	2.8	.0	3.9	2.0	1.0	.9	1.7	.0	2.4	1.1	1.0	.9	.8	.8
130.	*	.0	1.8	1.8	2.9	.0	3.9	2.4	1.0	1.0	1.8	.0	2.3	1.2	1.0	.9	.8	.8
135. 140	*	.0	2.0	1.5 1.7	3.0	.0	4.0	2.6	1.0	.9	1.9	.0	∠.3 2.2	1.0	.9	.9	.9	.8
145.	*	.0	2.0	1.7	2.9	.0	3.9	2.9	.9	1.0	1.8	.0	2.1	.9	.9	.8	.8	.8
150.	*	.0	2.0	1.9	2.8	.0	4.0	3.0	.8	1.0	1.8	.0	1.9	.9	.8	.7	.7	.7
155.	*	.2	2.1	2.2	2.7	.1	3.9	2.9	.7	1.1	1.8	.0	1.8	.7	.6	.7	.7	.6
160.	*	.2	2.1	2.4	2.9	.2	3.9	2.8	.5	1.3	1.8	.0	1.8	.7	.5	.6	.5	.5
170	*	.5	∠.⊥ 1 8	2.0	3.1	.5	3.7	2.7	.5	1.5	1.7	.0	1 8	.5	.5	.5	.5	.5
175.	*	1.4	1.5	2.7	3.5	1.2	3.3	2.3	.2	1.9	1.3	.0	1.8	.2	.2	.2	.2	.2
180.	*	1.9	1.2	2.5	3.8	1.7	3.0	2.2	.2	2.2	1.1	.1	2.0	.2	.1	.2	.1	.1
185.	*	2.4	.9	2.6	3.7	2.1	2.7	1.9	.0	2.3	.9	.3	2.3	.1	.0	.1	.0	.0
190.	*	2.8	.5	2.1	3.5	2.6	2.2	1.0	.0	2.3	.5	.5	2.5	.0	.0	.0	.0	.0
200.	*	3.1	. 2	2.0 2.1	2.7	3.0	1.3	1.3	.0	2.2	.2	. 8	2.9	.0	.0	.0	.0	.0
205.	*	3.0	.1	2.1	2.2	2.9	1.2	1.0	.0	2.1	.1	.9	3.2	.0	.0	.0	.0	.0
210.	*	2.8	.1	2.2	2.2	2.8	1.1	1.1	.1	2.0	.1	.9	3.4	.1	.1	.0	.0	.0
215.	*	2.7	.1	2.3	2.2	2.8	1.0	.9	.1	2.5	.1	1.0	3.4	.1	.1	.0	.0	.0
220.	*	2.6	.0	2.2	2.0	2.7	.7	.8	.⊥	2.7	.0	1.0	3.5	.⊥ 1	•⊥ 1	.0	.0	.0
230.	*	2.2	.1	2.0	2.2	2.4	.0	. /	.1	2.5	.0	1.1	3.5	.1	.1	.0	.0	.0
235.	*	2.2	.1	1.8	2.3	2.4	.3	.7	.2	2.5	.0	1.1	3.7	.2	.1	.0	.0	.0
240.	*	2.1	. 2	1.5	2.5	2.4	.3	.7	. 2	2.3	.0	.9	3.6	.2	. 2	.0	.0	.0
245.	*	1.9	.3	1.4	2.3	2.3	.3	.8	.3	2.3	.0	.9	3.3	.3	.2	.0	.0	.0
∠50. 255	*	∠.⊥ 2 1	./	⊥.∠ 1 1	∠.3 2 2	∠.3 23	. 3	. ð 9	.4	∠.0 2 0	.0	.9	3.∠ 2.8	.5	.4	.0	.0	.0
260.	*	2.3	1.3	1.0	2.3	2.3	.2	.9	.8	2.0	.0	1.4	2.4	1.0	.6	.1	.1	.1
265.	*	2.5	2.0	.9	2.1	2.3	.1	.9	1.2	2.0	.0	1.4	2.2	1.3	1.1	.3	.2	.2
270.	*	2.7	2.6	.8	1.9	2.3	.1	.7	1.5	2.0	.0	1.6	1.9	1.8	1.3	.6	.5	.4

PAGE 3

275. * 280. * 285. * 290. * 305. * 310. * 315. * 325. * 325. * 330. * 345. * 345. * 345. * 355. * 340. * 345. * 355. * 340. * 345. * 355. * 345. * 355. * 345. * 355. * 355. * 345. * 355. * 355. * 355. * 345. * 355. * 360. * 355. * 356.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9 1.8 1.7 1.8 1.9 1.9 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	2.5 2.7 2.8 3.2 3.4 3.5 3.5 3.4 3.5 3.3 3.5 3.3 3.1 3.2 2.9 2.7 2.4	.0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9 1.7 1.6 1.8 1.8 1.7 1.7 1.9 1.8 1.9 1.8 1.8 1.9 1.7 1.6 1.2	.2 .2 .3 .4 .5 .7 .9 1.0 1.2 1.3 1.4 1.4 1.3 1.7 2.1 2.1 2.4	1.8 1.7 1.9 1.7 1.8 2.0 2.4 2.6 2.5 2.4 2.5 2.4 2.3 2.2 1.9 1.5 1.5 1.4	1.4 1.1 .9 .9 .9 .8 .8 .8 .7 .7 .5 .5 .5 .2 .2	2.1 2.5 2.7 2.9 3.0 3.1 3.1 3.1 3.1 3.1 3.2 3.3 3.5 3.6 3.7 4.1	1.5 1.9 2.0 2.3 2.5 2.7 2.7 2.7 2.8 2.8 2.8 2.8 2.8 2.9 3.0 3.1 3.5	.8 1.1 1.4 1.5 1.8 1.9 2.1 2.5 2.5 2.5 2.6 2.6 2.7 2.8 2.9 3.0 3.2 3.6	.6 .9 1.1 1.2 1.5 1.7 1.9 2.0 2.2 2.2 2.4 2.4 2.5 2.6 2.7 2.8 2.9 3.3	.5 .7 .9 1.0 1.2 1.4 1.6 1.8 1.9 2.1 2.1 2.1 2.2 2.4 2.4 2.4 2.4 2.5 2.6 2.7 3.0		
MAX * DEGR. *	3.1 4. 195 300	.3 3.7) 15	3.8 180	3.5 305	4.0 3 135 15	.0 5.2 0 65	2.7 220	2.6 60	2.6 320	3.7 235	5.0 25	5.2 65	4.4 25	4.3 20	4.3 35		
THE HIGH	HEST CONCEN	ITRATION	OF	5.20 PI	PM OCCURR	ED AT RECE	PTOR RE	EC8 .0	CAMP 2	006 но	our 14		C	AL3QHC	: LINE SOUF	RCE	
CAMP 2006 JOB: CAMP H	6 Hour 14 REVISED LIN	NKS	CAL3	QHC: LI	INE SOURC	E DISPERSI RU	ION MODE	5L - 1	VERSIO	DN 2.0	Dated 9	95221				PAGE	
DATE TIME Tł SITI	: 8/23/99 : 14:26:45 he MODE fla E & METEORC	9 5 ag has be DLOGICAL	en set VARIAE	to C : BLES	for calcu	lating CO	average	es.									
U =	= .0 CM/ = 1.0 M/S	15	VD = CLAS =	.0 Ci - 4	(D) A	20 = 175. TIM = 60.	. CM . MINUTI	ES	MIXH	H = 10	000. M	AMB	= .(D PPM	BRG = 15.	DEGRI	EES
LINE	K VARIABLES	5															
L:	INK DESCRIF	PTION	* * X	L: :1	INK COORD Y1	INATES (F1 X2	Г) Y2		* L * *	ENGTH	BRG TY (DEG)	YPE	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. H 2. H	BROADWAY SE BROADWAY SE	3 @ CHAMP 3@CHAMPA	* A* Q*	-15.0 -15.0	572.0 171.0	 -15.0 -15.0) 11) 21	15.0	* * *	457. 48.	180. <i>1</i> 360. <i>1</i>	AG AG	687. 530. 1	14.6 100.0	.0 50.0 .0 30.0	.26	2.4
3. I 4. I	BROADWAY SE BROADWAY SE	3 @ STOUT 3@STOUT O	· * · *	-15.0	115.0 -312.0	-15.0) -35	56.0 55.1	*	471.	180. A	AG AG	737. 488. ⁻	14.6	.0 49.0	.26	2.4
5. I	BROADWAY NE	B @ STOUT	*	10.0	-815.0	10.0) -31	12.0	*	503.	360. 4	AG	430.	14.6	.0 40.0	.20	2
6. H	BROADWAY NE	B @STOUT	Q*	10.0	-400.0	10.0) -44	41.1 ·	* *	41. 892	180. A	AG AG	326. 1 430	100.0	$.0\ 20.0$.22	2.1
8. 1	BROADWAY NE	B @CHAMPA	Q*	22.0	99.0	22.0) [54.3	*	45.	180. 4	AG	353. 1	100.0	.0 23.0	.24	2.3
9. H	BROADWAY NE	3 @ CURTI	S*	17.5	148.0	17.5	5 63	39.0	*	491.	360. 4	AG	351.	14.6	.0 52.0	10	1 4
10. H	bruadway NE Champa Swr	a @CURTIS @ BROADW	vQ^ I *	⊥/.5 518.0	580.0 653 0	17.5 (5 55) 11	5∠.5 31.0	*	∠8. 735.	225. 7	AG AG	000 324.	18.8	.0 32.0	.10	⊥.4
12. 0	CHAMPA SWB	@BROADW	Q*	58.0	190.0	69.4	1 20	01.5	*	16.	45. 4	AG	474. 1	100.0	.0 36.0	.09	.8
13. 0	CHAMPA SWB	@ 20TH	*	.0	131.0	-470.0) -3!	53.0	*	675.	224. 7	AG	404.	18.8	.0 59.0	10	1 0
	CHAMPA SWB	⊎ ∠UTH ()	/ ^ _	44 4 .U	-345.0	-426.2	∠ −30	JØ./ '	••	Z3.	44. A	-UF	JJU	LUU.U	.0 39.0	. 12	⊥.∠

15.	21ST SEB	@ CH	AMPA	*	-393.0	202.0	-151.0	-27.0 *	333.	133. AG	87.	20.9	.0 37.0		
16.	21ST SEB	@ BR(OADWAY	*	-151.0	-27.0	.0	-175.0 *	211.	134. AG	94.	20.9	.0 40.0		
17.	21ST SEB	@ ST(OUT	*	.0	-175.0	89.0	-261.0 *	124.	134. AG	23.	20.9	.0 37.0		
18.	21ST NWB	@ ST(OUT	*	331.0	-472.0	107.0	-255.0 *	312.	314. AG	24.	20.9	.0 38.0		
19.	21ST NWB	@ BR(OADWAY	*	107.0	-255.0	.0	-151.0 *	149.	314. AG	152.	20.9	.0 38.0		
20.	21ST NWB	@ CH	AMPA	*	.0	-151.0	-142.0	-12.0 *	199.	314. AG	152.	20.9	.0 37.0		
21.	21ST NWB	@ CU	RTIS	*	-142.0	-12.0	-381.0	221.0 *	334.	314. AG	45.	20.9	.0 38.0		
22.	BROADWAY	NB @	CHAMPQL	*	5.5	89.0	5.5	85.5 *	3.	180. AG	298.	100.0	.0 11.0	.05	.2
23.	BROADWAY	NB @	21QL	*	5.0	-205.0	5.0	-208.5 *	3.	180. AG	298.	100.0	.0 10.0	.05	.2
24.	BROADWAY	SB @	21QL	*	-4.5	-116.0	-4.5	-112.5 *	3.	360. AG	298.	100.0	.0 10.0	.05	.2
25.	BROADWAY	SB@C	ALIFORN	[*	-15.0	-356.0	-15.0	-811.0 *	455.	180. AG	648.	14.6	.0 59.0		
26.	21ST SEB	@ CA	LIF	*	89.0	-261.0	321.0	-487.0 *	324.	134. AG	36.	20.9	.0 37.0		
													PAGE	2	

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
2.	BROADWAY SB@CHAMPA	0*	75	38	2.0	687	2000	130.05	1	3
4.	BROADWAY SB@STOUT Q	~*	75	35	2.0	737	2000	130.05	1	3
6.	BROADWAY NB @STOUT	Q*	75	35	2.0	430	2000	130.05	1	3
8.	BROADWAY NB @CHAMPA	Q*	75	38	2.0	430	2000	130.05	1	3
10.	BROADWAY NB @CURTIS	Q*	75	43	2.0	351	2000	130.05	1	3
12.	CHAMPA SWB @BROADW	Q*	75	34	2.0	263	2000	130.05	1	3
14.	CHAMPA SWB @ 20TH Q	*	75	38	2.0	328	2000	130.05	1	3
22.	BROADWAY NB @CHAMPQ	L*	75	64	2.0	10	2000	130.05	2	3
23.	BROADWAY NB @21QL	*	75	64	2.0	10	2000	130.05	2	3
24.	BROADWAY SB @21QL	*	75	64	2.0	10	2000	130.05	2	3

RECEPTOR LOCATIONS

		*	C00	RDINATES (FI	·)	*
	RECEPTOR	*	Х	Y	Z	*
		**				_ *
1.	RECEPTOR 1 CAM	P *	-61.0	.0	10.0	*
2.	REC 2	*	-40.0	232.0	6.0	*
3.	REC 3	*	-40.0	132.0	6.0	*
4.	REC 4	*	-90.0	82.0	6.0	*
5.	REC 5	*	-149.0	21.0	6.0	*
б.	REC 6	*	-40.0	48.0	6.0	*
7.	REC 7	*	-106.5	-20.0	6.0	*
8.	REC 8	*	-40.0	-27.0	6.0	*
9.	REC 9	*	-40.0	-163.0	6.0	*
10.	REC 10	*	-40.0	-263.0	6.0	*
11.	REC 11	*	43.5	-66.0	6.0	*
12.	REC 12	*	43.5	-243.0	6.0	*
13.	REC 13	*	43.5	-166.0	6.0	*
14.	REC 14	*	43.5	-15.0	6.0	*
15.	REC 15	*	93.5	185.0	6.0	*
16.	REC 16	*	93.5	266.0	6.0	*
17.	REC 17	*	43.5	316.0	6.0	*

REC	18	*	43.5	216.0	6.0	*
REC	19	*	43.5	135.0	6.0	*
REC	20	*	-40.0	-85.5	6.0	*
REC	21	*	142.1	235.0	6.0	*
REC	22	*	143.5	-266.0	6.0	*
REC	23	*	43.5	35.0	6.0	*
REC	24	*	143.5	316.0	6.0	*
REC	25	*	-189.4	-18.0	6.0	*
REC	26	*	-146.0	-61.5	6.0	*
REC	27	*	-90.0	-113.0	6.0	*
	REC REC REC REC REC REC REC REC REC	REC 18 REC 19 REC 20 REC 21 REC 22 REC 23 REC 24 REC 25 REC 26 REC 27	REC 18 * REC 19 * REC 20 * REC 21 * REC 23 * REC 23 * REC 24 * REC 25 * REC 26 * REC 27 *	REC 18 * 43.5 REC 19 * 43.5 REC 20 * -40.0 REC 21 * 142.1 REC 22 * 143.5 REC 23 * 43.5 REC 24 * 143.5 REC 25 * -189.4 REC 26 * -146.0 REC 27 * -90.0	REC 18 * 43.5 216.0 REC 19 * 43.5 135.0 REC 20 * -40.0 -85.5 REC 21 * 142.1 235.0 REC 22 * 143.5 -266.0 REC 23 * 43.5 35.0 REC 24 * 143.5 316.0 REC 25 * -189.4 -18.5 REC 26 * -146.0 -61.5 REC 27 * -90.0 -113.0	REC 18 * 43.5 216.0 6.0 REC 19 * 43.5 135.0 6.0 REC 20 * -40.0 -85.5 6.0 REC 21 * 142.1 235.0 6.0 REC 22 * 143.5 -266.0 6.0 REC 23 * 43.5 316.0 6.0 REC 24 * 143.5 316.0 6.0 REC 25 * -189.4 -18.0 6.0 REC 26 * -146.0 -61.5 6.0 REC 27 * -90.0 -113.0 6.0

JOB: CAMP REVISED LINKS

RUN:

PAGE 3

MODEL	RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND * CONCENTRATION

ANGLE * (PPM)

(DEGR)* REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 REC11 REC12 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 *_____* 15. * .9 .7 1.4 .5 .1 1.4 .7 1.1 1.1 .8 .2 .2 .2 .3 .3 .0 .2 .2 .8 1.1 PAGE 4 WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)* REC21 REC22 REC23 REC24 REC25 REC26 REC27

_____*_____

15. * .3 .0 .3 .0 .2 .7 .7 *-----*

The highest concentration of 1.40 PPM occurred at receptor rec3 .

CAME	2006 Hour 15	(CAL3QHC: LI	NE SOURCE I	DISPERSION I	MODEL - VEH	RSION 2.0 I	ated 95	221			PAGE
DATE : FIME : 1	8/23/99 11:41:49											
The M	MODE flag has be	en set to (C for calcu	lating CO a	verages.							
SITE &	METEOROLOGICAL	VARIABLES										
VS = U = 1	.0 CM/S 1.1 M/S	VD = .0 CLAS = 4	CM/S (D) A	ZO = 175. TIM = 60.	CM MINUTES	MIXH =	1000. M <i>P</i>	MB =	.0 PPM	BRG =	2. DEGH	REES
LINK VA	ARIABLES											
LINK	DESCRIPTION	* * X1	LINK COORD Y1	INATES (FT) X2	¥2	* LENGTH * (FT)	H BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (F	V/(T)	C QUEUE (VEH)
1. BROZ 2. BROZ	ADWAY SB @ CHAMP ADWAY SB@CHAMPA	A* -15.0 Q* -15.0	0 572.0 0 171.0	-15.0 -15.0	115.0 213.2 256.0	* 457. * 427. * 42.	180. AG 360. AG	609. 525.	14.5 100.0	.0 50. .0 30.	0 .23	2.1
4. BROA 5. BROA	ADWAY SB @ SIOUI ADWAY SB@STOUT Q ADWAY NB @ STOUT	* -15.0 * -15.0	$0 -312.0 \\ 0 -815.0$	-15.0 -15.0 10.0	-270.3	* 471. * 42. * 503.	360. AG 360. AG	483. 884.	14.5 100.0 14.5	.0 49.	0.23	2.1
6. BROA 7. BROA	ADWAY NB @STOUT ADWAY NB @ CHAMP	Q* 10.0 A* 22.0	0 -400.0 0 -312.0	10.0 22.0	-472.2 580.0	* 72. * 892.	180. AG 360. AG	322. 720.	100.0	.0 20. .0 43.	0.39	3.7
8. BRO 9. BRO 10. BRO	ADWAY NB @CHAMPA ADWAY NB @ CURTI ADWAY NB @CURTIS	Q* 22.0 S* 17.9 O* 17.9	0 99.0 5 148.0 5 580.0	22.0 17.5 17.5	35.2 639.0 503.6	* 64. * 491. * 76.	180. AG 360. AG 180. AG	350. 1144. 594.	100.0 14.5 100.0	.0 23. .0 52.	0.35	3.2
11. CHAN 12. CHAN	MPA SWB @ BROADW MPA SWB @BROADW	~* 518.0 Q* 58.0	0 653.0 0 190.0	.0 73.1	131.0 205.2	* 735. * 21.	225. AG 45. AG	430. 469.	18.8 100.0	.0 56. .0 36.	0 .12	1.1
13. CHAN 14. CHAN 15. 21ST	MPA SWB @ 20TH MPA SWB @ 20TH Q F SEB @ CHAMPA	* .(* -442.(* -393.($\begin{array}{cccc} 0 & 131.0 \\ 0 & -325.0 \\ 0 & 202.0 \end{array}$	-470.0 -421.3 -151.0	-353.0 -303.7 -27.0	* 675. * 30. * 333.	224. AG 44. AG 133. AG	536. 525. 106.	18.8 100.0 20.8	.0 59. .0 39. .0 37.	0 0 .16 0	1.5
16. 2157 17. 2157 18. 2157	F SEB @ BROADWAY F SEB @ STOUT F NWB @ STOUT	* -151.(* .(* 331.(0 -27.0 0 -175.0 0 -472.0	.0 89.0 107.0	-175.0 -261.0 -255.0	* 211. * 124. * 312.	134. AG 134. AG 314. AG	106. 35. 35.	20.8 20.8 20.8	.0 40. .0 37. .0 38.	0 0 0	
19. 2157 20. 2157 21. 2157	F NWB @ BROADWAY F NWB @ CHAMPA F NWB @ CURTIS	* 107.0 * .(* -142.0	0 -255.0 0 -151.0 0 -12.0	.0 -142.0 -381.0	-151.0 -12.0 221.0	* 149. * 199. * 334.	314. AG 314. AG 314. AG	150. 150. 44.	20.8 20.8 20.8	.0 38. .0 37. .0 38.	0 0 0	
22. BRO 23. BRO 24. BRO 25. BRO	ADWAY NB @CHAMPQ ADWAY NB @21QL ADWAY SB @21QL ADWAY SB@CALIFOR	L* 5.9 * 5.0 * -4.9 N* -15.0	5 89.0 0 -205.0 5 -116.0 0 -356.0	5.5 5.0 -4.5 -15.0	85.5 -208.5 -112.5 -811.0	* 3. * 3. * 3. * 455.	180. AG 180. AG 360. AG 180. AG	295. 295. 295. 767.	100.0 100.0 100.0 14.5	.0 11. .0 10. .0 10. .0 59.	0 .05 0 .05 0 .05 0	. 2 . 2 . 2
26. 21ST	F SEB @ CALIF	* 89.0	0 -261.0	321.0	-487.0	* 324.	134. AG	35.	20.8	.0 37.	0	
ADDITIC LINK	ONAL QUEUE LINK DESCRIPTION	PARAMETERS * CYCLI * LENG * (SEC	E RED TH TIME C) (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATIO FLOW RATH (VPH)	ON IDLE E EM FAC (gm/hr)	SIGNAL TYPE	ARRI RATI	VAL E		
2. BRO 4. BRO 6. BRO 8. BRO 10. BRO 12. CHAN 14. CHAN	ADWAY SB@CHAMPA ADWAY SB@STOUT Q ADWAY NB @STOUT ADWAY NB @CHAMPA ADWAY NB @CURTIS MPA SWB @BROADW MPA SWB @ 20TH Q	_* Q* 75 Q* 75 Q* 75 Q* 75 Q* 75 Q* 75 Q* 75 X75 X75	38 35 35 38 43 34 38	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	609 654 755 615 977 346 431	2000 2000 2000 2000 2000 2000 2000 200	128.68 128.68 128.68 128.68 128.68 128.68 128.68 128.68	1 1 1 1 1 1 1 1	3 3 3 3 3 3 3 3 3 3			
2. BROJ 4. BROJ 6. BROJ 8. BROJ 10. BROJ 12. CHAN 14. CHAN 22. BROJ	ADWAY SB@CHAMPA ADWAY SB@STOUT Q ADWAY NB @STOUT ADWAY NB @CHAMPA ADWAY NB @CURTIS MPA SWB @BROADW MPA SWB @ 20TH Q ADWAY NB @CHAMPQ	* (SEC -*	C) (SEC) 38 35 35 38 43 34 38 64	(SEC) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(VPH) 609 654 755 615 977 346 431 10	(VPH) 2000 2000 2000 2000 2000 2000 2000 20	(gm/hr) 128.68 128.68 128.68 128.68 128.68 128.68 128.68 128.68	1 1 1 1 1 1 1 2	3 3 3 3 3 3 3 3 3 3 3 3			

CDPHE/APCD/Technical Services Program

	23. 24.	BROA BROA	DWAY DWAY	NB SB	@21Q] @21Q]	L * L *	7	5 5	64 64	2 2	2.0 2.0	10 10		2000 2000	128 128	8.68 8.68	2 2		3 3			
ANGLI (DEGI	ट * २) * *-	REC1	(PPM) REC2) 2 1	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
2.	*	.7	•	. 8	1.2	.2	.0	1.3	.5	1.1	1.2	.9	1.0	.9	1.0	1.4	.5	.2	1.2	1.2	1.6	1.0
WIND ANGLE (DEGE	* 2 * 2)*	CONCE REC21	NTRAI (PPM) REC2	CIOI) 22 I	N REC23	REC24	REC25	REC26	REC27													
2.	*_ * *_	.3		. 0	1.4	.0	.1	.4	.6													
THE H	HIGH	IEST C	ONCEN	JTR	ATION	OF	1.60	PPM OC	CURRED	AT RE	CEPTOR	REC19										

1													
	The MODE flag has b	een s	et to C	for calcul	ating CO av	verages.							
SIT	TE & METEOROLOGICAL	VARI	ABLES										
VS U	= .0 CM/S = 1.0 M/S	VD = CLAS	 - 0 = 4	CM/S (D) AT	ZO = 175. C IM = 60. N	CM AINUTES	MIXH = 10	00. M A	MB =	.0 PPM B	RG = 29.	DEGR	EES
LIN	NK VARIABLES												
I	JINK DESCRIPTION	* *	Xl	LINK COORDI Y1	NATES (FT) X2	* Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUET (VI
1.	BROADWAY SB @ CHAM	PA*	-15.0	572.0	-15.0	115.0 *	457.	180. AG	749.	24.9	.0 50.0		
∠. 3.	BROADWAY SB@CHAMPA BROADWAY SB @ STOU	Ох Т *	-15.0	115.0	-15.0	-356.0 *	471.	360. AG 180. AG	524. 803.	24.9	.0 30.0	.28	2.0
4. 5.	BROADWAY SB@STOUT BROADWAY NB @ STOU	Q * T *	-15.0 10.0	-312.0 -815.0	-15.0 10.0	-260.9 * -312.0 *	51. 503.	360. AG 360. AG	482. 1087.	100.0 12.9	.0 29.0 .0 40.0	.28	2.0
6.	BROADWAY NB @STOUT	_Q*	10.0	-400.0	10.0	-488.8 *	89.	180. AG	321.	100.0	.0 20.0	.48	4.
7. 8.	BROADWAY NB @ CHAM BROADWAY NB @CHAMP	PA^ AQ*	22.0	-312.0 99.0	22.0	580.0 × 20.5 *	79.	360. AG 180. AG	886. 349.	100.0	.0 43.0	.43	4.
9.	BROADWAY NB @ CURT	IS*	17.5	148.0	17.5	639.0 *	491.	360. AG	1407.	12.9	.0 52.0	E /	л
10.11.	CHAMPA SWB @ BROAD	5Q" W *	518.0	653.0	.0	131.0 *	735.	225. AG	592.	20.8	.0 56.0	.54	4.
12.	CHAMPA SWB @BROADW	Q* *	58.0	190.0	76.6	208.7 *	26.	45. AG	468.	100.0	.0 36.0	.14	1.
13. 14.	CHAMPA SWB @ 20TH CHAMPA SWB @ 20TH	Q *	-442.0	-325.0	-416.5	-298.7 *	37.	44. AG	524.	100.0	.0 39.0	.20	1.
15.	21ST SEB @ CHAMPA	*	-393.0	202.0	-151.0	-27.0 *	333.	133. AG	131.	23.8	.0 37.0		
16.	21ST SEB @ BROADWA	Y *	-151.0	-27.0	.0	-175.0 *	211.	134. AG	131.	23.8	.0 40.0		
18	21ST SEB @ STOUT 21ST NWB @ STOUT	*	331 0	-1/5.0 -472.0	89.0 107 0	-261.0 *	124. 312	134. AG 314 AG	44. 44	∠3.8 23.8	.0 37.0		
19.	21ST NWB @ BROADWA	Y *	107.0	-255.0	.0	-151.0 *	149.	314. AG	185.	23.8	.0 38.0		
20.	21ST NWB @ CHAMPA	*	.0	-151.0	-142.0	-12.0 *	199.	314. AG	185.	23.8	.0 37.0		
21.	21ST NWB @ CURTIS	*	-142.0	-12.0	-381.0	221.0 *	334.	314. AG	54.	23.8	.0 38.0		
22.	BROADWAY NB @CHAMP	QL*	5.5	89.0	5.5	84.8 *	4.	180. AG	294.	100.0	.0 11.0	.06	
23.	BROADWAY NB @21QL	*	5.0	-205.0	5.0	-209.2 *	4.	180. AG	294.	100.0	.0 10.0	.06	•
24. 25	BROADWAY SB@CALIFO	RN*	-15 0	-356 0	-15 0	-811 0 *	455	180 AG	942	24 9	0 59 0	.00	•
26.	21ST SEB @ CALIF	*	89.0	-261.0	321.0	-487.0 *	324.	134. AG	44.	23.8	.0 37.0 PAGE	2	
ADI	DITIONAL QUEUE LINK	PARA	METERS									-	
 I	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVA	L		
		* *	LENGT (SEC	H TIME) (SEC)	LOST TIME (SEC)	VOL (VPH)	FLOW RATE (VPH)	EM FAC (gm/hr)	TYPE	RATE			
2.	BROADWAY SB@CHAMPA	* Q*	 75	 38	2.0	 749	2000	128.41	1	3			
4.	BROADWAY SB@STOUT	Q*	75	35	2.0	803	2000	128.41	1	3			
6.	BROADWAY NB @STOUT	Q*	75	35	2.0	928	2000	128.41	1	3			
8.	BROADWAY NB @CHAMP	AQ*	75 75	38	2.0	756	2000	128.41	1	3			
тU.	DRUADWAI NB WCURII	2Q	/ 5	40	2.0	TZOT	2000	100.41	1	3			

CDPHE/APCD/Technical Services Program

1

14 22 23 24	. CHAM . BROA . BROA . BROA	PA SWB DWAY N DWAY N DWAY S	@ 20T B @CHA B @21Q B @21Q	HQ* MPQL* L* L*	7! 7! 7! 7!	5 5 5 5	38 64 64 64	2 2 2 2	.0 .0 .0	530 12 12 12		2000 2000 2000 2000	128 128 128 128	8.41 8.41 8.41 8.41	1 2 2 2		3 3 3 3			
ANGLE * (DEGR)*	REC1	(PPM) REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
29. *	1.7	1.7	2.4	1.4	.9	2.4	1.5	2.0	1.6	1.3	.2	. 2	.2	.2	.6	.2	.2	.4	1.1	1.6
ANGLE * (DEGR)*	REC21	(PPM) REC22	REC23	REC24	REC25	REC26	REC27													
29. *	.6	.0	.3	. 2	.9	1.6	1.2													
THE HIG	HEST C	ONCENT	RATION	OF	2.40	PPM OC	CURRED	AT RE	CEPTOR	REC3										

CAMP 2006 Hour 17 DATE : 8/25/99

CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221

PAGE 1

TIME : 12:44:30

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS U	= .0 CM/S = 1.0 M/S 0	VD = CLAS	.0 = 4	CM/S (D)	1	ZO ATIM	= 175. = 60.	CM MINUTE	S		MIXH = 1	L000.	M A	MB =	.0 PPM	BRG =	51.	DEGRE	ES
	LINK DESCRIPTION	*		LINK	COORI	DINAT	ES (FT	')		*	LENGTH	I BRG	TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1		Y1 		X2	¥2		**_	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
1.	BROADWAY SB @ CHAMPA	A*	-15.	0	572.0	C	-15.0	11	5.0	*	457.	180	. AG	842.	15.9	.0	50.0		
2.	BROADWAY SB@CHAMPA (2*	-15.	0	171.0	C	-15.0	22	2.7	*	52.	360	. AG	519.	100.0	.0	30.0	.28	2.6
3.	BROADWAY SB @ STOUT	*	-15.	0	115.0	C	-15.0	-35	6.0	*	471.	180	. AG	903.	15.9	.0	49.0		
4.	BROADWAY SB@STOUT Q	*	-15.	0	-312.0	C	-15.0	-26	50.7	*	51.	360	. AG	478.	100.0	.0	29.0	.28	2.6
5.	BROADWAY NB @ STOUT	*	10.	0	-815.0	C	10.0	-31	2.0	*	503.	360	. AG	1222.	15.9	.0	40.0		
6.	BROADWAY NB @STOUT (Q*	10.	0	-400.0	C	10.0	-48	8.8	*	89.	180	. AG	319.	100.0	.0	20.0	.48	4.5
7.	BROADWAY NB @ CHAMPA	A*	22.	0	-312.0	C	22.0	58	30.0	*	892.	360	. AG	996.	8.2	.0	43.0		
8.	BROADWAY NB @CHAMPA	Q*	22.	0	99.0	C	22.0	2	20.5	*	79.	180	. AG	346.	100.0	.0	23.0	.43	4.0
9.	BROADWAY NB @ CURTIS	5*	17.	5	148.0	C	17.5	63	39.0	*	491.	360	. AG	1582.	8.2	.0	52.0		
10.	BROADWAY NB @CURTIS	2*	17.	5	580.0	C	17.5	48	35.9	*	94.	180	. AG	587.	100.0	.0	32.0	.54	4.8
11.	CHAMPA SWB @ BROADW	*	518.	0	653.0	C	.0	13	31.0	*	735.	225	. AG	594.	13.2	.0	56.0		
12.	CHAMPA SWB @BROADW (2*	58.	0	190.0	C	76.6	20	8.7	*	26.	45	. AG	464.	100.0	.0	36.0	.14	1.3
13.	CHAMPA SWB @ 20TH	*		0	131.0	C	-470.0	-35	53.0	*	675.	224	. AG	740.	13.2	.0	59.0		
14.	CHAMPA SWB @ 20TH Q	*	-442.	0	-325.0	C	-416.5	-29	8.7	*	37.	44	. AG	519.	100.0	.0	39.0	.20	1.9
15.	21ST SEB @ CHAMPA	*	-393.	0	202.0	C	-151.0	- 2	27.0	*	333.	133	. AG	147.	15.9	.0	37.0		
16.	21ST SEB @ BROADWAY	*	-151.	0	-27.0	C	.0	-17	/5.0	*	211.	134	. AG	147.	15.9	.0	40.0		
17.	21ST SEB @ STOUT	*		0	-175.0	C	89.0	-26	51.0	*	124.	134	. AG	49.	15.9	.0	37.0		
18.	21ST NWB @ STOUT	*	331.	0	-472.0	C	107.0	-25	5.0	*	312.	314	. AG	208.	15.9	.0	38.0		
19.	21ST NWB @ BROADWAY	*	107.	0	-255.0	C	.0	-15	51.0	*	149.	314	. AG	208.	15.9	.0	38.0		
20.	21ST NWB @ CHAMPA	*		0	-151.0	C	-142.0	-1	2.0	*	199.	314	. AG	61.	15.9	.0	37.0		
21.	21ST NWB @ CURTIS	*	-142.	0	-12.0	C	-381.0	22	21.0	*	334.	314	. AG	49.	15.9	.0	38.0		
22.	BROADWAY NB @CHAMPQI	L*	5.	5	89.0	C	5.5	6	34.8	*	4.	180	. AG	291.	100.0	.0	11.0	.06	.2
23.	BROADWAY NB @21QL	*	5.	0	-205.0	C	5.0	-20	9.2	*	4.	180	. AG	291.	100.0	.0	10.0	.06	.2
24.	BROADWAY SB @21QL	*	-4.	5	-116.0	C	-4.5	-11	1.8	*	4.	360	. AG	291.	100.0	.0	10.0	.06	.2
25.	BROADWAY SB@CALIFORM	N*	-15.	0	-356.0	C	-15.0	-81	1.0	*	455.	180	. AG	1059.	15.9	.0	59.0		
26.	21ST SEB @ CALIF	*	89.	0	-261.0	C	321.0	-48	37.0	*	324.	134	. AG	49.	15.9	.0	37.0		

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
2.	BROADWAY SB@CHAMPA)*	75	38	2.0	749	2000	127.32	1	3
4.	BROADWAY SB@STOUT Q	*	75	35	2.0	804	2000	127.32	1	3
б.	BROADWAY NB @STOUT	2*	75	35	2.0	928	2000	127.32	1	3
8.	BROADWAY NB @CHAMPA	2*	75	38	2.0	756	2000	127.32	1	3
10.	BROADWAY NB @CURTIS	2*	75	43	2.0	1202	2000	127.32	1	3
12.	CHAMPA SWB @BROADW	2*	75	34	2.0	426	2000	127.32	1	3
14.	CHAMPA SWB @ 20TH Q	*	75	38	2.0	530	2000	127.32	1	3
22.	BROADWAY NB @CHAMPQ	_*	75	64	2.0	12	2000	127.32	2	3
23.	BROADWAY NB @21QL	*	75	64	2.0	12	2000	127.32	2	3
24.	BROADWAY SB @21QL	*	75	64	2.0	12	2000	127.32	2	3

CDPHE/APCD/Technical Services Program
CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221

PAGE 1

CAMP 2006 Hour 18 DATE : 8/25/99 TIME : 12:47: 9

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS U	= .0 CM/S = 1.0 M/S	VD = CLAS	0 = 4	CM/S (D)	ZO = 175. ATIM = 60.	CM MINUTES		MIXH = 1	000. м	AMB	=	.0 PPM	BRG = 146.	DEGR	EES
	LINK DESCRIPTION	* *	Xl	LINK COOF Y1	RDINATES (FT X2	') ¥2	* *	LENGTH (FT)	BRG ((DEG)	TYPE	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1.	BROADWAY SB @ CHAMP	A*	-15.0	0 572	.0 -15.0	115.0	*	457.	180.	AG	495.	24.1	.0 50.0		
2.	BROADWAY SB@CHAMPA BROADWAY SB @ STOUT	Q* ' *	-15.0	0 171.	.0 -15.0	-356.0	*	30. 471.	360. 180.	AG AG	532. 531.	24.1	.0 30.0	. 17	1.5
4.	BROADWAY SB@STOUT Q	*	-15.	0 -312	.0 -15.0	-282.0	*	30.	360.	AG	490.	100.0	.0 29.0	.16	1.5
5. 6.	BROADWAY NB @STOUT	Q*	10.0	-400	.0 10.0	-426.4	*	26.	180.	AG AG	327.	100.0	.0 40.0	.14	1.3
7.	BROADWAY NB @ CHAMP	A*	22.	0 -312. 0 99	.0 22.0	580.0	*	892. 29	360. 180	AG AG	310. 355	12.4	.043.0	16	15
9.	BROADWAY NB @ CURTI	S*	17.	5 148	.0 17.5	639.0	*	491.	360.	AG	253.	12.4	.0 52.0	.10	1.5
10.	BROADWAY NB @CURTIS CHAMPA SWB @ BROADW	Q* *	17.	5	$ \begin{array}{ccc} .0 & 17.5 \\ .0 & .0 \end{array} $	562.4 131.0	*	18. 735.	180. 225.	AG AG	602. 234.	100.0 20.2	.0 32.0	.10	.9
12.	CHAMPA SWB @BROADW	Q*	58.	0 190	.0 65.3	197.4	*	10.	45.	AG	476.	100.0	.0 36.0	.06	.5
13.14.	CHAMPA SWB @ 20TH CHAMPA SWB @ 20TH Q	*	-442.0	0 -325.	.0 -470.0	-353.0 -314.6	*	6/5. 15.	224. 44.	AG AG	291. 532.	20.2	.0 59.0	.08	.7
15. 16	21ST SEB @ CHAMPA	*	-393.	0 202	.0 -151.0	-27.0	*	333.	133.	AG	63.	23.0	.0 37.0		
10.17.	21ST SEB @ BROADWAT 21ST SEB @ STOUT	*	-151.0	0 -175	.0 .0	-261.0	*	124.	134.	AG AG	16.	23.0	.0 40.0		
18. 19	21ST NWB @ STOUT 21ST NWB @ BROADWAY	* *	331.0	0 -472. 0 -255	.0 107.0	-255.0	*	312. 149	314. 314	AG AG	109.	23.0 23.0	.0 38.0		
20.	21ST NWB @ CHAMPA	*		0 -151	.0 -142.0	-12.0	*	199.	314.	AG	32.	23.0	.0 37.0		
21. 22.	21ST NWB @ CURTIS BROADWAY NB @CHAMPO	* L*	-142.0	0 –12. 5 89.	.0 -381.0 .0 5.5	221.0 86.6	*	334. 2.	314. 180.	AG AG	26. 299.	$23.0 \\ 100.0$.0 38.0 .0 11.0	.04	.1
23.	BROADWAY NB @21QL	*	5.0	0 -205	.0 5.0	-207.4	*	2.	180.	AG	299.	100.0	.0 10.0	.04	.1
24. 25.	BROADWAY SB @21QL BROADWAY SB@CALIFOR	.N*	-4.9	5 –116. 0 –356.	.0 -4.5 .0 -15.0	-113.6 -811.0	*	2. 455.	360. 180.	AG AG	299. 467.	100.0 23.0	.0 10.0 .0 59.0	.04	. 1
26.	21ST SEB @ CALIF	*	89.0	0 -261	.0 321.0	-487.0	*	324.	134.	AG	17.	23.0	.0 37.0		

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPT	FION * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
2. BROADWAY SB	CHAMPA O*	75	38	2.0	440	2000	130.47	1	3
4. BROADWAY SB@	STOUT Q *	75	35	2.0	473	2000	130.47	1	3
6. BROADWAY NB	@STOUT Q*	75	35	2.0	276	2000	130.47	1	3
8. BROADWAY NB	@CHAMPAQ*	75	38	2.0	276	2000	130.47	1	3
10. BROADWAY NB	@CURTISQ*	75	43	2.0	225	2000	130.47	1	3
12. CHAMPA SWB @	BROADW Q*	75	34	2.0	169	2000	130.47	1	3
14. CHAMPA SWB @	20TH Q *	75	38	2.0	210	2000	130.47	1	3
22. BROADWAY NB	@CHAMPQL*	75	64	2.0	7	2000	130.47	2	3
23. BROADWAY NB	@21QL *	75	64	2.0	7	2000	130.47	2	3
24. BROADWAY SB	@21QL *	75	64	2.0	7	2000	130.47	2	3

CDPHE/APCD/Technical Services Program

CAMP 2006 DATE TIME	Hour 19 : 8/23/99 : 11:30:23		CAL3QH	C: LINE SOU	JRCE DISPEF	SION MODEL	- VERSION 2	2.0 Dated	95221			P	AGE 1
The MODE f	lag has been set to & METEOROLOGICAL V	O C fo VARIAE	or calcu BLES	ulating CO	averages.								
VS = U =	= .0 CM/S = 1.0 M/S	VD = CLAS	.0 (= 4	CM/S (D) AI	ZO = 175. CIM = 60.	CM MINUTES	MIXH = 10)00. M <i>P</i>	AMB =	.0 PPM	BRG = 223.	DEGR	EES
LIN	K VARIABLES												
 L:	INK DESCRIPTION	* *	1 X1	LINK COORDI Y1	NATES (FT) X2	¥2	* LENGTH * (FT)	BRG TYPE (DEG)	C VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. 1 2. 1 3. 1	BROADWAY SB @ CHAME BROADWAY SB@CHAMPA BROADWAY SB @ STOUT	Q*	-15.0 -15.0 -15.0	572.0 171.0 115.0	-15.0 -15.0 -15.0	115.0 211.3 -356.0	* 457. * 40. * 471.	180. AG 360. AG 180. AG	583. 554. 625.	15.2 100.0 15.2	.0 50.0 .0 30.0 .0 49.0	.22	2.0
4. 1 5. 1 6. 1	BROADWAY SB@STOUT (BROADWAY NB @ STOUT BROADWAY NB @STOUT) * : * Q*	-15.0 10.0 10.0	-312.0 -815.0 -400.0	-15.0 10.0 10.0	-272.2 -312.0 -434.8	* 40. * 503. * 35.	360. AG 360. AG 180. AG	510. 365. 340.	100.0 15.2 100.0	.0 29.0 .0 40.0 .0 20.0	.22 .19	2.0 1.8
7. 1 8. 1 9. 1	BROADWAY NB @ CHAME BROADWAY NB @CHAMPA BROADWAY NB @ CURTI	A* Q* S*	22.0 22.0 17.5	-312.0 99.0 148.0	22.0 22.0 17.5	580.0 61.2 639.0	* 892. * 38. * 491.	360. AG 180. AG 360. AG	365. 369. 298.	15.2 100.0 15.2	.043.0 .023.0 .052.0	.21	1.9
10. 1	BROADWAY NB @CURTIS CHAMPA SWB @ BROADW	SQ* 1 *	17.5 518.0	580.0 653.0	17.5	556.7 131.0	* 23. * 735.	180. AG 225. AG	627. 275.	100.0 19.6	.0 32.0	.13	1.2
12. (CHAMPA SWB @BROADW CHAMPA SWB @ 20TH CHAMPA SWB @ 20TH (2." *) *	.0	131.0 -325.0	-470.0 -428.7	-353.0 -311.3	* 675. * 19.	45. AG 224. AG 44. AG	490. 343. 554.	19.6 100.0	.0 38.0 .0 59.0 .0 39.0	.10	1.0
15. 16. 17. 18. 19. 20. 21.	21ST SEB @ CHAMPA 21ST SEB @ BROADWAY 21ST SEB @ STOUT 21ST NWB @ STOUT 21ST NWB @ BROADWAY 21ST NWB @ CHAMPA 21ST NWB @ CURTIS	* * * * *	-393.0 -151.0 .0 331.0 107.0 .0 -142.0	202.0 -27.0 -175.0 -472.0 -255.0 -151.0 -12.0	-151.0 .0 89.0 107.0 .0 -142.0 -381.0	-27.0 -175.0 -261.0 -255.0 -151.0 -12.0 221.0	* 333. * 211. * 124. * 312. * 149. * 199. * 334.	133. AG 134. AG 134. AG 314. AG 314. AG 314. AG 314. AG	74. 80. 19. 20. 129. 129. 38.	21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1	.0 37.0 .0 40.0 .0 37.0 .0 38.0 .0 38.0 .0 37.0 .0 38.0		
22. 1 23. 1 24. 1 25. 1 26. 1 ADD	BROADWAY NB @CHAMPÇ BROADWAY NB @21QL BROADWAY SB @21QL BROADWAY SB@CALIFOF 21ST SEB @ CALIF ITIONAL QUEUE LINK	PARAM	5.5 5.0 -4.5 -15.0 89.0 IETERS	89.0 -205.0 -116.0 -356.0 -261.0	5.5 5.0 -4.5 -15.0 321.0	85.9 -208.1 -112.9 -811.0 -487.0	* 3. * 3. * 3. * 455. * 324.	180. AG 180. AG 360. AG 180. AG 134. AG	311. 311. 311. 551. 30.	100.0 100.0 100.0 15.2 21.1	.0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.05 .05 .05	. 2 . 2 . 2
L.	INK DESCRIPTION	* * *	CYCLE LENGTI (SEC	RED H TIME) (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	I IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIV RATE	YAL C		
2. 1 4. 1 6. 1 10. 1 12. 0 14. 0 22. 1 23. 1 24. 1	BROADWAY SB@CHAMPA BROADWAY SB@STOUT C BROADWAY NB @STOUT BROADWAY NB @CHAMPA BROADWAY NB @CURTIS CHAMPA SWB @BROADW CHAMPA SWB @ 20TH C BROADWAY NB @CHAMPC BROADWAY NB @21QL BROADWAY SB @21QL	Q* Q* Q* Q* Q* Q* Q* Q* Q* Q* Q* Q* Q*	75 75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64	$\begin{array}{c} 2 \cdot 0 \\ 2 \cdot 0 \end{array}$	583 625 365 298 223 278 9 9 9	2000 2000 2000 2000 2000 2000 2000 200	135.91 135.91 135.91 135.91 135.91 135.91 135.91 135.91 135.91 135.91	1 1 1 1 1 1 1 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3			

WIND * ANGLE * (DEGR)*	CONCE REC1	ENTRATI (PPM) REC2	ON REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
223. *	.1	1	3	.3	.3	.3	.4	.0	.0	.0	.4	.9	.6	.4	.5	.9	.8	1.2	1.0	.1
WIND * ANGLE * (DEGR)*	CONCE REC21	ENTRATI (PPM) REC22	ON REC23	REC24	REC25	REC26	REC27													
223. *		.3	.4	.7	.2	.3	.0													
THE HIG	HEST C	CONCENT	RATION	OF	1.20	PPM OC	CURRED	AT RE	CEPTOR	REC18										

CAMP 2006 Hour 20 CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221 PA DATE : 8/25/99 TIME : 14:24:37 The MODE flag has been set to C for calculating CO averages. SITE & METEOROLOGICAL VARIABLES											
SITE & METEOROLOGICAL VAR	IABLES										
VS = .0 CM/S VD U = 1.0 M/S CL	0 = .0 CM AS = 4 (1)	/S D) AT	ZO = 175. IM = 60.	CM MINUTES	MIXH = 10)00. M A	MB =	.0 PPM	BRG = 221.	DEGRI	EES
LINK VARIABLES											
LINK DESCRIPTION *	LII X1	NK COORDI Y1	NATES (FT) X2	¥2	* LENGTH * (FT)	BRG TYPE (DEG)	C VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
 BROADWAY SB @ CHAMPA* BROADWAY SB@CHAMPA Q* BROADWAY SB @ STOUT * BROADWAY SB@STOUT Q * BROADWAY NB @ STOUT * 	-15.0 -15.0 -15.0 -15.0 10.0	572.0 171.0 115.0 -312.0 -815.0	-15.0 -15.0 -15.0 -15.0 10.0	115.0 205.1 -356.0 -278.3 -312.0	* 457. * 34. * 471. * 34. * 503.	180. AG 360. AG 180. AG 360. AG 360. AG	492. 542. 528. 499. 309.	15.8 100.0 15.8 100.0 15.8	.0 50.0 .0 30.0 .0 49.0 .0 29.0 .0 40.0	.19 .18	1.7 1.7
 BROADWAY NB @STOUT Q* BROADWAY NB @ CHAMPA* BROADWAY NB @ CHAMPAQ* BROADWAY NB @ CULTIS* 	10.0 22.0 22.0 17.5	-400.0 -312.0 99.0 148.0	10.0 22.0 22.0 17.5	-429.5 580.0 67.0	* 29. * 892. * 32. * 491	180. AG 360. AG 180. AG	333. 309. 361. 252	100.0 15.8 100.0	$.0\ 20.0$ $.0\ 43.0$ $.0\ 23.0$ $0\ 52\ 0$.16 .18	1.5 1.6
10. BROADWAY NB @CURTISQ* 11. CHAMPA SWB @ BROADW * 12. CHAMPA SWB @BROADW Q*	17.5 518.0 58.0	580.0 653.0 190.0	17.5 .0 66.3	560.2 131.0 198.3	* 20. * 735. * 12.	180. AG 225. AG 45. AG	613. 233. 485.	100.0 20.4 100.0	.0 32.0 .0 56.0 .0 36.0	.11 .06	1.0 .6
13. CHAMPA SWB @ 20TH * 14. CHAMPA SWB @ 20TH Q * 15. 21ST SEB @ CHAMPA * 16. 21ST SEB @ BROADWAY * 17. 21ST SEB @ STOUT * 18. 21ST NWB @ STOUT *	.0 -442.0 -393.0 -151.0 .0 331.0	131.0 -325.0 202.0 -27.0 -175.0 -472.0	-470.0 -430.7 -151.0 .0 89.0 107.0	-353.0 -313.4 -27.0 -175.0 -261.0 -255.0	* 675. * 16. * 333. * 211. * 124. * 312.	224. AG 44. AG 133. AG 134. AG 134. AG 314. AG	290. 542. 63. 67. 16. 17.	20.4 100.0 22.0 22.0 22.0 22.0 22.0	$\begin{array}{cccc} .0 & 59.0 \\ .0 & 39.0 \\ .0 & 37.0 \\ .0 & 40.0 \\ .0 & 37.0 \\ .0 & 38.0 \end{array}$.09	. 8
19. 21ST NWB @ BROADWAY * 20. 21ST NWB @ CHAMPA * 21. 21ST NWB @ CURTIS * 22. BROADWAY NB @CURTIS * 23. BROADWAY NB @21QL * 24. BROADWAY SB @21QL * 25. BROADWAY SB@CALIFORN* 26. 21ST SEB @ CALIF *	$ \begin{array}{r} 107.0\\.0\\-142.0\\5.5\\5.0\\-4.5\\-15.0\\89.0\end{array} $	-255.0 -151.0 -12.0 89.0 -205.0 -116.0 -356.0 -261.0	$\begin{array}{r} & & & & & \\ & & -142.0 \\ & -381.0 \\ & & 5.5 \\ & & 5.0 \\ & -4.5 \\ & -15.0 \\ & 321.0 \end{array}$	-151.0 -12.0 221.0 86.6 -207.4 -113.6 -811.0 -487.0	* 149. * 199. * 334. * 2. * 2. * 2. * 2. * 324.	314. AG 314. AG 314. AG 180. AG 180. AG 360. AG 180. AG 134. AG	109. 109. 32. 304. 304. 304. 465. 26.	22.022.0100.0100.0100.015.822.0	.0 38.0 .0 37.0 .0 38.0 .0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.04 .04 .04	.1 .1 .1
ADDITIONAL QUEUE LINK PA	RAMETERS										
LINK DESCRIPTION * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	I IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIV RATE	AL		
2. BROADWAY SB@CHAMPA Q* 4. BROADWAY SB@STOUT Q * 6. BROADWAY NB @STOUT Q* 8. BROADWAY NB @CHAMPAQ* 10. BROADWAY NB @CURTISQ* 12. CHAMPA SWB @BROADW Q* 14. CHAMPA SWB @ 20TH Q * 22. BROADWAY NB @CHAMPQL* 23. BROADWAY NB @21QL * 24. BROADWAY SB @21QL *	75 75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	492 528 309 252 189 235 7 7 7 7	2000 2000 2000 2000 2000 2000 2000 200	132.97 132.97 132.97 132.97 132.97 132.97 132.97 132.97 132.97 132.97 132.97	1 1 1 1 1 1 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3			

WIND ANGLE (DEGR)	* CONC * * REC1	ENTRATI (PPM) REC2	ON REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
221.	* .	1.1	3	.3	.3	.2	.3	.0	.0	.0	.4	. 8	.6	.4	.5	.8	.8	1.0	.9	.1
WIND ANGLE (DEGR)	* CONC * * REC2	ENTRATI (PPM)	ON REC23	REC24	REC25	REC26	REC27													
221.	*	6.3	.4	.7	.2	.2	.0													
THE HIC	GHEST	CONCENT	RATION	OF	1.00	PPM OC	CURRED	AT RE	CEPTOR	REC18										

CAMP 2006 Hour 21 CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221 PA DATE : 8/25/99 TIME : 13:51: 7 The MODE flag has been set to C for calculating CO averages.												
SITE & METEOROLOGICAL VAR	IABLES	tracing co	averages.									
	·	M/C	70 - 17F C	10.0								
U = 1.1 M/S	AS = 4	(D) AT	IM = 60. M	IINUTES	MIXH = 10	00. M A	AMB =	.0 PPM	BRG = 267.	DEGR	EES	
LINK VARIABLES												
LINK DESCRIPTION *	т	TNK COORDT	NATES (FT)		* LENGTH	BRG TYPI	R VPH	ਸਤ	нw	V/C	OUEUE	
*	X1	Y1	X2	¥2	* (FT)	(DEG)		(G/MI)	(FT) (FT)	.,.	(VEH)	
1. BROADWAY SB @ CHAMPA*	-15.0	572.0	-15.0	115.0	* * 457.	180. AG	427.	16.3	.0 50.0			
 BROADWAY SB@CHAMPA Q* 	-15.0	171.0	-15.0	204.2	* 33.	360. AG	557.	100.0	.0 30.0	.18	1.7	
3. BROADWAY SB @ STOUT *	-15.0	115.0	-15.0	-356.0	* 471.	180. AG	459.	16.3	.0 49.0			
4. BROADWAY SB@STOUT Q *	-15.0	-312.0	-15.0	-279.1	* 33.	360. AG	513.	100.0	.0 29.0	.18	1.7	
5. BROADWAY NB @ STOUT *	10.0	-815.0	10.0	-312.0	* 503.	360. AG	268.	16.3	.0 40.0			
6. BROADWAY NB @STOUT Q*	10.0	-400.0	10.0	-428.7	* 29.	180. AG	342.	100.0	.0 20.0	.16	1.5	
 BROADWAY NB @ CHAMPA* 	22.0	-312.0	22.0	580.0	* 892.	360. AG	268.	16.3	.0 43.0			
 BROADWAY NB @CHAMPAQ* 	22.0	99.0	22.0	67.8	* 31.	180. AG	371.	100.0	.0 23.0	.17	1.6	
 BROADWAY NB @ CURTIS* 	17.5	148.0	17.5	639.0	* 491.	360. AG	218.	16.3	.0 52.0			
10. BROADWAY NB @CURTISQ*	17.5	580.0	17.5	561.0	* 19.	180. AG	630.	100.0	.0 32.0	.11	1.0	
11. CHAMPA SWB @ BROADW *	518.0	653.0	.0	131.0	* 735.	225. AG	202.	21.1	.0 56.0			
12. CHAMPA SWB @BROADW Q*	58.0	190.0	66.0	198.0	* 11.	45. AG	498.	100.0	.0 36.0	.06	.6	
13. CHAMPA SWB @ 20TH *	.0	131.0	-470.0	-353.0	* 675.	224. AG	251.	21.1	.0 59.0			
14. CHAMPA SWB @ 20TH O *	-442.0	-325.0	-431.0	-313.7	* 16.	44. AG	557.	100.0	.0 39.0	.09	.8	
15. 21ST SEB @ CHAMPA $$ *	-393.0	202.0	-151.0	-27.0	* 333.	133. AG	54.	22.6	.0 37.0			
16. 21ST SEB @ BROADWAY *	-151.0	-27.0	. 0	-175.0	* 211.	134. AG	58.	22.6	.0 40.0			
17. 21ST SEB @ STOUT *	. 0	-175.0	89.0	-261.0	* 124.	134. AG	14.	22.6	.0 37.0			
18. 21ST NWB @ STOUT *	331.0	-472.0	107.0	-255.0	* 312.	314. AG	15.	22.6	.0 38.0			
19. 21ST NWB @ BROADWAY *	107.0	-255.0		-151.0	* 149.	314. AG	95.	22.6	.0 38.0			
20. 21ST NWB @ CHAMPA *	. 0	-151.0	-142.0	-12.0	* 199.	314. AG	95.	22.6	.0 37.0			
21. 21ST NWB @ CURTIS *	-142.0	-12.0	-381.0	221.0	* 334	314. AG	28	22.6	.0 38.0			
22. BROADWAY NB @CHAMPOL*	5.5	89.0	5.5	86.6	* 2.	180. AG	313	100.0	.0 11.0	.04	. 1	
23 BROADWAY NB @2101. *	5 0	-205 0	5 0	-207 4	* 2	180 AG	313	100 0	0 10 0	04	1	
24. BROADWAY SB @210L *	-4.5	-116.0	-4.5	-113.6	* 2.	360. AG	313	100.0	.0 10.0	.04	.1	
25 BROADWAY SB@CALIFORN*	-15.0	-356 0	-15 0	-811 0	* 455	180 AG	404	16 3	0 59 0	.01	• -	
26. 21ST SEB @ CALIF *	89.0	-261.0	321.0	-487.0	* 324.	134. AG	22.	22.6	.0 37.0			
ADDITIONAL OUFUE LINK DA	RAMETERS											
LINK DESCRIPTION *	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIV	AL			
*	LENGTH	I TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE				
*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)						
				400		126 54						
2. BRUADWAY SBECHAMPA Q	/ 5	30 25	2.0	40U	2000	126.54	1	3				
4. BRUADWAY SBESTUUT Q *	/5	35	4.0	01C	2000	130.54	1	3				
0. BRUADWAY NE @STOUT Q*	/5	35	∠.0	3UL 201	2000	130.54	1	3				
O. BRUADWAY NE @CHAMPAQ*	/5	38 40	∠.0	3U1 245	2000	130.54	1	3				
10. BRUADWAY NE @CURTISQ*	/5	43	2.0	245 104	2000	136.54	1	3				
12. CHAMPA SWE @BROADW Q*	/5	34	2.0	184	2000	136.54	1	3				
14. CHAMPA SWE @ ZUTH Q *	/5	38	∠.0	229	2000	130.54	Ť	3				
22. BRUADWAY NE @CHAMPQL*	/5	64	2.0	/ 7	2000	136.54	2	3				
23. BRUADWAY NB @21QL *	/5	64	2.0	/ 7	2000	136.54	2	3				
24. BRUADWAY SE @21QL *	/5	64	2.0	/	2000	130.54	2	3				

WIND ANGLE (DEGR	* *)*	CONCE REC1	NTRATI (PPM) REC2	ON REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
267.	*	.1	0) .0	.0	.0	.2	.3	.1	.1	.0	.3	. 2	.3	.3	1.0	.3	. 3	.6	.4	.2
WIND ANGLE (DEGR	* *) * _ * _	CONCE REC21	NTRATI (PPM) REC22	ON 2 REC23	REC24	REC25	REC26	REC27													
267.	*	.3	.2	2	.1	.0	.2	.1													
THE H	IGH	HEST C	ONCENT	RATION	OF	1.00	PPM OC	CURRED	AT RE	CEPTOR	REC15										

CAMP 2006 Hour 22 CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0 Dated 95221 PAGE 1 DATE : 8/25/99 TIME : 13:49:30												
The MODE flag has been set to C SITE & METEOROLOGICAL VAN	for calcul RIABLES	ating CO	averages.									
VS = .0 CM/S VD U = 1.0 M/S CL	= .0 CM AS = 4 (I/S D) AT	ZO = 175. C IM = 60. M	'M IINUTES	MIXH = 10	00. M A	MB =	.0 PPM B	BRG = 82.	DEGRI	EES	
LINK VARIABLES												
LINK DESCRIPTION *	LI X1	NK COORDI Yl	NATES (FT) X2	¥2 *	LENGTH	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)	
 BROADWAY SB @ CHAMPA* BROADWAY SB@CHAMPA Q* BROADWAY SB @ STOUT * BROADWAY SB@STOUT Q * BROADWAY NB @ STOUT * BROADWAY NB @STOUT Q* BROADWAY NB @CHAMPA* 	-15.0 -15.0 -15.0 10.0 10.0 22.0	572.0 171.0 115.0 -312.0 -815.0 -400.0 -312.0	-15.0 -15.0 -15.0 10.0 10.0 22.0	115.0 * 190.1 * -356.0 * -293.1 * -312.0 * -416.5 *	457. 457. 471. 471. 503. 503. 16. 892.	180. AG 360. AG 180. AG 360. AG 360. AG 180. AG 360. AG	277. 557. 297. 513. 173. 342. 173.	15.8 100.0 15.8 100.0 15.8 100.0 15.8	$\begin{array}{cccc} .0 & 50.0 \\ .0 & 30.0 \\ .0 & 49.0 \\ .0 & 29.0 \\ .0 & 40.0 \\ .0 & 20.0 \\ .0 & 43.0 \end{array}$.10 .10 .09	1.0 1.0 .8	
8. BROADWAY NB @CHAMPAQ* 9. BROADWAY NB @ CURTIS*	22.0 17.5	99.0 148.0	22.0 17.5	81.1 * 639.0 *	18. 491.	180. AG 360. AG	371. 141.	100.0 15.8	.0 23.0 .0 52.0	.10	.9	
10. BROADWAY NB @CURTISQ* 11. CHAMPA SWB @ BROADW * 12. CHAMPA SWB @BROADW O*	17.5 518.0 58.0	580.0 653.0 190.0	17.5 .0 62.6	568.9 * 131.0 * 194 6 *	735. 7	180. AG 225. AG 45 AG	630. 131. 498	100.0 20.5 100 0	.0 32.0 .0 56.0 0 36 0	.06	.6 3	
13. CHAMPA SWB @ 20TH * 14. CHAMPA SWB @ 20TH Q * 15. 21ST SEB @ CHAMPA * 16. 21ST SEB @ BEODWAY *	.0 -442.0 -393.0 -151.0	131.0 -325.0 202.0 -27.0	-470.0 -435.6 -151.0	-353.0 * -318.4 * -27.0 *	675. 9. 333.	224. AG 44. AG 133. AG	163. 557. 35.	20.5 100.0 22.2 22.2	.0 59.0 .0 39.0 .0 37.0 0 40 0	.05	.5	
17. 21ST SEB @ STOUT * 18. 21ST NWB @ STOUT * 19. 21ST NWB @ BROADWAY * 20. 21ST NWB @ CHAMPA * 21. 21ST NWB @ CURTIS *	.0 331.0 107.0 .0 -142.0	-175.0 -472.0 -255.0 -151.0 -12.0	89.0 107.0 .0 -142.0 -381.0	-261.0 * -255.0 * -151.0 * -12.0 * 221.0 *	124. 312. 149. 199. 334.	134. AG 314. AG 314. AG 314. AG 314. AG 314. AG	9. 61. 61. 18. 14.	22.2 22.2 22.2 22.2 22.2 22.2 22.2	.0 37.0 .0 38.0 .0 38.0 .0 37.0 .0 37.0			
22. BROADWAY NB @CHAMPQL* 23. BROADWAY NB @21QL * 24. BROADWAY SB @21QL * 25. BROADWAY SB@CALIFORN* 26. 21ST SEB @ CALIF *	5.5 5.0 -4.5 -15.0 89.0	89.0 -205.0 -116.0 -356.0 -261.0	5.5 5.0 -4.5 -15.0 321.0	87.6 * -206.4 * -114.6 * -811.0 *	1. 1. 1. 455. 324.	180. AG 180. AG 360. AG 180. AG 134. AG	313. 313. 313. 261. 10.	100.0 100.0 100.0 15.8 22.2	.0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.02 .02 .02	.1 .1 .1	
ADDITIONAL QUEUE LINK PA	RAMETERS											
LINK DESCRIPTION * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVA RATE	AL			
2. BROADWAY SB@CHAMPA Q* 4. BROADWAY SB@STOUT Q* 6. BROADWAY NB @STOUT Q* 8. BROADWAY NB @CHAMPAQ* 10. BROADWAY NB @CURTISQ* 12. CHAMPA SWB @BROADW Q* 14. CHAMPA SWB @ 20TH Q * 22. BROADWAY NB @CHAMPQL* 23. BROADWAY NB @21QL * 24. BROADWAY SB @21QL *	75 75 75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64 64	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2772971731731411061324444	2000 2000 2000 2000 2000 2000 2000 200	$\begin{array}{c} 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\\ 136.54\end{array}$	1 1 1 1 1 1 1 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				

WIND ANGLE	*	CONCE	NTRATI (PPM)	ON																	
(DEGR) * _ * -	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
82.	*	.1	.2	.4	.3	.2	.2	.1	.2	.2	.2	.0	.0	.0	.0	.0	.1	.0	.1	.0	.2
WIND ANGLE (DEGR	* * *	CONCE REC21	NTRATI (PPM) REC22	ON REC23	REC24	REC25	REC26	REC27													
82.	*		.0	.0	.1	.1	.1	.1													
THE H	GI	HEST C	ONCENT	RATION	OF	.40	ррм ос	CURRED	AT RE	CEPTOR	REC3.										

CAMP 2006 Hour 23 DATE : 8/25/99 TIME : 14:13: 7 The MODE flag h SITE & METEOROLOG	as been se ICAL VARI	CAL3QHC: et to C f ABLES	LINE SOU or calcul	RCE DISPERS ating CO av	TON MODEL	- VERSION 2	.0 Dated	95221			PI	AGE 1
VS = .0 CM/S U = 1.0 M/S	VD = CLAS	.0 CM = 4 (1	/S D) AT	ZO = 175. C IM = 60. M	M IINUTES	MIXH = 10	00. M A	MB =	.0 PPM	BRG = 208.	DEGRI	EES
LINK VARIABLES												
LINK DESCRIPTIO	N * *	LI: X1	NK COORDI Y1	NATES (FT) X2	* Y2 *	LENGTH (FT)	BRG TYPE (DEG)	C VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. BROADWAY SB @ 2. BROADWAY SB@CH 3. BROADWAY SB @	CHAMPA* AMPA Q* STOUT *	-15.0 -15.0 -15.0	572.0 171.0 115.0	-15.0 -15.0 -15.0 -15.0	115.0 * 181.6 * -356.0 *	457. 11. 471.	180. AG 360. AG 180. AG	155. 604. 167.	17.6 100.0 17.6	.0 50.0 .0 30.0 .0 49.0	.06	.5
4. BROADWAY SB@ST 5. BROADWAY NB @ 6. BROADWAY NB @S	OUT Q * STOUT * TOUT O*	-15.0 10.0 10.0	-312.0 -815.0 -400.0	-15.0 10.0 10.0	-301.5 * -312.0 * -409.2 *	11. 503. 9.	360. AG 360. AG 180. AG	556. 97. 371.	100.0 17.6 100.0	.0 29.0 .0 40.0 .0 20.0	.06	.5 .5
7. BROADWAY NB @ 8. BROADWAY NB @C 9. BROADWAY NB @	CHAMPÃ* HAMPAQ* CURTIS*	22.0 22.0 17.5	-312.0 99.0 148.0	22.0 22.0 17.5	580.0 * 89.0 * 639.0 *	892. 10. 491.	360. AG 180. AG 360. AG	97. 402. 79.	17.6 100.0 17.6	.0 43.0 .0 23.0 .0 52.0	.05	.5
10. BROADWAY NB @C 11. CHAMPA SWB @ B 12. CHAMPA SWB @BR	URTISQ* ROADW * OADW O*	17.5 518.0 58.0	580.0 653.0 190.0	17.5 .0 60.6	573.9 * 131.0 * 192.6 *	6. 735. 4	180. AG 225. AG 45. AG	683. 73. 540.	100.0 22.8 100.0	.0 32.0 .0 56.0	.03	.3
13. CHAMPA SWB @ 2 14. CHAMPA SWB @ 2 15. 21ST SEB @ CHA	OTH * OTH Q * MPA *	.0 -442.0 -393.0	131.0 -325.0 202.0	-470.0 -438.5 -151.0	-353.0 * -321.4 * -27.0 *	675. 5.	224. AG 44. AG	91. 604. 20	22.8 100.0 24 5	.0 59.0 .0 39.0 0 37 0	.03	.3
16. 21ST SEB @ BRO 17. 21ST SEB @ STO 18. 21ST NWB @ STO 19. 21ST NWB @ BRO 20. 21ST NWB @ CHA 21. 21ST NWB @ CUR	ADWAY * UT * UT * ADWAY * MPA * TIS *	-151.0 .0 331.0 107.0 .0 -142.0	-27.0 -175.0 -472.0 -255.0 -151.0 -12.0	.0 89.0 107.0 .0 -142.0 -381.0	-175.0 * -261.0 * -255.0 * -151.0 * 221.0 *	211. 124. 312. 149. 199. 334.	134. AG 134. AG 314. AG 314. AG 314. AG 314. AG 314. AG	20. 21. 5. 34. 34. 10.	24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	.0 40.0 .0 37.0 .0 38.0 .0 38.0 .0 37.0 .0 38.0		
22. BROADWAY NB @C 23. BROADWAY NB @2 24. BROADWAY SB @2 25. BROADWAY SB@CA 26. 21ST SEB @ CAL	HAMPQL* 1QL * 1QL * LIFORN* IF *	5.5 5.0 -4.5 -15.0 89.0	89.0 -205.0 -116.0 -356.0 -261.0	5.5 5.0 -4.5 -15.0 321.0	88.3 * -205.7 * -115.3 * -811.0 * -487.0 *	1. 1. 1. 455. 324.	180. AG 180. AG 360. AG 180. AG 134. AG	339. 339. 339. 147. 8.	100.0 100.0 100.0 17.6 24.5	.0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.01 .01 .01	.0 .0 .0
ADDITIONAL QUEUE	LINK PARAI	METERS										
LINK DESCRIPTIO	N * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIV RATE	AL		
2. BROADWAY SB@CH 4. BROADWAY SB@ST 6. BROADWAY NB @S 8. BROADWAY NB @C 10. BROADWAY NB @C 12. CHAMPA SWB @BR 14. CHAMPA SWB @ 2 22. BROADWAY NB @C 23. BROADWAY NB @2 24. BROADWAY SB @2	AMPA Q* OUT Q * TOUT Q* HAMPAQ* URTISQ* OADW Q* OTH Q * HAMPQL* 1QL *	75 75 75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64 64	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	155 167 97 97 79 60 74 2 2 2 2	2000 2000 2000 2000 2000 2000 2000 200	$\begin{array}{c} 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ 148.05\\ \end{array}$	1 1 1 1 1 1 1 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3			

AMP 20 D	13 1.7% Oxy Hour 14 ATE : 9/ 1/99 IME : 10:11:27			CAL3QHC:	LINE SOUR	CE DISPERSI	ON MODEL -	VERSION 2	.0 Date	d 95221			
he MOD'S	E flag has been set to ITE & METEOROLOGICAL V	O C fo: /ARIABI	r calcu LES	lating CO	averages.								
	VS = .0 CM/S U = 1.0 M/S	VD = CLAS :	.0 C = 4	CM/S (D) AT	ZO = 175. IM = 60.	CM MINUTES	MIXH = 10	00. M A	MB =	.0 PPM	BRG = 15.	DEGR	EES
	LINK VARIABLES												
	LINK DESCRIPTION	*	I	LINK COORDI	NATES (FT)	*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	XI	Ϋ́⊥	XZ	¥Z ^	(F.T.)	(DEG)		(G/ML)	(F.I.) (F.I.)		(VEH)
-	1 BROADWAY SB @ CHAMI	 DA*	_15 0	572 O	-15 0	115 0 *	457	180 AG	788	13 6	0 50 0		
	2 BROADWAY SB@CHAMPA	0*	-15 0	171 0	-15.0	225 4 *	54	360 AG	560	100 0		30	28
	3. BROADWAY SB @ STOUT	с*	-15.0	115.0	-15.0	-356.0 *	471.	180. AG	845.	13.6	.0 49.0	. 50	2.0
	4. BROADWAY SB@STOUT () *	-15.0	-312.0	-15.0	-258.2 *	54.	360. AG	516.	100.0	.0 29.0	.29	2.7
	5. BROADWAY NB @ STOUT	- - *	10.0	-815.0	10.0	-312.0 *	503.	360. AG	494.	13.6	.0 40.0		
	6. BROADWAY NB @STOUT	0*	10.0	-400.0	10.0	-447.3 *	47.	180. AG	344.	100.0	.0 20.0	.26	2.4
	7. BROADWAY NB @ CHAME	PÃ*	22.0	-312.0	22.0	580.0 *	892.	360. AG	494.	13.6	.0 43.0		
	8. BROADWAY NB @CHAMPA	40*	22.0	99.0	22.0	47.7 *	51.	180. AG	373.	100.0	.0 23.0	.28	2.6
	9. BROADWAY NB @ CURTI	ĽŠ*	17.5	148.0	17.5	639.0 *	491.	360. AG	403.	13.6	.0 52.0		
1	0. BROADWAY NB @CURTIS	SQ*	17.5	580.0	17.5	548.5 *	32.	180. AG	634.	100.0	.0 32.0	.18	1.6
1	1. CHAMPA SWB @ BROADV	√ *	518.0	653.0	.0	131.0 *	735.	225. AG	372.	17.7	.0 56.0		
1	2. CHAMPA SWB @BROADW	0*	58.0	190.0	71.1	203.2 *	19.	45. AG	501.	100.0	.0 36.0	.10	.9
1	3. CHAMPA SWB @ 20TH	~*	.0	131.0	-470.0	-353.0 *	675.	224. AG	463.	17.7	.0 59.0		
1	4. CHAMPA SWB @ 20TH ()*.	-442.0	-325.0	-423.9	-306.4 *	26.	44. AG	560.	100.0	.0 39.0	.14	1.3
1	5. 21ST SEB @ CHAMPA	* .	-393.0	202.0	-151.0	-27.0 *	333.	133. AG	100.	19.6	.0 37.0		
1	6. 21ST SEB @ BROADWAY	Z* .	-151.0	-27.0		-175.0 *	211.	134. AG	108.	19.6	.0 40.0		
1	7. 21ST SEB @ STOUT	*	.0	-175.0	89.0	-261.0 *	124	134. AG	26	19.6	0 37.0		
1	8 21ST NWB @ STOUT	*	331 0	-472 0	107 0	-255 0 *	312	314 AG	174	19.6	0 38 0		
1	9 21ST NWB @ BROADWAY	7 *	107 0	-255 0	107.0	-151 0 *	149	314 AG	174	19.6	0 38 0		
2	0 21ST NWB @ CHAMDA	*	107.0	-151 0	-142 0	-12 0 *	199	314 AG	51	19.6	0 37 0		
2	1 21ST NWB @ CURTIS	* .	-142 0	-12 0	-381 0	221 0 *	334	314 AG	41	19.6	0 38 0		
2	2 BROADWAY NB @CHAMDO)Τ. *	5 5	89 0	5 5	84 8 *	4	180 AG	314	100 0	0 11 0	06	2
2	3 BROADWAY NE @2101	*	5.0	-205 0	5.0	_209 2 *	4	180 AG	314	100.0	0 10 0	.00	.2
2	4 BROADWAY SB @2101	*	-4 5	-116 0	-4 5	_111 & *	т. 4	360 AG	314	100.0		0.00	. 2
2	5 BROADWAY SB@CALTEOL	эм*	-15 0	-356 0	-15 0	0 *	455	180 AG	744	13 6	0 59 0	.00	• 4
2	6 219T SFR @ CALIFOR	*	80 N	-350.0	-10.0 321 0	-487 0 *	324	134 AG	/ 1 4 • 27	19 6	0 37 0		
2	ADDITIONAL OUTUR LINK			201.0	521.0	107.0	521.	151. AG	27.	19.0	.0 57.0		
	ADDITIONAL QUEUE LINK	PARAM	ETERS										
	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIV	/AL		
		*	LENGTH	I TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE	2		
		*	(SEC)) (SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)					
-		*											
	2. BROADWAY SB@CHAMPA	Q*	75	38	2.0	788	2000	137.34	1	3			
	4. BROADWAY SB@STOUT (2 *	75	35	2.0	845	2000	137.34	1	3			
	6. BROADWAY NB @STOUT	Q*	75	35	2.0	494	2000	137.34	1	3			
	8. BROADWAY NB @CHAMPA	AQ*	75	38	2.0	494	2000	137.34	1	3			
1	0. BROADWAY NB @CURTIS	SQ*	75	43	2.0	403	2000	137.34	1	3			
1	2. CHAMPA SWB @BROADW	Q*	75	34	2.0	302	2000	137.34	1	3			
1	4. CHAMPA SWB @ 20TH 🤇	2 *	75	38	2.0	376	2000	137.34	1	3			
2	 BROADWAY NB @CHAMPQ 	2L*	75	64	2.0	12	2000	137.34	2	3			
2	3. BROADWAY NB @21QL	*	75	64	2.0	12	2000	137.34	2	3			
2	4. BROADWAY SB @21QL	*	75	64	2.0	12	2000	137.34	2	3			

CDPHE/APCD/Technical Services Program

WIND ANGLE	* *	CONCE	NTRATI (PPM)	ON																	
(DEGR)	*	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
15.	*	.9	.8	1.6	.6	.1	1.5	.8	1.3	1.3	.8	.3	.2	.2	.3	.3	.0	.2	.2	.8	1.3
WIND ANGLE (DEGR)	* * *	CONCE REC21	NTRATI (PPM) REC22	ON REC23	REC24	REC25	REC26	REC27													
15.	*	.3	.0	.3	.0	.2	.6	.8													
THE HI	GI	HEST C	ONCENT	RATION	OF	1.60	PPM OC	CURRED	AT RE	CEPTOR	REC3										

CAMP	2013 1. DATE : TIME : The SITE	7% Oxy Hour 15 9/ 1/99 10:13:19 MODE flag has be & METEOROLOGICAL	en se VARI <i>I</i>	et to C ABLES	CAL3QHC:	LINE SOURC	CE DISPERSIO	ON MODEL - 1	VERSION 2	2.0 Dated	95221			
	VS = U =	.0 CM/S 1.1 M/S	VD = CLAS	.0 = 4	CM/S (D) A'	ZO = 175. TIM = 60.	CM MINUTES	MIXH = 1	000. M	AMB =	.0 PPM	BRG = 2.	DEGR	EES
	LINK	VARIABLES												
	LIN	K DESCRIPTION	* *	Xl	LINK COORD Y1	INATES (FT) X2) Y2	* LENGTH * (FT)	BRG TYP (DEG)	PE VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
	1. BR 2. BR 3. BR	OADWAY SB @ CHAMP. OADWAY SB@CHAMPA OADWAY SB @ STOUT	A* Q* *	-15.0 -15.0 -15.0	572.0 171.0 115.0	-15.0 -15.0 -15.0	115.0 219.4 -356.0	* 457. * 48. * 471.	180. AG 360. AG 180. AG	699. 560. 750.	13.6 100.0 13.6	.0 50.0 .0 30.0 .0 49.0	.27	2.5
	4. BR 5. BR 6. BR	OADWAY SB@STOUT Q OADWAY NB @ STOUT OADWAY NB @STOUT	* 2*	-15.0 10.0 10.0	-312.0 -815.0 -400.0	-15.0 10.0 10.0	-264.2 -312.0 -482.9	* 48. * 503. * 83.	360. AG 360. AG 180. AG	516. 1014. 344.	100.0 13.6 100.0	.0 29.0 .0 40.0 .0 20.0	.26 .45	2.4 4.2
	7. BR 8. BR 9. BR	OADWAY NB @ CHAMP. OADWAY NB @CHAMPA OADWAY NB @ CURTI	A* Q* S*	22.0 22.0 17.5	-312.0 99.0 148.0	22.0 22.0 17.5	580.0 25.7 639.0	* 892. * 73. * 491.	360. AG 180. AG 360. AG	5 827. 5 373. 5 1313.	13.6 100.0 13.6	.0 43.0 .0 23.0 .0 52.0	.40	3.7
	10. BR 11. CH 12. CH	IAMPA SWB @ BROADW IAMPA SWB @ BROADW IAMPA SWB @BROADW IAMDA SWB @ 20TH	2^ * 2*	518.0 58.0	580.0 653.0 190.0	17.5 .0 75.3 -470 0	492.3 131.0 207.4 -353.0	^ 88. * 735. * 25. * 675	180. AG 225. AG 45. AG	5 634. 5 494. 5 501. 5 614	17.6 100.0 17.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.13	4.5 1.2
	14. CH 15. 21 16. 21 17. 21 18. 21 19 21	IAMPA SWB @ 201H Q ST SEB @ CHAMPA ST SEB @ BROADWAY ST SEB @ STOUT ST NWB @ STOUT ST NWB @ BROADWAY	* * * *	-442.0 -393.0 -151.0 .0 331.0 107.0	-325.0 202.0 -27.0 -175.0 -472.0 -255.0	-418.1 -151.0 .0 89.0 107.0	-300.4 -27.0 -175.0 -261.0 -255.0 -151.0	* 34. * 333. * 211. * 124. * 124. * 149	44. AG 133. AG 134. AG 134. AG 314. AG	5 560. 5 122. 5 122. 5 122. 5 41. 5 173.	17.0 100.0 19.6 19.6 19.6 19.6	.0 39.0 .0 39.0 .0 37.0 .0 40.0 .0 37.0 .0 38.0 0 38.0	.19	1.7
	20. 21 21. 21 22. BR 23. BR 24. BR 25. BR 26. 21	ST NWB @ CHAMPA ST NWB @ CURTIS OADWAY NB @CHAMPQ OADWAY NB @21QL OADWAY SB @21QL OADWAY SB@CALIFOR ST SEB @ CALIF	* L* * N*	.0 -142.0 5.5 5.0 -4.5 -15.0 89.0	-151.0 -12.0 89.0 -205.0 -116.0 -356.0 -261.0	-142.0 -381.0 5.5 5.0 -4.5 -15.0 321.0	-12.0 221.0 85.2 -208.8 -112.2 -811.0 -487.0	* 199. * 334. * 4. * 4. * 4. * 4. * 455.	314. AG 314. AG 180. AG 180. AG 360. AG 180. AG 134. AG	5 51. 5 41. 5 314. 5 314. 5 314. 5 314. 5 880. 5 41.	19.6 19.6 100.0 100.0 100.0 13.6 19.6	.0 37.0 .0 38.0 .0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.06 .06 .06	. 2 . 2 . 2
	ADDIT	IONAL QUEUE LINK	PARAN	METERS										
	LIN	K DESCRIPTION	 * * *	CYCLE LENGT (SEC	RED H TIME) (SEC)	CLEARANCE LOST TIME (SEC)	E APPROACH E VOL (VPH)	SATURATIO FLOW RATE (VPH)	N IDLE EM FAC (gm/hr)	SIGNAL C TYPE	ARRIV RATE	YAL		
	2. BR 4. BR 6. BR 10. BR 12. CH 14. CH 22. BR 23. BR 24. BR	COADWAY SB@CHAMPA COADWAY SB@STOUT Q COADWAY NB @STOUT COADWAY NB @CHAMPA COADWAY NB @CURTIS COADWAY NB @COADW CAMPA SWB @ 20TH Q COADWAY NB @CHAMPQ COADWAY NB @21QL COADWAY SB @21QL	2* 2* 2* 2* 2* 2* 2* 2* 2* 2* 2* 2* 2* 2	75 75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64 64	$\begin{array}{c} 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\$	699 750 866 1121 397 495 11 11 11	2000 2000 2000 2000 2000 2000 2000 200	$\begin{array}{c} 1 \\ 37.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \\ 137.34 \end{array}$	1 1 1 1 1 1 1 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3			

CAMP :	2013 1. DATE : TIME : The SITE	7% Oxy Hour 16 9/ 1/99 10:15:14 MODE flag has be & METEOROLOGICAL	en se VARI <i>I</i>	et to C ABLES	CAL3QHC: for calcu	LINE SOURG	CE DISPERSIO	ON MODEL - 1	VERSION 2	2.0 Dated	95221			
	VS = U =	.0 CM/S 1.0 M/S	VD = CLAS	.0 = 4	CM/S (D) A	ZO = 175. TIM = 60.	CM MINUTES	MIXH = 1	000. M	AMB =	.0 PPM	BRG = 29.	DEGR	EES
	LINK	VARIABLES												
	LIN	K DESCRIPTION	* *	Xl	LINK COORD Y1	INATES (FT X2	¥2	* LENGTH * (FT)	BRG TYP	PE VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
	1. BR 2. BR 3. BR	OADWAY SB @ CHAMP. OADWAY SB@CHAMPA OADWAY SB @ STOUT	A* Q* *	-15.0 -15.0 -15.0	572.0 171.0 115.0	-15.0 -15.0 -15.0	115.0 230.4 -356.0	* 457. * 59. * 471.	180. AC 360. AC 180. AC	G 859. G 495. G 922.	23.0 100.0 23.0	.0 50.0 .0 30.0 .0 49.0	.33	3.0
	4. BR 5. BR 6. BR	OADWAY SB@STOUT Q OADWAY NB @ STOUT OADWAY NB @STOUT	* 2* *	-15.0 10.0 10.0	-312.0 -815.0 -400.0	-15.0 10.0 10.0	-253.2 -312.0 -501.8	* 59. * 503. * 102.	360. AC 360. AC 180. AC	G 456. G 1247. G 304.	100.0 11.9 100.0	.0 29.0 .0 40.0 .0 20.0	.32 .55	3.0 5.2
	7. BR 8. BR 9. BR 10. BR	OADWAY NB @ CHAMPA OADWAY NB @CHAMPA OADWAY NB @ CURTIS	Q* S* O*	22.0 22.0 17.5 17.5	-312.0 99.0 148.0 580.0	22.0 22.0 17.5 17.5	8.8 639.0 472.1	* 90. * 491. * 108.	180. AC 360. AC 180. AC	G 1610. G 330. G 1614. G 560.	100.0 11.9 100.0	.043.0 .023.0 .052.0 .032.0	.49	4.6 5.5
	11. CH 12. CH 13. CH	IAMPA SWB @ BROADW IAMPA SWB @BROADW IAMPA SWB @ 20TH	~ 2* *	518.0 58.0 .0	653.0 190.0 131.0	.0 79.2 -470.0	131.0 211.4 -353.0	* 735. * 30. * 675.	225. AC 45. AC 224. AC	G 607. G 443. G 755.	19.3 100.0 19.3	.0 56.0 .0 36.0 .0 59.0	.16	1.5
	14. CH 15. 21 16. 21 17. 21 18. 21 19. 21	AMPA SWB @ 20TH Q ST SEB @ CHAMPA ST SEB @ BROADWAY ST SEB @ STOUT ST NWB @ STOUT ST NWB @ BROADWAY	* * * * *	-442.0 -393.0 -151.0 .0 331.0 107.0	-325.0 202.0 -27.0 -175.0 -472.0 -255.0	-412.8 -151.0 .0 89.0 107.0 .0	-294.9 -27.0 -175.0 -261.0 -255.0 -151.0	* 42. * 333. * 211. * 124. * 312. * 149.	44. AC 133. AC 134. AC 134. AC 314. AC 314. AC	G 495. G 150. G 150. G 212. G 212.	100.0 22.1 22.1 22.1 22.1 22.1 22.1	.0 39.0 .0 37.0 .0 40.0 .0 37.0 .0 38.0 .0 38.0	.23	2.1
	20. 21 21. 21 22. BR 23. BR 24. BR 25. BR 26. 21	SI NWB @ CHAMPA ST NWB @ CURTIS OADWAY NB @CHAMPQ OADWAY NB @21QL OADWAY SB @21QL OADWAY SB@CALIFOR ST SEB @ CALIF	* L* * N*	.0 -142.0 5.5 5.0 -4.5 -15.0 89.0	-151.0 -12.0 89.0 -205.0 -116.0 -356.0 -261.0	-142.0 -381.0 5.5 5.0 -4.5 -15.0 321.0	-12.0 221.0 84.1 -209.9 -111.1 -811.0 -487.0	* 334. * 5. * 5. * 5. * 5. * 455. * 324.	314. AC 314. AC 180. AC 180. AC 360. AC 180. AC 134. AC	5 02. 50. 5278. 5278. 5278. 5278. 50. 50.	22.1 22.1 100.0 100.0 100.0 23.0 22.1	.0 37.0 .0 38.0 .0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.08 .08 .08	. 2 . 2 . 2
	ADDIT	IONAL QUEUE LINK	PARAN	METERS										
	LIN	K DESCRIPTION	 * * *	CYCLE LENGT (SEC	RED H TIME) (SEC)	CLEARANCI LOST TIMI (SEC)	E APPROACH E VOL (VPH)	SATURATIO FLOW RATE (VPH)	N IDLE EM FAC (gm/hr)	SIGNAL C TYPE	ARRIV RATE	AL		
	2. BR 4. BR 6. BR 10. BR 12. CH 14. CH 22. BR 23. BR 24. BR	COADWAY SB@CHAMPA COADWAY SB@STOUT Q COADWAY NB @STOUT COADWAY NB @CHAMPA COADWAY NB @CURTIS COADWAY NB @COADW CAMPA SWB @ 20TH Q COADWAY NB @CHAMPQ COADWAY NB @21QL COADWAY SB @21QL	2* 2* 2* 2* 2* 2* 2* 2* 2* 2* 2* 2* 2* 2	75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	859 922 1065 868 1378 488 608 14 14 14	2000 2000 2000 2000 2000 2000 2000 200	121.31 121.31 121.31 121.31 121.31 121.31 121.31 121.31 121.31 121.31	1 1 1 1 1 1 1 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3			

The highest concentration of \qquad 2.50 ppm occurred at receptor rec3 .

CAMP 2013 1.7% Oxy Hour 17 DATE : 9/ 1/99 TIME : 10:16:58 The MODE flag has be SITE & METEOROLOGICAL VARIABL	en set to ES	CAL3QHC C for calc	: LINE SOUR(ulating CO a	CE DISPERSIO	DN MODEL - V	ERSION 2.	0 Dated	95221			
VS = .0 CM/S	VD = .	0 CM/S	ZO = 175.	CM	NT. 10	00 14 7		0.5514	DDG 51	DEGD	
0 = 1.0 M/S	CLAS =	4 (D)	ATIM = 60.	MINUTES	MIXH = 10	00. M A	MB =	.0 PPM	BRG = 51.	DEGR	EES
LINK VARIABLES											
LINK DESCRIPTION	* * v1	LINK COOR	DINATES (FT)	к (LENGTH	BRG TYPE	E VPH	EF (C(MT)	H W	V/C	QUEUE
	-*			12 **	· (FI)	(DEG)		(G/M1)	(F1) (F1)		(VEH)
1. BROADWAY SB @ CHAMP	A* -15	.0 572.	0 -15.0	115.0 *	* 457.	180. AG	859. 405	15.8	.0 50.0	22	2 0
2. BROADWAY SB@CHAMPA 3. BROADWAY SB @ STOUT	· 2 ~ - 15 · * - 15	.0 $1/1..0$ $115.$	0 -15.0 0 -15.0	-356.0 *	* 59. * 471.	180. AG	495. 922.	15.8	.0 30.0	. 33	3.0
4. BROADWAY SB@STOUT Q	* -15	.0 -312.	0 -15.0	-253.2 *	* 59.	360. AG	456.	100.0	.0 29.0	.32	3.0
5. BROADWAY NB @ STOUT	* 10	.0 -815.	0 10.0	-312.0 *	\$ 503.	360. AG	1247.	8.1	.0 40.0		
6. BROADWAY NB @STOUT	Q* 10	.0 -400.	0 10.0	-501.8 *	102.	180. AG	304.	100.0	.0 20.0	.55	5.2
7. BROADWAY NB @ CHAMP 8 BROADWAY NB @CHAMDA	A^ ∠∠ ∩* 22	-312.	0 22.0	280.0	* 892. * 90	360. AG	330 TOTO:	8.1 100 0	.043.0	49	4 6
9. BROADWAY NB @ CURTI	S* 17	.5 148.	0 17.5	639.0 *	* 491.	360. AG	1615.	8.1	.0 52.0	• 12	1.0
10. BROADWAY NB @CURTIS	Q* 17	.5 580.	0 17.5	472.1 *	* 108.	180. AG	560.	100.0	.0 32.0	.62	5.5
11. CHAMPA SWB @ BROADW	* 518	.0 653.	0.0	131.0 *	* 735.	225. AG	607.	13.1	.0 56.0		
12. CHAMPA SWB @BROADW	Q* 58	.0 190.	0 79.4	211.5 *	* 30. * 675	45. AG	443.	100.0	.0 36.0	.17	1.5
13. CHAMPA SWB @ 201H 14 CHAMDA SWB @ 20TH O	* _442	-325	0 = 470.0 0 = 412.8	-353.0 *	* 075. * 42	224. AG 44 AG	750. 495	100 0	.0 39.0	23	2 1
15. 21ST SEB @ CHAMPA	* -393	.0 202.	0 -151.0	-27.0 *	* 333.	133. AG	150.	15.8	.0 37.0	.25	2.1
16. 21ST SEB @ BROADWAY	* -151	.0 -27.	0.0	-175.0 *	* 211.	134. AG	150.	15.8	.0 40.0		
17. 21ST SEB @ STOUT	*	.0 -175.	0 89.0	-261.0 *	* 124.	134. AG	50.	15.8	.0 37.0		
18. 21ST NWB @ STOUT	* 331	.0 -472.	0 107.0	-255.0 *	* 312.	314. AG	212.	15.8	.0 38.0		
19. 21ST NWB @ BROADWAY	* 107	.0 -255.	0	-151.0 *	* 149. * 100	314. AG	212.	15.8	.0 38.0		
20. 2151 NWB @ CHAMPA 21 21ST NWB @ CHRTIS	* _142	-151.	0 = 142.0 0 = 381.0	221 0 *	* <u>199</u> . * 334	314. AG	50 50	15.0 15.8	0 38 0		
22. BROADWAY NB @CHAMPO	L* 5	.5 89.	0 5.5	84.1 *	* 5.	180. AG	278.	100.0	.0 11.0	.08	.2
23. BROADWAY NB @21QL	* 5	.0 -205.	0 5.0	-209.9 *	* 5.	180. AG	278.	100.0	.0 10.0	.08	.2
24. BROADWAY SB @21QL	* -4	.5 -116.	0 -4.5	-111.1 *	5.	360. AG	278.	100.0	.0 10.0	.08	.2
25. BROADWAY SB@CALIFOR	N* -15	.0 -356.	0 -15.0	-811.0 *	455.	180. AG	1082.	15.8	.0 59.0		
26. 2IST SEB @ CALIF	^ 89	.0 -261.	0 321.0	-487.0	\$ 324.	134. AG	50.	15.8	.0 37.0		
ADDITIONAL QUEUE LINK	PARAMETER	S									
LINK DESCRIPTION	* CYC	LE RED	CLEARANCI	E APPROACH	SATURATION	IDIE	SIGNAL	ARRIV	AL		
	* LEN	GTH TIME	LOST TIM	E VOL	FLOW RATE	EM FAC	TYPE	RATE			
	* (S	EC) (SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)					
רמאגערשפט ענשקגספס	_* ∩* ⊓	 5	 າ_∩	 ΩΕΩ	2000	101 21		 2			
4. BROADWAY SB@STOUT O	× 7	5 35	2.0	922	2000	121.31	1	3			
6. BROADWAY NB @STOUT	, Q* 7	5 35	2.0	1065	2000	121.31	1	3			
8. BROADWAY NB @CHAMPA	Q* 7	5 38	2.0	868	2000	121.31	1	3			
10. BROADWAY NB @CURTIS	Q* 7	5 43	2.0	1379	2000	121.31	1	3			
12. CHAMPA SWB @BROADW	Q* 7	5 34	2.0	489	2000	121.31	1	3			
14. CHAMPA SWE @ 20TH Q 22 BROADWAY NE @CHAMDO	с / Т.* Л	5 38 5 64	∠.U 2 ∩	608 14	2000	121.31 121 31	⊥ 2	3 2			
23. BROADWAY NB @210L	* 7	5 64	2.0	14	2000	121.31	2	3			
24. BROADWAY SB @21QL	* 7	5 64	2.0	14	2000	121.31	2	3			

CAMP 2013 1.7% Oxy Hour 18 DATE : 9/ 1/99 TIME : 10:19:35 The MODE flag has been set to C	for calcui	CAL3QHC: L lating CO	INE SOURCE averages.	DISPERSION	I MODEL - VE	RSION 2.0	Dated	95221			
SITE & METEOROLOGICAL VA	RIABLES										
VS = .0 CM/S VD U = 1.0 M/S CL	= .0 CI AS = 4	M/S (D) AT	ZO = 175. IM = 60.1	CM MINUTES	MIXH = 10	00. M A	MB =	.0 PPM	BRG = 146.	DEGRI	EES
LINK VARIABLES											
LINK DESCRIPTION *	L: X1	INK COORDI Yl	NATES (FT) X2	* Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. BROADWAY SB @ CHAMPA* 2. BROADWAY SB@CHAMPA Q* 3. BROADWAY SB @ STOUT * 4. BROADWAY SB@STOUT O *	-15.0 -15.0 -15.0 -15.0	572.0 171.0 115.0 -312.0	-15.0 -15.0 -15.0 -15.0 -15.0	115.0 * 205.9 * -356.0 * -277.6 *	457. 35. 471. 34.	180. AG 360. AG 180. AG 360. AG	505. 495. 542. 456.	24.0 100.0 24.0 100.0	.050.0 .030.0 .049.0 .029.0	.19	1.8
5. BROADWAY NB @ STOUT * 6. BROADWAY NB @STOUT Q* 7. BROADWAY NB @ CHAMDA*	10.0 10.0 22.0	-815.0 -400.0	10.0 10.0 22.0	-312.0 * -430.2 *	503. 30.	360. AG 180. AG	317. 304. 317	12.4 100.0	.040.0 .020.0 .430	.16	1.5
 8. BROADWAY NB @CHAMPAQ* 9. BROADWAY NB @CURTIS* 	22.0 22.0 17.5	99.0 148.0	22.0 22.0 17.5	66.2 * 639.0 *	33. 491.	180. AG 360. AG	330. 258.	100.0	.0 23.0 .0 52.0	.18	1.7
10. BROADWAY NB @CORTISQ* 11. CHAMPA SWB @ BROADW * 12. CHAMPA SWB @BROADW Q*	518.0 58.0	580.0 653.0 190.0	17.5 .0 66.4	559.8 * 131.0 * 198.4 *	735. 12.	180. AG 225. AG 45. AG	560. 239. 443.	20.2 100.0	.0 32.0 .0 56.0 .0 36.0	.12	1.0 .6
13. CHAMPA SWB @ 20TH * 14. CHAMPA SWB @ 20TH Q * 15. 21ST SEB @ CHAMPA *	.0 -442.0 -393.0	131.0 -325.0 202.0	-470.0 -430.4 -151.0	-353.0 * -313.1 * -27.0 *	675. 17. 333.	224. AG 44. AG 133. AG	297. 495. 64.	20.2 100.0 22.9	.0 59.0 .0 39.0 .0 37.0	.09	.8
16. 21ST SEB @ BROADWAY * 17. 21ST SEB @ STOUT * 18. 21ST NWB @ STOUT * 19. 21ST NWB @ BROADWAY * 20. 21ST NWB @ CHAMPA * 21. 21ST NWB @ CURTIS *	-151.0 .0 331.0 107.0 .0 -142.0	-27.0 -175.0 -472.0 -255.0 -151.0 -12.0	.0 89.0 107.0 .0 -142.0 -381.0	-175.0 * -261.0 * -255.0 * -151.0 * -12.0 * 221.0 *	211. 124. 312. 149. 199. 334.	134. AG 134. AG 314. AG 314. AG 314. AG 314. AG	69. 17. 112. 112. 33. 26.	22.9 22.9 22.9 22.9 22.9 22.9 22.9	.0 40.0 .0 37.0 .0 38.0 .0 38.0 .0 37.0 .0 38.0		
22. BROADWAY NB @CHAMPQL* 23. BROADWAY NB @21QL * 24. BROADWAY SB @21QL * 25. BROADWAY SB@CALIFORN* 26. 21ST SEB @ CALIF *	5.5 5.0 -4.5 -15.0 89.0	89.0 -205.0 -116.0 -356.0 -261.0	5.5 5.0 -4.5 -15.0 321.0	86.2 * -207.8 * -113.2 * -811.0 * -487.0 *	3. 3. 455. 324.	180. AG 180. AG 360. AG 180. AG 134. AG	278. 278. 278. 477. 18.	100.0100.0100.024.022.9	.0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.04 .04 .04	.1 .1 .1
ADDITIONAL QUEUE LINK PA	RAMETERS										
LINK DESCRIPTION * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIV RATE	YAL		
2. BROADWAY SB@CHAMPA Q* 4. BROADWAY SB@STOUT Q* 6. BROADWAY NB @STOUT Q* 8. BROADWAY NB @CHAMPAQ* 10. BROADWAY NB @CURTISQ* 12. CHAMPA SWB @BROADW Q* 14. CHAMPA SWB @ 20TH Q * 22. BROADWAY NB @CHAMPQL* 23. BROADWAY NB @21QL * 24. BROADWAY SB @21QL *	75 75 75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64 64	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	505 542 317 317 258 194 241 8 8 8 8	2000 2000 2000 2000 2000 2000 2000 200	121.31 121.31 121.31 121.31 121.31 121.31 121.31 121.31 121.31 121.31 121.31	1 1 1 1 1 1 1 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3			

WIND * ANGLE * (DEGR)*	CONCE REC1	NTRATI (PPM) REC2	ON REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
146. *	• .!	5 1.5	1.0	.6	.4	.7	.2	.6	.7	1.6	.0	.0	.1	.0	.0	.1	.1	.7	.0	.6
WIND * ANGLE * (DEGR)*	CONCI	ENTRATI (PPM) REC22	ON REC23	REC24	REC25	REC26	REC27													
146. *	.(.1	.0	.1	.3	.2	. 3													
THE HIG	HEST (CONCENT	RATION	OF	1.60	PPM OC	CURRED	AT RE	CEPTOR	REC10										

2013 1.7% Oxy Hour 19 DATE : 9/ 1/99 TIME : 10:21: 9 The MODE flag has bee SITE & METEOROLOGICAL VA	n set to (RIABLES	CAL3QHC: C for calcu	LINE SOURCE lating CO a	DISPERSION	I MODEL - VE	RSION 2.0) Dated	95221			
VS = .0 CM/S V U = 1.0 M/S C	D = .0 LAS = 4	CM/S (D) A	ZO = 175. TIM = 60.	CM MINUTES	MIXH = 10	00. M 2	AMB =	.0 PPM	BRG = 223.	DEGR.	EES
LINK VARIABLES											
LINK DESCRIPTION	* * X1 *	LINK COORD Yl	INATES (FT) X2) * Y2 *	LENGTH (FT)	BRG TYPE (DEG)	E VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. BROADWAY SB @ CHAMPA	* -15.0	572.0	-15.0	115.0 *	457.	180. AG	669.	14.0	.0 50.0		
2. BROADWAY SB@CHAMPA Q	* -15.0) 171.0	-15.0	217.3 *	46.	360. AG	560.	100.0	.0 30.0	.25	2.4
4 BROADWAY SB @ STOUT 4 BROADWAY SB@STOUT O	^ -15.0 * _15.0	J = 115.0	-15.0	-356.0 ^	4/1.	180. AG	/18. 516	14.0	.0 49.0	25	2 2
5 BROADWAY NB @ STOUT	* 10	-312.0	-15.0	-312 0 *	503	360. AG	419	14 0	0 40 0	. 25	2.3
6. BROADWAY NB @STOUT O	* 10.0	-400.0	10.0	-440.0 *	40.	180. AG	344.	100.0	.0 20.0	. 22	2.0
7. BROADWAY NB @ CHAMPA	* 22.0	-312.0	22.0	580.0 *	892.	360. AG	419.	14.0	.0 43.0		
8. BROADWAY NB @CHAMPAQ	* 22.0) 99.0	22.0	55.6 *	43.	180. AG	373.	100.0	.0 23.0	.24	2.2
9. BROADWAY NB @ CURTIS	* 17.	5 148.0	17.5	639.0 *	491.	360. AG	342.	14.0	.0 52.0		
10. BROADWAY NB @CURTISQ	* 17.	5 580.0	17.5	553.2 *	27.	180. AG	634.	100.0	.0 32.0	.15	1.4
11. CHAMPA SWB @ BROADW	* 518.0	653.0	.0	131.0 *	735.	225. AG	316.	18.2	.0 56.0		
12. CHAMPA SWB @BROADW Q	* 58.0	190.0	69.1	201.2 *	16.	45. AG	501.	100.0	.0 36.0	.09	.8
13. CHAMPA SWB @ 20TH	* .(J 131.0	-470.0	-353.0 *	675.	224. AG	393.	18.2	.0 59.0	1.0	
14. CHAMPA SWB @ 201H Q	* -442.	J = 325.0	-420./	-309.2 *	22.	44. AG	560.	10.0	.0 39.0	.12	1.1
16 21ST SEB @ CHAMPA	* _151 () 202.0	-151.0	-175 0 *	211	134 AG	05. 91	19.7			
17 21ST SEB @ STOUT	*	-175 0	.0 89 0	-261 0 *	124	134 AG	22	19 7	0 37 0		
18. 21ST NWB @ STOUT	* 331.0	-472.0	107.0	-255.0 *	312.	314. AG	148.	19.7	.0 38.0		
19. 21ST NWB @ BROADWAY	* 107.0	-255.0	.0	-151.0 *	149.	314. AG	148.	19.7	.0 38.0		
20. 21ST NWB @ CHAMPA	* .(0 -151.0	-142.0	-12.0 *	199.	314. AG	44.	19.7	.0 37.0		
21. 21ST NWB @ CURTIS	* -142.0) -12.0	-381.0	221.0 *	334.	314. AG	35.	19.7	.0 38.0		
22. BROADWAY NB @CHAMPQL	* 5.!	5 89.0	5.5	85.5 *	3.	180. AG	314.	100.0	.0 11.0	.05	.2
23. BROADWAY NB @21QL	* 5.0) -205.0	5.0	-208.5 *	3.	180. AG	314.	100.0	.0 10.0	.05	.2
24. BROADWAY SB @21QL	* -4.	5 -116.0	-4.5	-112.5 *	3.	360. AG	314.	100.0	.0 10.0	.05	.2
25. BROADWAY SB@CALIFORN 26. 21ST SEB @ CALIF	* -15.0 * 89.0	-356.0 -261.0	-15.0 321.0	-811.0 * -487.0 *	455. 324.	180. AG 134. AG	632. 23.	14.0 19.7	.0 59.0 .0 37.0		
ADDITIONAL QUEUE LINK P	ARAMETERS										
LINK DESCRIPTION	* CYCLI * LENG * (SE	E RED TH TIME C) (SEC)	CLEARANCE LOST TIME (SEC)	E APPROACH E VOL (VPH)	SATURATION FLOW RATE (VPH)	I IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIV RATE	/AL E		
2. BROADWAY SB@CHAMPA O	* 75	38	2.0	 669	2000	137.34	1	3			
4. BROADWAY SB@STOUT O	* 75	35	2.0	718	2000	137.34	1	3			
6. BROADWAY NB @STOUT Q	* 75	35	2.0	419	2000	137.34	1	3			
8. BROADWAY NB @CHAMPAQ	* 75	38	2.0	419	2000	137.34	1	3			
10. BROADWAY NB @CURTISQ	* 75	43	2.0	342	2000	137.34	1	3			
12. CHAMPA SWB @BROADW Q	* 75	34	2.0	256	2000	137.34	1	3			
14. CHAMPA SWB @ 20TH Q	* 75	38	2.0	319	2000	137.34	1	3			
22. BRUADWAY NB @CHAMPQL	^ /5 * 7=	64 61	2.0	10 10	2000	137.34 137.24	2	3			
24. BROADWAY SR @2101	/ D * 75	64	2.0	10	2000	137 34	∠ 2	3			
21. DIOUDMUI OD STIÖT	15	01	2.0	±0	2000	107.01	4	J			

MP 2013 1.7% Oxy Hour 20 DATE : 9/ 1/99 TIME : 10:22:38 e MODE flag has been set to C for calculating CO averages. SITE & METEOROLOGICAL VARIABLES													
MODE flag has been set to C	for calcu	lating CO	averages.										
SITE & METEOROLOGICAL VA	LIABLES												
VS = .0 CM/S VD U = 1.0 M/S CL	= .0 C AS = 4	M/S (D) AT	ZO = 175. C IM = 60. N	CM MINUTES	MIXH = 10	00. M A	AMB =	.0 PPM	BRG = 221.	DEGRI	CES		
LINK VARIABLES													
LINK DESCRIPTION *	L X1	INK COORDI Y1	NATES (FT) X2	* Y2 *	LENGTH (FT)	BRG TYPI (DEG)	E VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)		
1. BROADWAY SB @ CHAMPA*	-15.0	572.0	-15.0	115.0 *	457.	180. AG	565.	14.6	.0 50.0				
2. BROADWAY SB@CHAMPA Q*	-15.0	171.0	-15.0	210.1 *	39.	360. AG	560.	100.0	.0 30.0	.21	2.0		
4 BROADWAY SB @ STOUT ^	-15.0	_312_0	-15.0	-356.0 ^	4/1. 30	180. AG	606. 516	100 0	.0 49.0	21	2 0		
5. BROADWAY NB @ STOUT *	10.0	-815.0	10.0	-312.0 *	503	360. AG	354	14.6	.0 40.0	. 41	2.0		
6. BROADWAY NB @STOUT Q*	10.0	-400.0	10.0	-433.9 *	34.	180. AG	344.	100.0	.0 20.0	.18	1.7		
7. BROADWAY NB @ CHAMPA*	22.0	-312.0	22.0	580.0 *	892.	360. AG	354.	14.6	.0 43.0				
 BROADWAY NB @CHAMPAQ* 	22.0	99.0	22.0	62.2 *	37.	180. AG	373.	100.0	.0 23.0	.20	1.9		
9. BROADWAY NB @ CURTIS*	17.5	148.0	17.5	639.0 *	491.	360. AG	289.	14.6	.0 52.0				
10. BROADWAY NB @CURTISQ*	17.5	580.0	17.5	557.4 *	23.	180. AG	634.	100.0	.0 32.0	.13	1.1		
12 CHAMPA SWB @ BROADW *	518.0	653.0	.0	131.0 *	/35.	225. AG	267.	18.9	.0 56.0	07	7		
13 CHAMPA SWB @BROADW Q"	50.0	131 0	-470 0	-353 0 *	675	45. AG	301.	18 9	0 59 0	.07	• /		
14. CHAMPA SWB @ 20TH O *	-442.0	-325.0	-429.0	-311.6 *	19.	44. AG	560.	100.0	.0 39.0	.10	. 9		
15. 21ST SEB @ CHAMPA *	-393.0	202.0	-151.0	-27.0 *	333.	133. AG	72.	20.4	.0 37.0		••		
16. 21ST SEB @ BROADWAY *	-151.0	-27.0	.0	-175.0 *	211.	134. AG	77.	20.4	.0 40.0				
17. 21ST SEB @ STOUT *	.0	-175.0	89.0	-261.0 *	124.	134. AG	19.	20.4	.0 37.0				
18. 21ST NWB @ STOUT *	331.0	-472.0	107.0	-255.0 *	312.	314. AG	125.	20.4	.0 38.0				
19. 21ST NWB @ BROADWAY *	107.0	-255.0	.0	-151.0 *	149.	314. AG	125.	20.4	.0 38.0				
20. 21ST NWB @ CHAMPA *	.0	-151.0	-142.0	-12.0 *	199.	314. AG	37.	20.4	.0 37.0				
21. ZISI NWB @ CURIIS ^ 22 BROADWAY NB @CHAMDOL*	-142.0	-12.0	-381.0	221.0 ^ 85 9 *	334.	180 AG	29. 314	20.4	.038.0	05	2		
22. BROADWAY NB @2101. *	5.5	-205 0	5.5	-208 1 *	3.	180. AG	314.	100.0	0 10 0	.05	.2		
24. BROADWAY SB @2101 *	-4.5	-116.0	-4.5	-112.9 *	3.	360. AG	314	100.0	.0 10.0	.05	.2		
25. BROADWAY SB@CALIFORN*	-15.0	-356.0	-15.0	-811.0 *	455.	180. AG	533.	14.6	.0 59.0		•=		
26. 21ST SEB @ CALIF *	89.0	-261.0	321.0	-487.0 *	324.	134. AG	20.	20.4	.0 37.0				
ADDITIONAL QUEUE LINK PA	RAMETERS	רפת					OT ONT A T	700777	7 A T				
LINK DESCRIPTION *	LENGTU	КЪЛ П. П. Т.	LOST TIME	VOL.	SAIUKAIION FLOW RATE	I TDTR	SIGNAL TVDF	AKKIV קאייד	АЦ				
*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(qm/hr)	11515	IVATE					
*			/			/							
2. BROADWAY SB@CHAMPA Q*	75	38	2.0	565	2000	137.34	1	3					
4. BROADWAY SB@STOUT Q *	75	35	2.0	606	2000	137.34	1	3					
6. BROADWAY NB @STOUT Q*	75	35	2.0	354	2000	137.34	1	3					
8. BRUADWAY NB @CHAMPAQ*	75	38	2.0	354	2000	127 24	1	3					
12 CHAMDA SWB @BBOADW O*	/ D 75	43 34	∠.∪ 2 0	289 217	2000	137.34 137.34	⊥ 1	3					
14. CHAMPA SWB @ 20TH O *	75	38	2.0	270	2000	137.34	1 1	2					
22. BROADWAY NB @CHAMPOL*	75	64	2.0	9	2000	137.34	2	3					
23. BROADWAY NB @21QL *	75	64	2.0	9	2000	137.34	2	3					
24. BROADWAY SB @21OL *	75	64	2.0	9	2000	137.34	2	3					

WIND * ANGLE * (DEGR)*	CONCE REC1	NTRATI (PPM) REC2	ON REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
221. *	.1	.1	.3	.3	.3	.2	. 2	.0	.0	.0	.4	.8	.б	.4	.5	.9	.8	1.2	.9	.0
WIND * ANGLE * (DEGR)*	CONCE REC21	NTRATI (PPM) REC22	ON REC23	REC24	REC25	REC26	REC27													
221. *	.6	.4	.4	.7	.2	.2	.0													
THE HIG	HEST C	ONCENT	RATION	OF	1.20 H	PPM OC	CURRED	AT RE	CEPTOR	REC18										

CAMP 2	2013 1. DATE : TIME : The SITE	7% Oxy Hour 21 9/ 1/99 10:24: 8 MODE flag has be & METEOROLOGICAL	en se VARI <i>I</i>	et to C ABLES	CAL3QHC: L	INE SOURCE	E DISPERSIO	N MODEL -	VERSION 2.	0 Dated	95221			
	VS = U =	.0 CM/S 1.1 M/S	VD = CLAS	= .0	CM/S (D) AI	ZO = 175. CIM = 60.	CM MINUTES	MIXH =	1000. M	AMB =	.0 PPM	BRG = 267.	DEGR	EES
	LINK	VARIABLES												
	LIN	K DESCRIPTION	* * _*	X1	LINK COORDI Y1	NATES (FT) X2) Y2	* LENGT * (FT) *	H BRG TYP (DEG)	E VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
	1. BR 2. BR 3. BR	OADWAY SB @ CHAMP OADWAY SB@CHAMPA OADWAY SB @ STOUT	A* Q* *	-15.0 -15.0 -15.0	572.0 171.0 115.0	-15.0 -15.0 -15.0	115.0 204.9 -356.0	* 457. * 34. * 471.	180. AG 360. AG 180. AG	490. 560. 526.	$15.0 \\ 100.0 \\ 15.0$.050.0 .030.0 .049.0	.19	1.7
	4. BR 5. BR 6. BR	OADWAY SB@STOUT Q OADWAY NB @ STOUT OADWAY NB @STOUT	* * 0*	-15.0 10.0 10.0	-312.0 -815.0 -400.0	-15.0 10.0 10.0	-278.5 -312.0 -429.3	* 33. * 503. * 29.	360. AG 360. AG 180. AG	516. 307. 344.	100.0 15.0 100.0	.0 29.0 .0 40.0 .0 20.0	.18	1.7 1.5
	7. BR 8. BR 9. BR	OADWAY NB @ CHAMP. OADWAY NB @CHAMPA OADWAY NB @ CURTI	~ Q* S*	22.0 22.0 17.5	-312.0 99.0 148.0	22.0 22.0 17.5	580.0 67.2 639.0	* 892. * 32. * 491.	360. AG 180. AG 360. AG	307. 373. 251.	$15.0 \\ 100.0 \\ 15.0$.0 43.0 .0 23.0 .0 52.0	.17	1.6
	10. BR 11. CH 12. CH	OADWAY NB @CURTIS AMPA SWB @ BROADW AMPA SWB @BROADW	~ Q* * O*	17.5 518.0 58.0	580.0 653.0 190.0	17.5 .0 66.1	560.5 131.0 198.2	* 20. * 735. * 12.	180. AG 225. AG 45. AG	634. 232. 501.	100.0 19.5 100.0	.0 32.0 .0 56.0 .0 36.0	.11	1.0 .6
	13. CH 14. CH 15. 21	AMPA SWB @ 20TH AMPA SWB @ 20TH Q ST SEB @ CHAMPA	~ * *	.0 -442.0 -393.0	131.0 -325.0 202.0	-470.0 -430.7 -151.0	-353.0 -313.4 -27.0	* 675. * 16. * 333.	224. AG 44. AG 133. AG	288. 560. 62.	19.5 100.0 21.0	.0 59.0 .0 39.0 .0 37.0	.09	.8
	16. 21 17. 21 18. 21 19. 21	ST SEB @ BROADWAY ST SEB @ STOUT ST NWB @ STOUT ST NWB @ BROADWAY	* * *	-151.0 .0 331.0 107.0	-27.0 -175.0 -472.0 -255.0	.0 89.0 107.0 .0	-175.0 -261.0 -255.0 -151.0	* 211. * 124. * 312. * 149.	134. AG 134. AG 314. AG 314. AG	67. 16. 108. 108.	21.0 21.0 21.0 21.0	.0 40.0 .0 37.0 .0 38.0 .0 38.0		
	20. 21 21. 21 22. BR 23. BR 24. BR	ST NWB @ CHAMPA ST NWB @ CURTIS OADWAY NB @CHAMPQ OADWAY NB @21QL OADWAY SB @210L	* L* *	.0 -142.0 5.5 5.0 -4.5	-151.0 -12.0 89.0 -205.0 -116.0	-142.0 -381.0 5.5 5.0 -4.5	-12.0 221.0 86.6 -207.4 -113.6	* 199. * 334. * 2. * 2. * 2.	314. AG 314. AG 180. AG 180. AG 360. AG	32. 26. 314. 314. 314.	21.0 21.0 100.0 100.0 100.0	$\begin{array}{c} .0 & 37.0 \\ .0 & 38.0 \\ .0 & 11.0 \\ .0 & 10.0 \\ .0 & 10.0 \end{array}$.04	.1 .1 .1
	25. BR 26. 21	OADWAY SB@CALIFOR ST SEB @ CALIF	N* *	-15.0 89.0	-356.0 -261.0	-15.0 321.0	-811.0 -487.0	* 455. * 324.	180. AG 134. AG	463. 17.	15.0 21.0	.0 59.0 .0 37.0		
	ADDIT	IONAL QUEUE LINK	PARAI	METERS										
	LIN	K DESCRIPTION	* * *	CYCLE LENGT (SEC	RED H TIME) (SEC)	CLEARANCE LOST TIME (SEC)	E APPROACH E VOL (VPH)	SATURATI FLOW RAT (VPH)	ON IDLE E EM FAC (gm/hr)	SIGNAL TYPE	ARRIV RATE	YAL 1		
	2. BR 4. BR 6. BR 10. BR 12. CH 14. CH 22. BR 23. BR 24. BR	OADWAY SB@CHAMPA OADWAY SB@STOUT Q OADWAY NB @STOUT OADWAY NB @CHAMPA OADWAY NB @CURTIS AMPA SWB @BROADW AMPA SWB @ 20TH Q OADWAY NB @CHAMPQ OADWAY NB @21QL OADWAY SB @21QL	Q* Q* Q* Q* Q* Q* Q* L* *	75 75 75 75 75 75 75 75 75 75 75	38 35 38 43 34 38 64 64 64	$\begin{array}{c} 2 \cdot 0 \\ 2 \cdot 0 \end{array}$	490 526 307 251 188 234 7 7 7 7	2000 2000 2000 2000 2000 2000 2000 200	137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34	1 1 1 1 1 1 1 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3			

WIND ANGLE (DEGR	* *) * - * -	CONCE REC1	NTRATI (PPM) REC2	ON REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
267.	*	.1	.0	.0	.0	.0	.2	. 2	.1	.1	.0	.4	.3	.4	.4	1.1	.3	.3	.6	.4	.1
WIND ANGLE (DEGR	* *) * _ * _	CONCE REC21	NTRATI (PPM) REC22	ON REC23	REC24	REC25	REC26	REC27													
267.	*	.5	.3	.4	.2	.0	.2	.1													
THE H	IGF	HEST C	ONCENT	RATION	OF	1.10	ррм ос	CURRED	AT RE	CEPTOR	REC15										

CAMP 2013 1.7% Oxy DATE : 9/ 1 TIME : 10:25 The MODE SITE & METE	Hour 22 /99 :46 flag has bee OROLOGICAL V	n set 'ARIABI	to C : ES	CAL3QHC: L	INE SOURCE ating CO a	DISPERSION	1 MODEL - VE	RSION 2.	0 Dated	95221			
VS = .0 U = 1.0 M	CM/S V /S C	'D = !LAS =	.0 CI 4	M/S (D) AT	ZO = 175. IM = 60.1	CM MINUTES	MIXH = 10	00. M	AMB =	.0 PPM	BRG = 82.	DEGR	EES
LINK VARIAB	LES												
LINK DESC	 RIPTION	* * X1 *	L	INK COORDII Y1	NATES (FT) X2	¥2 *	LENGTH	BRG TYP (DEG)	E VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
 BROADWAY BROADWAY BROADWAY BROADWAY 	SB @ CHAMPA SB@CHAMPA Q SB @ STOUT SB@STOUT Q	_* _)* _ * _	15.0 15.0 15.0 15.0	572.0 171.0 115.0 -312.0	-15.0 -15.0 -15.0 -15.0	115.0 * 190.5 * -356.0 * -292.7 *	457. 20. 471. 19.	180. AG 360. AG 180. AG 360. AG	282. 560. 303. 516.	15.0 100.0 15.0 100.0	.0 50.0 .0 30.0 .0 49.0 .0 29.0	.11	1.0 1.0
5. BROADWAY 6. BROADWAY 7. BROADWAY	NB @ STOUT NB @STOUT Q NB @ CHAMPA	*)* .*	10.0 10.0 22.0	-815.0 -400.0 -312.0	10.0 10.0 22.0	-312.0 * -416.8 * 580.0 *	503. 17. 892.	360. AG 180. AG 360. AG	177. 344. 177.	15.0 100.0 15.0	.0 40.0 .0 20.0 .0 43.0	.09	.9
 BROADWAY BROADWAY 	NB @CHAMPAQ NB @ CURTIS)* *	22.0 17.5	99.0 148.0	22.0 17.5	80.7 ° 639.0 °	* 18. * 491.	180. AG 360. AG	373. 144.	$100.0 \\ 15.0$.023.0 .052.0	.10	.9
10. BROADWAY 11. CHAMPA S	NB @CURTISQ WB @ BROADW)* * 5	17.5	580.0 653.0	17.5 .0	568.7 * 131.0 *	* 11. * 735.	180. AG 225. AG	634. 133.	100.0	.0 32.0 .0 56.0	.06	.6
12. CHAMPA S 13. CHAMPA S	WB @BROADW Q WB @ 20TH	*	.0	131.0	-470.0	-353.0 *	* 675.	45. AG 224. AG	166.	19.4	.0 36.0	.04	. 3
14. CHAMPA S 15. 21ST SEB 16. 21ST SEB 17. 21ST SEB 18. 21ST NWB 19. 21ST NWB	WB @ 20TH Q @ CHAMPA @ BROADWAY @ STOUT @ STOUT @ BROADWAY	* -4 * -3 * -1 * * 3 * 1	42.0 93.0 51.0 .0 31.0 .07.0	-325.0 202.0 -27.0 -175.0 -472.0 -255.0	-435.5 -151.0 .0 89.0 107.0 .0	-318.3 * -27.0 * -175.0 * -261.0 * -255.0 *	* 9. * 333. * 211. * 124. * 312. * 149.	44. AG 133. AG 134. AG 134. AG 314. AG 314. AG	560. 36. 39. 9. 62. 62.	100.0 21.0 21.0 21.0 21.0 21.0 21.0	$\begin{array}{c} .0 & 39.0 \\ .0 & 37.0 \\ .0 & 40.0 \\ .0 & 37.0 \\ .0 & 38.0 \\ .0 & 38.0 \end{array}$.05	. 5
20. 21ST NWB 21. 21ST NWB 22. BROADWAY 23. BROADWAY 24. BROADWAY 25. BROADWAY 26. 21ST SEB	 @ CHAMPA @ CURTIS NB @CHAMPQI NB @21QL SB @21QL SB@CALIFORN @ CALIF 	* -1 ,* * [* -	.0 42.0 5.5 5.0 -4.5 15.0 89.0	-151.0 -12.0 89.0 -205.0 -116.0 -356.0 -261.0	-142.0 -381.0 5.5 5.0 -4.5 -15.0 321.0	-12.0 221.0 87.6 -206.4 -114.6 -811.0 -487.0	199. 334. 1. 1. 1. 4. 1. 324.	314. AG 314. AG 180. AG 180. AG 360. AG 180. AG 134. AG	18. 15. 314. 314. 314. 267. 10.	$21.0 \\ 21.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 15.0 \\ 21.0$.0 37.0 .0 38.0 .0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.02 .02 .02	.1 .1 .1
ADDITIONAL	QUEUE LINK F	ARAMET	ERS										
LINK DESC	RIPTION	* C * I *	YCLE ENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	I IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIN RATE	VAL E		
2. BROADWAY 4. BROADWAY 6. BROADWAY 8. BROADWAY 10. BROADWAY 12. CHAMPA S 14. CHAMPA S 22. BROADWAY 23. BROADWAY 24. BROADWAY	SB@CHAMPA C SB@STOUT Q NB @STOUT Q NB @CHAMPAQ WB @CHAMPAQ WB @ 20TH Q NB @CHAMPQI NB @21QL SB @21QL)* *)*)*)* * * *	75 75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64 64	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2823031771771441081354444	2000 2000 2000 2000 2000 2000 2000 200	137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34	1 1 1 1 1 1 1 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3			

WIND ANGLE (DEGR)	* CON * * REC	CENTRATI (PPM) 1 REC2	ION REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10	REC11	REC12	REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
82.	*	.1 .2	2.4	.3	.2	.2	.1	.2	. 2	.2	.0	.0	.0	.0	.0	.1	.0	.1	.0	.2
WIND ANGLE (DEGR)	* CON * * REC	CENTRATI (PPM) 21 REC22	ION 2 REC23	8 REC24	REC25	REC26	REC27													
82.	*	.0 .0		.1	.1	.1	.1													
THE HI	GHEST	CONCENT	TRATION	I OF	.40	PPM OC	CURRED	AT RE	CEPTOR	REC3										

CAMP 2013 1.7% Oxy Hour 23 DATE : 9/ 1/99 TIME : 10:27: 8 The MODE flag has been set to C for calculating CO averages. SITE & METEOROLOGICAL VARIABLES													
V	S = .0 CM/S U = 1.0 M/S	VD = CLAS =	.0 CM 4 (1	/S D) AT	ZO = 175. C IM = 60. M	M INUTES	MIXH = 10	00. M <i>P</i>	AMB =	.0 PPM	BRG = 208.	DEGRI	ES
L	INK VARIABLES												
-	LINK DESCRIPTION	* * X1 -*	LI	NK COORDII Y1	NATES (FT) X2	* ¥2 *	LENGTH	BRG TYPE (DEG)	C VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1 2 3	. BROADWAY SB @ CHAMPA . BROADWAY SB@CHAMPA . BROADWAY SB @ STOUT	A* – Q* – * –	15.0 15.0 15.0	572.0 171.0 115.0	-15.0 -15.0 -15.0	115.0 * 183.3 * -356.0 *	457. 12. 471.	180. AG 360. AG 180. AG	178. 560. 191.	16.2 100.0 16.2	.0 50.0 .0 30.0 .0 49.0	.07	.6
4 5 6 7	BROADWAY SEWSTOUT Q BROADWAY NB @ STOUT BROADWAY NB @STOUT BROADWAY NB @ CHAMP.	~ _ * Q* A*	10.0 10.0 22.0	-312.0 -815.0 -400.0 -312.0	-15.0 10.0 10.0 22.0	-299.9 * -312.0 * -410.7 * 580.0 *	12. 503. 11. 892.	360. AG 360. AG 180. AG 360. AG	516. 112. 344. 112.	. 100.0 . 16.2 . 100.0 . 16.2	.0 29.0 .0 40.0 .0 20.0 .0 43.0	.07	.5
8	. BROADWAY NB @CHAMPA . BROADWAY NB @ CURTI	2* 5*	22.0 17.5	99.0 148.0	22.0 17.5	87.4 * 639.0 *	* 12. * 491.	180. AG 360. AG	373. 91.	100.0 16.2	.0 23.0 .0 52.0	.06	.6
10 11	. BROADWAY NB @CURTIS . CHAMPA SWB @ BROADW	Q* * 5	17.5 18.0	580.0 653.0	17.5 .0	572.9 * 131.0 *	7. 735.	180. AG 225. AG	634. 84.	100.0 21.0	.0 32.0 .0 56.0	.04	. 4
12 13	. CHAMPA SWB @BROADW . CHAMPA SWB @ 20TH	2* *	58.0 .0	190.0 131.0	60.9 -470.0	192.9 * -353.0 *	4. 675.	45. AG 224. AG	501. 105.	100.0 21.0	.0 36.0 .0 59.0	.02	.2
14 15 16 17 18 19	. CHAMPA SWB @ 20TH Q 21ST SEB @ CHAMPA 21ST SEB @ BROADWAY 21ST SEB @ STOUT 21ST NWB @ STOUT 21ST NWB @ STOUT 21ST NWB @ BROADWAY	* -4 * -3 * -1 * * 3 * 1	42.0 93.0 51.0 .0 31.0 07.0	-325.0 202.0 -27.0 -175.0 -472.0 -255.0	-438.0 -151.0 .0 89.0 107.0	-320.8 * -27.0 * -175.0 * -261.0 * -255.0 *	6. 333. 211. 124. 312. 149.	44. AG 133. AG 134. AG 134. AG 314. AG 314. AG	560. 23. 24. 6. 39. 39.	100.0 22.7 22.7 22.7 22.7 22.7 22.7	$\begin{array}{c} .0 & 39.0 \\ .0 & 37.0 \\ .0 & 40.0 \\ .0 & 37.0 \\ .0 & 38.0 \\ .0 & 38.0 \end{array}$.03	.3
20 21 22 23 24 25 26	. 21ST NWB @ CHAMPA . 21ST NWB @ CURTIS . BROADWAY NB @CHAMPQ . BROADWAY NB @21QL . BROADWAY SB @21QL . BROADWAY SB@CALIFOR . 21ST SEB @ CALIF	* -1 L* * N* -	.0 42.0 5.5 5.0 -4.5 15.0 89.0	-151.0 -12.0 89.0 -205.0 -116.0 -356.0 -261.0	-142.0 -381.0 5.5 5.0 -4.5 -15.0 321.0	-12.0 * 221.0 * 88.0 * -206.0 * -115.0 * -811.0 *	199. 334. 1. 1. 4. 1. 4. 5. 324.	314. AG 314. AG 180. AG 180. AG 360. AG 180. AG 134. AG	12. 9. 314. 314. 314. 168. 6.	22.7 22.7 100.0 100.0 100.0 16.2 22.7	.0 37.0 .0 38.0 .0 11.0 .0 10.0 .0 10.0 .0 59.0 .0 37.0	.02 .02 .02	.1 .1 .1
A	DDITIONAL QUEUE LINK	PARAMET	ERS										
-	LINK DESCRIPTION	* C * L *	 YCLE ENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIV RATE	VAL E		
 2 4 6 8 10 12 14 22 23 24	BROADWAY SB@CHAMPA BROADWAY SB@STOUT Q BROADWAY NB @STOUT BROADWAY NB @CHAMPA BROADWAY NB @CURTIS CHAMPA SWB @BROADW CHAMPA SWB @ 20TH Q BROADWAY NB @CHAMPQ BROADWAY NB @21QL BROADWAY SB @21QL	2* 2* 2* 2* 2* 2* 2* 2* 2* L* *	75 75 75 75 75 75 75 75 75 75 75 75	38 35 35 38 43 34 38 64 64 64 64	$\begin{array}{c} 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\$	178 191 112 112 91 68 85 3 3 3 3	2000 2000 2000 2000 2000 2000 2000 200	$\begin{array}{c} 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ 137.34\\ \end{array}$	1 1 1 1 1 1 1 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3			

Appendix I - Federal Register: March 10, 1997 (Volume 62, Number 46)
[Federal Register: March 10, 1997 (Volume 62, Number 46)] [Rules and Regulations] [Page 10690-10700] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr10mr97-5]

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Parts 52 and 81

[CO-001-0011; CO-001-0012; CO-001-0013; CO-001-0014; FRL-5692-3]

Clean Air Act Approval and Promulgation of State Implementation Plan for Colorado; Carbon Monoxide Attainment Demonstrations and Related SIP Elements for Denver and Longmont; Clean Air Act Reclassification; Oxygenated Gasoline Program

AGENCY: Environmental Protection Agency (EPA).

ACTION: Final rulemaking.

SUMMARY: In this document, EPA is approving the State Implementation Plan (SIP) revisions submitted by the State of Colorado for the purpose of bringing about the attainment of the national ambient air quality standards (NAAQS) for carbon monoxide (CO). The implementation plan revisions were submitted by the State on July 11 and 13, 1994, September 29, 1995, and December 22, 1995 to satisfy certain Federal requirements for an approvable nonattainment area CO SIP for Denver and Longmont. This action includes approval of revisions to Colorado Regulations 11 (vehicle inspection and maintenance (I/M)) and 13 (oxygenated fuels) submitted to satisfy conditions in the SIP, and further revisions to Regulation 13 to shorten the effective period of the oxygenated fuels program. It also includes reclassification of the Denver CO nonattainment area from Moderate to Serious. EPA proposed to approve the July 1994 and September 1995 SIP submissions and to reclassify the Denver area to Serious in the Federal Register on July 9, 1996. EPA published a supplemental proposal to approve the December 22, 1995 SIP submission shortening the oxygenated fuels program period and to approve the Denver and Longmont CO SIPs based on the shortened period on December 6, 1996. The rationale for the final approvals and reclassification are set forth in this document. Additional information is available at the address indicated below.

EFFECTIVE DATE: This action is effective on April 9, 1997.

ADDRESSES: Copies of the State's submittals and other information are available for inspection during normal business hours at the following locations: Environmental Protection Agency, Region VIII, Air Programs, 999 18th Street, 3rd Floor, South Terrace, Denver, Colorado 80202-2466; and Colorado Air Pollution Control Division, 4300 Cherry Creek Dr. South, Denver, Colorado 80222-1530.

FOR FURTHER INFORMATION CONTACT: Jeff Houk at (303) 312-6446.

SUPPLEMENTARY INFORMATION:

I. Background

The air quality planning requirements for CO nonattainment areas are set out in sections 186-187 of the Clean Air Act (Act) Amendments of 1990 (CAAA) which pertain to the classification of CO nonattainment areas and to the submission requirements of the SIPs for these areas, respectively. The EPA has issued a "General Preamble" describing EPA's preliminary views on how EPA intends to review SIPs and SIP revisions submitted under Title I of the Act, [see generally 57 FR 13498 (April 16, 1992) and 57 FR 18070 (April 28, 1992)]. Because EPA is describing its interpretations here only in broad terms, the reader should refer to the General Preamble for a more detailed discussion of the interpretations of Title I advanced in today's rulemaking action. In today's action on the Denver and Longmont CO SIPs, EPA is applying its interpretations taking into consideration the specific factual issues presented and comments received from the public. This Federal Register document addresses several requirements of the 1990 CAAA which were required to be submitted no later than November 15, 1992, and which the State did not

[[Page 10691]]

submit by that date. These requirements include an attainment demonstration, contingency measures and, for Denver, a vehicle miles travelled forecasting and tracking program and transportation control measures. EPA made a formal finding that the State had failed to submit these SIP revisions in a letter to Governor Roy Romer dated January 15, 1993. This Federal Register document also addresses revisions to Regulations 11 and 13, submitted by the State of Colorado to implement portions of the control strategy relied upon by the attainment demonstration. Section 187(a)(7) required those States containing CO nonattainment areas with design values greater than 12.7 parts per million (ppm) to submit, among other things, an attainment demonstration by November 15, 1992, demonstrating that the plan will provide for attainment by December 31, 1995 for Moderate CO nonattainment areas and December 31, 2000 for Serious CO nonattainment areas. The attainment demonstration must include a SIP control strategy, which is also due by November 15, 1992. The SIP control strategy for a given nonattainment area must be designed to ensure that the area meets the specific annual emissions reductions necessary for reaching attainment by the deadline. In addition, section 187(a)(3) requires these areas to implement contingency measures if any estimate of actual vehicle miles travelled (VMT) or any updated VMT forecast for the area contained in an annual report for any year prior to attainment exceeds the number predicted in the most recent VMT forecast. Contingency measures are also triggered by failure to attain the NAAQS for CO by the attainment deadline. Contingency measures must be submitted with the CO SIP by November 15, 1992. Finally, a vehicle miles travelled forecasting and tracking program is required by Section 187(a)(2)(A), and transportation control measures are required for Denver by Section 187(a)(2)(B). These requirements are discussed in more detail in EPA's July 9, 1996 (61 FR 36004) and December 6, 1996 (61 FR 64647) Federal Register documents proposing action on the SIP revisions. Longmont had been designated as unclassifiable/attainment prior to passage of the 1990 CAAA. However, a special monitoring study in 1988- 89 recorded an exceedance of the NAAQS in Longmont. As a result, EPA Region VIII recommended that the Governor designate this area nonattainment, and on March 15, 1991, the Governor submitted a nonattainment designation for this area that was later codified by EPA at 40 CFR Part 81. Longmont was classified as a Moderate area in 40 CFR Part 81. Since this area had never had a SIP, EPA interpreted Section 172 of the Act to require an attainment demonstration for Longmont. Contingency measures under Section 172(c)(9) were also required. On January 15, 1993, EPA made a formal finding that the State had failed to submit these SIP revisions for Longmont. On July 11, 1994 and July 13, 1994, Governor Roy Romer submitted comprehensive revisions to the Colorado SIP. The carbon monoxide SIP element submittals for Denver and Longmont addressed the outstanding CAAA requirements discussed above, as well as other CAAA mandates. The State submitted revisions to Regulations 11 and 13 on September 29, 1995, to implement the I/M and oxygenated fuels program revisions committed to in the CO SIP. EPA proposed approval of these revisions in its July 9, 1996 Federal Register document, and is today taking final action to approve these revisions. The State submitted additional revisions to Regulation 13 on December 22, 1995, shortening the effective period of the oxygenated fuels program. EPA published a Federal Register document on December 6, 1996, proposing approval of these revisions and re-proposing approval of the Denver and Longmont CO SIPs to provide an opportunity for public comment on the impact of this revision to Regulation 13 on the CO SIPs. EPA is today taking final action to approve the revisions to Regulation 13 that the State submitted on December 22, 1995.

II. Response to Public Comments

EPA received numerous comments on its proposed approval of the Denver CO SIP and the proposed reclassification of Denver from Moderate to Serious for CO. No comments were received specifically regarding the

Longmont CO SIP. EPA received one set of comments regarding its proposed approval of the shortening of the effective period of the oxygenated fuels program. The comments and EPA's responses follow.

Extension of the Comment Period

Several parties requested that EPA extend its comment period on the proposed approval of the SIP to allow more time for the preparation and submission of comments. In response to these requests, EPA extended the comment period for an additional 30 days (see 61 FR 43501, August 23, 1996).

Legality of the SIP Submission Under State Law

Several parties commented that EPA should return the Denver CO SIP to the State without action, because it was submitted to EPA in conflict with the requirements of State law. These comments generally concern the nature of the Air Ouality Control Commission's (AOCC's) submission of the SIP to Legislative Council for review, and the AQCC's and the Governor's response to Legislative Council's actions. EPA's acceptance of the SIP through its July 14, 1994 determination of SIP completeness was based on the June 30, 1994 letter from the State Attorney General's Office submitted with the SIP. This letter certifies that the SIP was adopted and submitted in compliance with State law. Specifically, Section 25-7-133, C.R.S., required the submission of SIPs "regarding the regulation of mobile sources" to Legislative Council for review 45 days prior to submission to EPA. The CO SIP arguably did not fall within this criterion, as it did not include any regulatory content regarding mobile sources. Revisions to Regulations 11 and 13 (I/M and oxygenated fuels programs) to implement the provisions of the CO SIP were discussed in the SIP, but were not adopted or submitted with it. These revisions were adopted later in 1994 by the AOCC, received full Legislative Council review and were submitted to EPA in September 1995. Nevertheless, the AQCC chose to submit the CO SIP to Legislative Council for review even though it did not contain any mobile source regulation revisions. The June 30, 1994 letter from the AG's office concedes that the SIP was not submitted to Legislative Council 45 days prior to submittal to EPA, but notes that the Council acted on the SIP at its June 21, 1994 meeting and, in effect, waived the 45 day requirement. Also, according to the June 30, 1994 letter, the actions by Legislative Council at its meeting were not fully in compliance with State law: "The Council may act in one of two ways: it can return the SIP in its entirety and it is then deemed approved, or it can submit it to the General Assembly (via petition for special session if the General Assembly is not in session)* * * The Legislative Council, on June 21, 1994 took action by motion, wherein it voted to postpone review of the CO SIP submission, voted to return the plan for revisions by the Commission, and voted to conduct a final review no later than January 15, 1995. Pursuant to statute, because no special assembly was called by the

[[Page 10692]]

Council [the General Assembly was not in session], the SIP is deemed returned and approved." EPA finds the State Attorney General's Office's interpretation reasonable, and thus, EPA accepts that Office's conclusion that the SIP was, in fact, submitted to EPA for action in compliance with State law.

Oxygenated Fuels Program

Several comments were received with respect to the oxygenated fuels program. These comments and EPA's responses follow. (1) The submission violates Section 25-7-105.1, C.R.S., which states that any regulation that is more stringent than Federal law shall not constitute part of a state implementation plan. Putting aside for the purposes of this response the question of what EPA's role should be with respect to this State law, EPA does not believe that the 3.1% oxygenated fuels program is more stringent than is required under the Act. First, EPA does not believe section 211(c) of the Act preempts the State from requiring a 3.1% minimum oxygen content standard and, thus, does not believe a finding of necessity is required under section 211(c)(4)(C) of the Act (see discussion in response to comment 6 below). Second, the State is relying on the 3.1% oxygenated fuels program as one measure to help demonstrate attainment of the NAAQS for CO, as required by sections 110(a) and 187(a)(7) of the Act. Without the 3.1% oxygenated fuels program is not more stringent than the Act requires. (2) Subsequent to AQCC adoption of the CO SIP, the AQCC adopted revisions to Regulation 13 which shortened the control period during which the oxygenated fuels program is in effect. EPA's approval of the CO SIP does not address this revision. Based on this comment, EPA reproposed approval of the Denver and Longmont CO SIPs, incorporating the shortened oxygenated

Technical Support Document

Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

gasoline season, and also proposed approval of the revisions to Regulation 13 shortening the season (see 61 FR 64647, December 6, 1996). EPA is now approving the shortening of the oxygenated gasoline season and is approving the Denver and Longmont CO SIPs based on the shortened season. (3) EPA approval of the 3.1% oxygenated fuels program would be contrary to Exxon Corp. v. City of New York, 548 F.2d 1088 (2nd Cir. 1977). The Exxon v. City of New York decision was based on pre-1990 CAA language, EPA regulations that have since been amended, and in part, different factual circumstances that bear no relevance to the situation here. Moreover, the changes in section 211(c)(4) and the 40 CFR Part 80 fuel regulations since the Exxon decision directly modify the provisions that the court relied on in a way that limits the scope of preemption of state fuel controls. Thus, this decision is not relevant to the current situation. In Exxon Corp. v. City of New York, the court found that New York City's lead and volatility regulations were preempted under section 211(c)(4). In the Part 80 regulations, EPA had set out the federal fuel requirements and stated that they prescribed regulations for the control and/or prohibition of fuels and additives. EPA also had promulgated specific lead regulations, less stringent than the New York City regulations, but did not address volatility. At the time of the court's decision, section 211(c)(4) preempted "any control or prohibition respecting use of a fuel or fuel additive." The court found that EPA had promulgated regulations respecting the use of fuels, and thus, New York City's more stringent regulations were preempted. In the 1990 CAAA, Congress amended the language of section 211(c)(4) to preempt "any control or prohibition respecting any characteristic or component of a fuel or fuel additive." After the court's decision, EPA also modified the Part 80 regulations to make it clear that they are not intended to preempt states' ability to regulate fuels and fuel additives that EPA has not addressed. Section 80.1(b) states: "Nothing in this part is intended to preempt the ability of State or local governments to control or prohibit any fuel or additive for use in motor vehicles and motor vehicle engines which is not explicitly regulated by this part." Thus, both Congress and the Agency have clearly indicated that EPA's fuel requirements do not preempt states from regulating a specific characteristic or component that the Agency has not addressed. As discussed below, there are no federal regulations applicable to oxygen content in the Denver area, and hence Exxon v. City of New York is not applicable here. (4) EPA approval of the 3.1% oxygenated fuels program could lead to oxygenate shortages which could interfere with the federal reformulated gasoline program. During the two winter seasons since the CO SIP was submitted to EPA, the average oxygen content in Denver has been well above 3.1%. The federal reformulated gasoline program took effect on January 1, 1995, and thus has been in effect coincident with the Denver oxygenated fuels program for over two years. No documented oxygenate shortages have occurred as a result of Denver's program. Furthermore, the commentor did not provide any indication that a change in circumstances may occur that could produce any problems in the future. (5) EPA approval of the 3.1% oxygenated fuels program could lead to an increase in NO<INF>X emissions, which could jeopardize public health by increasing ozone concentrations. Several parties have contacted EPA in the past with regard to potential NO<INF>X increases from use of oxygenated fuels. No good scientific information exists that conclusively documents an increase in fleet NO<INF>X emissions from use of oxygenated fuels. The laboratory studies to date have generally had poor control of other fuel characteristics that affect NO<INF>X emissions, making the results unreliable. Increases in NO<INF>X emissions from the use of oxygenates would not be expected to generate exceedances of the ozone NAAQS, as asserted by the commentor. Oxygenate use is only required during the winter season, when climatic conditions are not favorable to the formation of tropospheric (ground-level) ozone. No exceedances of the ozone NAAOS have occurred at any time during the ten winter seasons in which oxygenated fuels have been used in the Denver area. (6) The 3.1% oxygen content is higher than is necessary to attain the CO NAAQS, and other reasonable, practicable means of attainment are available, so EPA cannot approve this program under section 211(c)(4)(C) of the CAA. Moreover, section 211(m) provisions occupy the field for regulation of oxygen content of gasoline and thereby preempt any different regulation by a state. Section 211(c)(4)(C) provides that states are preempted from regulating motor vehicle fuels where EPA has already acted, either to regulate the fuel or to find that no regulation is necessary. If preemption applies, the state may regulate the fuel only if EPA finds the state requirement necessary to achieve the NAAOS for the relevant pollutant. Here, EPA has neither regulated fuel oxygen content in Colorado nor made a finding that no such regulation is necessary. Therefore, the state regulation is not preempted and there is no need to find necessity. In the absence of federal preemption, states are free to regulate to control air pollution, and EPA must approve lawful state requirements into SIPs, as long as

[[Page 10693]]

the state submission meets all applicable requirements under Title I of the Act. Section 211(c)(4)(A) preempts a state from "prescrib[ing] or attempt[ing] to enforce * * * any control or prohibition respecting any characteristic or component of a fuel or fuel additive" under two circumstances. Section 211(c)(4)(A)(i) provides for preemption if EPA has found that no control or prohibition of the characteristic is necessary and has published that finding in the

Federal Register. Section 211(c)(4)(A)(ii) provides that a state is preempted from regulating if EPA has prescribed under section 211(c)(1) a control or prohibition applicable to such characteristic or component, unless the state control or prohibition is identical to EPA's control or prohibition. Thus, to preempt state regulation under 211(c)(4), either EPA must publish a finding that a control is unnecessary, or EPA must promulgate a control of the same characteristic or component under section 211(c)(1). EPA has not made any finding under section 211(c)(4)(A)(i) that control of fuel oxygen content is unnecessary. There is no preemption of the Regulation 13 requirement for a 3.1% oxygen content under this provision. The only requirement that EPA has promulgated applicable to fuel oxygen content under 211(c)(1) is in the reformulated gasoline (RFG) regulations. EPA promulgated the RFG regulations under both sections 211(c)(1) and 211(k). However, Colorado is neither required to use RFG by statute, nor has it voluntarily opted into the RFG program. Thus, the RFG regulations do not apply in Colorado. The statute is ambiguous as to whether federal regulation of a fuel characteristic in certain areas of the country preempts state regulation only in those areas, or whether it preempts any state regulation of that characteristic nationwide. The statute simply refers to "a control or prohibition applicable to such characteristic or component." The language does not indicate whether it means any control in any area or at any time generally applicable to a fuel characteristic, or a control actually applicable to a fuel characteristic in a given time and place. The statute is also ambiguous as to whether "characteristic or component of a fuel or fuel additive" should be read generally, as in "oxygen content," or specifically, as in "oxygen content in RFG areas." In delegating authority to the Agency to administer section 211(c), Congress has also implicitly delegated the authority to reasonably interpret the provision in light of any ambiguity. Chevron, USA v. NRDC, 467 U.S. 837 (1984). EPA believes that the better reading of the statute is that preemption by the RFG regulations applies more narrowly, only in the areas where the federal RFG regulation applies. First, the RFG regulations arguably are not a control "applicable" to fuel oxygen content outside of RFG areas. Secondly, this interpretation is consistent with the judicial cannon of statutory construction by which courts construe preemption narrowly. Thirdly, as a policy matter, EPA's decision to regulate fuel oxygen content in RFG areas did not encompass a determination that states should not or need not regulate that characteristic outside of those areas. Section 211(c)(4) applies only where EPA has affirmatively decided to regulate a particular fuel characteristic or component, or has affirmatively found that no such regulation is necessary and has published such a finding in the Federal Register. The RFG rulemaking never considered whether fuel oxygen content requirements were needed for CO control outside RFG areas, but merely incorporated the statutory requirement to set a 2.0 percent oxygen content for RFG. Moreover, whether RFG applies to an area depends solely on its status as an ozone nonattainment area; its status for CO is irrelevant. This further reinforces the conclusion that oxygen content requirements under RFG do not represent any EPA or Congressional decision on the need for such requirements outside of RFG areas. Finally, the purpose of the section 211(c)(4) preemption provision is to strike an appropriate balance between states' ability to freely adopt control measures, and avoidance of a variety of different state standards, potentially disrupting the national motor vehicle fuel market and federal regulation of such fuels. This purpose is not served by applying preemption where there is no federal regulatory scheme, as here in Colorado. Finally, section 211(m) does not constitute federal regulation of oxygen content, which could occupy the field for regulation of oxygen content and hence preempt state regulation. Section 211(m) requires states with certain CO nonattainment areas to submit a SIP revision requiring gasoline "to contain not less than 2.7 percent oxygen content by weight." The statute requires state regulation, not federal, and explicitly sets a minimum standard for such state regulation, leaving the state free to adopt more stringent requirements if it so chooses. There is no indication in the statute or the legislative history that by specifying a minimum oxygen level that states should require, Congress intended the federal government to occupy the field of oxygen content regulation and preempt states from establishing a more stringent standard. Because the federal RFG fuel oxygen content provision does not apply to Colorado, section 211(c)(4) does not preempt the state from promulgating its own average fuel oxygen content standard of 3.1%. Nor does section 211(m) explicitly or implicitly impose such a restriction. Moreover, EPA must approve into a SIP any lawful provision concerning control of a criteria pollutant that is submitted by a State and that otherwise meets the requirements of section 110. See Union Electric Co. v. EPA, 427 U.S. 246 (1976). Thus, Colorado was free to adopt a 3.1% oxygen content standard as a control strategy to help attain the CO NAAOS. (7) EPA approval of the 3.1% oxygenated fuels program in Colorado would be a de facto mandate that at least 50% of the gasoline in the Denver area contain ethanol, contrary to American Petroleum Institute vs. United States Environmental Protection Agency, 52 F.3d 1113 (D.C. Cir. 1995). In API v. EPA, the issue was whether EPA has the authority to mandate use $o^{42}f$ a particular oxygenate in RFG. The court held that EPA does not have such authority because Sec. 211(k) lays out the specific criteria that EPA is to consider in promulgating the RFG requirements, and the ethanol mandate was not established pursuant to those criteria. This holding has no relevance for whether a state, rather than EPA, could directly mandate use of a particular oxygenate. Moreover, the state here has not mandated use of any particular oxygenate. It has merely established oxygen content requirements, and the

Technical Support Document

Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

industry may use any oxygenate capable of meeting those requirements, subject to the maximum blending restrictions. In addition, these are the same oxygen content requirements as the CAA mandates for certain areas, which indicates that Congress contemplated that such higher oxygen content levels may be needed in some areas. In the absence of federal preemption, states are free to adopt fuel controls for emission reductions. API identifies no additional limit on EPA's authority to approve such state requirements in SIPs. (8) Recent studies have demonstrated that oxygenated fuels have little or no effect on CO air quality. EPA should facilitate an independent review of the impacts of oxygenated fuels on CO air quality before acting to approve the CO SIP.

[[Page 10694]]

The White House Office of Science and Technology Policy (OSTP) has recently issued a draft report on oxygenated fuels, which compiles the results of a number of other studies ("Interagency Assessment of Oxygenated Fuels," September 1996). While not yet final, the draft report concludes that oxygenated fuels produce approximately a 10.0% to 13.5% ambient CO reduction benefit. The National Academy of Sciences (NAS) has also issued a recent report commenting on the OSTP report. The NAS report found that oxygenated fuels programs have a benefit of zero to 10 percent in reducing ambient CO. Of the 10 existing "real world" studies of oxygenated fuels' ambient air impacts cited in the NAS report, eight show a statistically significant benefit from the program, and two studies (both in North Carolina) showed no significant benefit or did not attempt to quantify a benefit. Likewise, virtually all laboratory studies of oxygenated fuels, including some conducted by the automotive and petroleum industries, show a significant carbon monoxide reduction at the tailpipe from use of these fuels. EPA recently conducted an analysis of carbon monoxide air quality data from cities around the country ("Impact of the Oxyfuel Program on Ambient CO Levels," J. Richard Cook et al, EPA420-R-96-002). In this report, EPA compared data from a number of cities which used oxygenated fuels beginning in the winter of 1992-93 to data from several cities which did not. Using this approach, EPA found an immediate and sustained reduction of carbon monoxide concentrations in the range of 3.1% to 13.6% in cities using oxygenated fuels, in excess of the reductions expected from new cars entering the fleet. This reduction was not seen in cities not using oxygenated fuels. This level of benefit is consistent with that found in other studies. A subsequent regression modeling analysis by Dr. Gary Whitten of SAI of ambient CO data in oxygenated fuels areas ("Regression Modeling of Oxyfuel Effects on Ambient CO Concentrations," SYSAPP-96/78, January 8, 1997) found a 14% reduction in ambient CO concentrations due to implementation of the program. These analyses are significant because they are based on measurements of actual air quality data in these cities over at least two winter periods. Many interested parties have criticized laboratory studies as not being representative of the real world; however, in attempting to carry out a "real world" study in a single urban area, it is very difficult to separate the influence of oxygenated fuels from all of the other factors that affect carbon monoxide concentrations (including weather, congestion, and changes in the mix of cars and trucks in the fleet). The National Academy of Science's report points out some areas where additional research would be useful, and EPA and the State are working to design a study to address some of the uncertainties surrounding the use of oxygenated fuels. However, the NAS report and the available scientific data support continuing the oxygenated fuels program. While not a factor in EPA's decision, readers may be interested to know that oxygenated fuels is one of the least expensive carbon monoxide control strategies available. In terms of dollars per ton of pollution eliminated, it is much cheaper than other alternatives, such as transportation control measures, mandatory employee trip reduction, conversion of vehicles to run on alternative fuels like propane or natural gas, or industrial controls. The program also serves as an important defense against factors that increase carbon monoxide emissions in the Denver area, including growth in daily vehicle miles travelled, growth in the amount of time that vehicles spend in congestion, and growth in the number of sport utility vehicles and other types of higher-emitting light-duty trucks on the road. EPA has substantial evidence at this time that oxygenated fuels are an effective means to control carbon monoxide, and hence it is appropriate to approve this provision of the CO SIP at this time.

Shortening of the Oxygenated Fuels Season

One party submitted comments in response to EPA's December 6, 1996 supplemental notice of proposed rulemaking, proposing approval of the revisions to Regulation 13 removing the last two weeks of the oxygenated fuels season and reproposing approval of the CO SIPs to incorporate this revision. This commentor supported EPA's action to approve the shortening of the oxygenated fuels season. The commentor also raised other issues with respect to the oxygenated fuels program which have been addressed above.

Abandoned and Impounded Vehicle Program

One commentor expressed concern that the SIP provision preventing re-registration of abandoned or impounded pre-1982 vehicles would negatively impact the collector car industry of the Denver region and would prevent owners from recovering stolen vehicles. Another commentor expressed concern that this program would unnecessarily harm lower- income individuals and artificially increase demand for new cars. While EPA understands these concerns, the Act prohibits EPA from basing its actions concerning SIPs on considerations involving the economic reasonableness of State actions. See Union Electric Co. v. EPA, 427 U.S. 246, 256-266 (1976); 42 U.S.C. section 7410(a)(2). While EPA is prohibited from basing its action on the SIP on economic grounds, EPA has concluded for other reasons that it should not act on this element of the SIP. The provision is not well-defined in the SIP, with the design and implementation of this program left up to the discretion of local jurisdictions, and no credit was taken for this measure in the attainment demonstration (see SIP page IX-4). Therefore, EPA is not taking action on this element of the SIP.

Revised Emissions Standards for Pre-1982 Vehicles

One commentor stated that the requirement for tighter emissions testing cutpoints for pre-1982 was arbitrary and capricious, and unduly impacted owners of these model year vehicles in the Denver region. Again, EPA is prohibited by law from basing its actions on SIPs on considerations involving the economic reasonableness of State actions. However, pre-1982 vehicles were targeted for tighter cutpoints because 1982 and newer vehicles are already subject to the more stringent provisions of the enhanced vehicle inspection and maintenance program. Tighter cutpoints for pre-1982 vehicles should result in more high- emitting vehicles being identified and repaired through the requirements of Regulation 11. Data from the enhanced I/M program show that the average older vehicle emits carbon monoxide at levels many times higher than the level at which they were certified for sale. However, there is no presumption that all older vehicles are high emitters, and vehicles in good operating condition should not fail the tighter cutpoints. This commentor also stated that the State and EPA had failed to consider the smaller proportion of total VMT generated by pre-1982 vehicles. The mobile source emissions modeling conducted for the SIP is based on estimates of annual mileage accumulation and share of daily VMT for each model year. Thus, the SIP modeling inputs reflect the smaller proportion of total

[[Page 10695]]

regional VMT, emissions generated by these vehicles are still significant because these vehicles are required to meet less stringent emissions standards by the State and EPA, and thus, per-vehicle emissions are higher. The SIP estimates that this measure would provide a CO emission reduction benefit of 20 tons per day in 1995. EPA believes the estimates of pre-1982 VMT share and emissions reductions from the SIP provision are reasonable. Another commentor stated that EPA should give the State the option of eliminating the I/M program and the prohibition on re-registration of abandoned and impounded vehicles in favor of an enforceable system of user fees or other economic incentives that would address the actual contribution of individual vehicles and drivers to the region's pollution problems. The Clean Air Act requires the State to implement an enhanced I/M program that meets certain minimum requirements. However, the Act would allow the State to revise its SIP at any time to add the type of program mentioned by the commentor, as long as the program meets the SIP requirements of Section 110. EPA does not have to take any type of action in order to enable the State to develop and submit this type of SIP revision. As noted above, EPA is not acting on the SIP provision that prohibits re-registration of abandoned and impounded vehicles.

Transportation Control Measures (TCMs)

One commentor felt that EPA's description of the relationship of the TCMs to the SIP as a whole was unclear. This commentor felt that EPA was interpreting the SIP to incorporate the TCMs as part of the attainment demonstration, in addition to incorporating the TCMs as contingency measures. Further review of the SIP confirms that the TCMs are only meant to be incorporated as contingency measures. This intent is clearly stated in the SIP on pages VI-3 and X-1. The SIP states the intent of the area to implement the contingency measures early, as allowed by EPA policy, to obtain additional emission reductions. Chapter XII of the SIP, Attainment Demonstration, clearly demonstrates that these measures are not necessary for the Denver area to attain the CO NAAQS by December 31,

2000. Thus, EPA is clarifying that the TCMs are intended to be enforceable provisions of the SIP only as contingency measures, with implementation required only in the event that the contingency measures are triggered (through the mechanisms discussed in the proposal). The State has made an adequate showing that TCMs are not needed for attainment, as required by section 187(a)(2)(B) of the Act. Another commentor stated that the requirements of the Act for TCMs in Denver had not been met. EPA believes that the State and the Regional Air Quality Council have correctly interpreted the Act's requirements for TCMs, that the TCM provisions of the SIP are adequate, and that the SIP contains an adequate showing that TCMs are not necessary for attainment. This commentor also stated that EPA should require annual reporting on the effectiveness and implementation of TCMs and other control strategies. EPA notes that periodic reporting is already required for a number of control measures and does not believe that further reporting is necessary at this time. For example, the Act requires annual reporting of VMT and a comparison of actual VMT with the SIP forecasts. The State has complied with these requirements. The Act and EPA's transportation conformity rule (58 FR 62188, November 24, 1993) also require that the Denver Regional Council of Governments (DRCOG) report on the implementation status of TCMs each time a conformity determination is made, and prohibit conformity findings if TCMs are not being implemented as required by the SIP. The State also produces annual reports on the effectiveness of the SIP's two major control strategies, the I/M and oxygenated fuels programs, as required by State law. EPA's I/M regulations (40 CFR Part 51, Subpart S) also require periodic evaluation of and reporting on the effectiveness of the I/M program.

Contingency Measures

One commentor stated that the SIP does not contain adequate contingency measures, and that EPA should require the State to implement the contingency measures based on the Denver area's failure to attain. This commentor also stated that it was insufficient for the SIP to describe existing conditions as contingency measures which have already been implemented. As discussed in the proposal (61 FR 36009, July 9, 1996), the SIP TCMs exceed the minimum emission reductions established in EPA guidance, and EPA considers these measures adequate. Although the State has chosen to voluntarily implement many of the contingency measures, and thus obtain the benefits of early emissions reductions, the commentor is correct that EPA is not requiring the State to implement the contingency measures in the SIP based on the area's failure to attain the standard by the end of 1995. EPA believes it is neither necessary nor appropriate to do so. This is because EPA's approval of this Serious area CO SIP, which the State has been implementing since 1994, obviates the need for Moderate area contingency measures. Contingency measures for a Moderate CO nonattainment area with a design value greater than 12.7 ppm are intended to provide emissions reductions while the State revises its SIP to meet Serious area SIP requirements. Here the State has already submitted a Serious area SIP that demonstrates attainment of the CO standard by the end of 2000, and EPA is approving it. In addition, there is no EPA-approved Moderate area CO SIP for the Denver area on which EPA can base a requirement that the State implement contingency measures for the failure to attain the CO standard by the end of 1995. If an EPA-approved Moderate area CO SIP had been in place at the time the area violated the CO standard in 1995, EPA would have required the State to implement the contingency measures contained in that SIP. In the Serious area SIP that the State has submitted and that EPA is approving today, contingency measures are tied to the 2000 attainment date. There is no basis or necessity for EPA to require the State to implement contingency measures based on the area's failure to attain the CO standard by the end of 1995. The SIP envisions that the TCMs identified as contingency measures will be implemented early. This is acceptable to EPA. EPA policy (August 13, 1993 memorandum from G.T. Helms to regional Air Branch Chiefs entitled "Early Implementation of Contingency Measures for Ozone and Carbon Monoxide Nonattainment Areas") encourages the early implementation of contingency measures for the additional emission reductions and progress toward attainment that they provide. EPA believes that requiring states to adopt additional contingency measures to replace measures that were implemented early would only discourage early implementation and the resulting additional emission reductions.

Reclassification to Serious

Two commentors expressed concern over EPA's proposed reclassification of the Denver area from Moderate to Serious for CO, given the small number and low absolute value of violations in recent years. These commentors felt that EPA should recognize Denver's progress toward attainment of the CO NAAQS in

[[Page 10696]]

Technical Support Document

Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

recent years. EPA recognizes that Denver has taken significant steps to reduce CO levels and make progress toward attainment, including implementation of a comprehensive woodburning control program, the nation's first oxygenated fuels program, and an effective enhanced I/M program. However, as explained in the proposed rulemaking, the unambiguous provisions of the CAA and recent ambient values for CO in Denver compel EPA to take this action. One commentor stated that the SIP does not contain the elements required for a Serious area SIP. As discussed in detail in the proposal, EPA believes that the SIP does contain all required elements.

Attainment Demonstration

One commentor submitted extensive comments on the adequacy of the attainment demonstration. This commentor felt that the attainment demonstration was inadequate because it did not consider other downtown intersections with the potential of experiencing high concentrations of CO and because growth projections used in the modeling underestimate the amount of growth in traffic that has occurred in the Denver area since the attainment demonstration was submitted to EPA. The State performed preliminary CAL3OHC modeling of CO concentrations at three intersections in the downtown area: Speer and Auraria Boulevard, Broadway and Colfax, and Broadway and Champa. The CAMP air quality/meteorology monitoring station, which has historically recorded the highest levels of CO in the Denver area, is located adjacent to the intersection of Broadway and Champa. The preliminary modeling results showed predicted concentrations at the Speer/Auraria and Broadway/Colfax intersections that were up to 6 parts per million (ppm) higher than concentrations predicted at the CAMP intersection. However, the State selected only Broadway and Champa (CAMP) for use in the SIP attainment demonstration because the on-site air quality and meteorological data available at this location provided more confidence in the modeling results. To ensure that higher concentrations exceeding the NAAQS do not occur at other downtown locations the State has performed supplemental CO monitoring studies at all three intersections and elsewhere in the Denver urban core. The results to date have continued to support the use of CAMP as the maximum concentration downtown site; CAMP continues to record higher CO design value concentrations than any other location in the Denver metro monitoring network. The commentor stated that EPA has not applied its modeling standards, guidance, and protocols consistently to the choice of intersections or to the attainment demonstration generally. EPA (both Region VIII and the national Model Clearinghouse) reviewed the State's analysis and found that it was consistent with national modeling policy and other recent Urban Airshed Model/CAL3QHC modeling applications. EPA believes that modeled concentrations at Speer/Auraria and Broadway/ Colfax are unreliable and therefore is not requiring the State to use the preliminary CAL3OHC intersection modeling results to demonstrate attainment at these two intersections. EPA's position is based on the following factors: (1) Saturation CO monitoring studies in the downtown area and continuous wintertime monitoring since 1994 at Speer/Auraria do not support the modeled predictions of higher concentrations at these locations; (2) estimated wind speeds at Speer/Auraria and Broadway/Colfax during both episodes modeled were frequently below the stated threshold of the CAL3OHC model and are not considered valid for use in the model; (3) there is a possibility that "cold start" vehicle emissions may have been overestimated at these intersections, artificially increasing predicted concentrations; and (4) micrometeorological effects of high-rise office buildings significantly increase modeling uncertainties at these intersections, where on-site meteorological data was not available. EPA also notes that the State followed the criteria contained in the Guideline for Modeling Carbon Monoxide from Roadway Intersections (EPA-454/R-92-005) in identifying the six busiest intersections for the SIP analysis. State modeling of these intersections showed compliance with the NAAQS. However, these intersections are all located outside of the downtown area; downtown is where the highest concentrations have historically been measured. EPA subsequently requested the State to model an additional intersection in the downtown urban core in order to assure attainment of the NAAQS. However, the State's compliance with this request goes beyond the usual requirements for a CO SIP attainment demonstration analysis. The commentor suggested that meteorological and other data are available that are more than adequate for modeling intersections other than CAMP. To EPA's knowledge, CAMP is the only intersection with representative on-site meteorology data for the periods that were modeled. Off-site meteorology was available at the Tivoli site for portions of the SIP episodes modeled, but this site is located several hundred meters south of the current intersection of Speer and Auraria. EPA reviewed the Tivoli site and determined that meteorological data collected at this location would not be representative of conditions at the intersection. Winds at the Speer and Auraria intersection would be affected to a far greater degree by building wake effects than the Tivoli site. In addition, there have been extensive changes to the roadway and construction of additional structures in the area since the Tivoli data were obtained in 1988. No data whatsoever were available for the Broadway and Colfax intersection. The commentor referred to critiques of the attainment demonstration developed by State staff and by outside sources. EPA has not been provided with and is not aware of any State or outside critiques of the attainment demonstration. EPA was provided with preliminary modeling results for the Speer and Auraria and Broadway and Colfax intersections by APCD staff members that were based on the Tivoli and CAMP meteorological/air quality data. In addition to using non- representative data, the analysis contained a number of modeling assumptions that were not consistent with the EPA Guideline on Air Quality Models or the CAL3QHC Model Users Manual, including incorrect atmospheric stabilities and wind speeds lower than the acceptable threshold for the CAL3QHC model. The final CAL3QHC modeling submitted by the APCD did not contain intersection modeling for the two intersections where on-site data were not available. EPA concurs with the final modeling analysis submitted by the State. This decision is supported by the supplemental CO monitoring studies that have been performed in the downtown area. These studies support the continued use of CAMP as the maximum concentration downtown site. The commentor also suggested that EPA applied a different set of review criteria to the downtown intersections than to suburban sites, because the downtown intersections showed high CO concentrations that would trigger more stringent control strategies, and suggested that these different criteria led to high concentration intersections downtown being dropped from the SIP analysis. The reason the modeling results for the two intersections in the downtown area were dropped is that the CAL3QHC model could not be applied

[[Page 10697]]

appropriately given the effects of nearby downtown buildings on wind flow and the lack of representative on-site data. Building effects were not an issue at the six suburban intersections modeled in the SIP. The commentor implied that EPA was basing its decision to approve the SIP on "voluntary" compliance with EPA requests, "understandings" between State and EPA staff, and written and unwritten EPA "guidance". The commentor suggested that EPA was honoring a "deal" that violates the letter and intent of the Act. EPA believes that the attainment demonstration meets the requirements of the Act. EPA addresses the commentor's specific concerns regarding the attainment demonstration in other portions of this response. EPA is not basing its decision to approve the SIP on any "deals" or improper "understandings" reached with the State, but on the SIP's compliance with the Act. EPA does not know what the commentor is referring to when it writes about "voluntary" compliance with EPA requests. To the extent EPA has offered guidance to the State, EPA believes such guidance has been consistent with the Act or a reasonable interpretation of the Act. The commentor noted that many large projects have been planned or built since the attainment demonstration was submitted to EPA, and that newer growth projections show higher levels of traffic than those considered in the SIP. Two of the facilities specifically mentioned by the commentor (Coors Field and Elitch's) would not be expected to affect Denver's ability to attain the CO standard, since they are not operational during the winter season when the highest values of CO are measured in Denver. The proposed Pepsi Center, which could impact Denver's ability to attain the NAAQS due to its potential proximity to one of the downtown intersections where elevated values of CO have been monitored, has not been approved by the City and County of Denver, and there is apparently some possibility that this facility may not be located downtown at all. Denver is currently examining the traffic and air quality impacts of a wide range of potential development in the lower downtown area through its Central Platte Valley Multimodal Access and Air Quality Study. The comment regarding newer projections of traffic growth apparently refers to revised estimates of daily vehicle miles travelled produced by DRCOG in the summer and fall of 1996. In early 1996, DRCOG made some improvements to its transportation demand model (used for transportation planning, and to produce estimates of future VMT and speeds for air quality planning purposes) and validated the model with actual 1995 traffic counts recorded in Denver. These adjustments led to revised estimates of approximately 49 million miles per day of traffic in the Denver area (the previous modeled estimate had been approximately 45 million miles per day). Part of this estimated increase is due to actual growth in traffic in the Denver region, and part of it is due to use of improved methodologies for traffic counting in the region. In November 1996, Colorado submitted its 1996 report of 1995 actual annual VMT, as required by the SIP's VMT tracking provisions and the Act. This report showed that actual 1995 VMT were 4.4% greater than the SIP projections and 1.3% greater than the most recent revised projection for 1995. These exceedances are within the allowable limits of EPA's VMT Tracking Program guidance (5.0% and 3.0% for the respective VMT projections). EPA established these tolerances in recognition of the uncertainty inherent in attempting to measure actual VMT in a large urban area. Since the most recent reported actual annual VMT is within these allowable tolerances, the State is not required to implement its contingency measures, and no revision to the SIP is required. If a subsequent VMT tracking report shows that the SIP VMT projections (or updated forecasts) are exceeded by greater than the margins of error allowed by EPA guidance, implementation of the contingency measures will be required, along with a revision to the SIP if necessary. EPA believes that the State has followed the proper procedures (as outlined in EPA's guidance and the SIP's VMT Tracking Program protocol) in generating the annual VMT reports that EPA is relying on for its approval of the SIP. Several factors are involved in

comparing estimates of daily VMT to estimates of annual VMT, including: (1) The geographic area covered by the different estimates; (2) whether average daily traffic or average weekday traffic are used; (3) the differences between the traffic counting network used by DRCOG for its model validation, and the network required for use by the Colorado Department of Transportation in generating the Highway Performance Monitoring System (HPMS) VMT data that the VMT Tracking Program traffic estimates are based on (use of HPMS data is required by EPA and U.S. Department of Transportation guidance); and (4) the assumptions behind the original VMT estimates in the SIP. There are a number of other factors that protect the SIP's attainment demonstration from growth in VMT. First, under the requirements of the EPA/DOT transportation conformity rule, DRCOG's transportation plans and transportation improvement programs must comply with the emissions budget for CO contained in the CO SIP, even if unexpected increases in VMT occur after the SIP is adopted. This budget protects the Denver area against future violations of the CO NAAQS in the face of growing VMT. If the budget cannot be met, DRCOG cannot adopt any new plans and TIPs, and no new regionally significant projects can be approved. Thus, failure to meet the budget has the same or greater effect as the imposition of highway sanctions under section 179 of the Act. Second, it is important to note that virtually all of the growth in the metro area has occurred not in the downtown area, where the violations of the NAAQS have been monitored, but in outlying portions of the metro area. Thus, EPA would expect that VMT in the downtown area would increase at a lower rate than VMT for the metro area as a whole. This is supported by traffic counts at locations near downtown, which show that traffic in the central area increased at a rate of approximately 2-3% per year between 1990 and 1995, even though DRCOG estimates that traffic has increased approximately 4.5% per year regionwide. Finally, the air quality trends information submitted with the State's March 1996 milestone report shows that the Denver area is ahead of schedule to attain the CO NAAQS even with the higher-than- expected estimates of daily VMT. Based on its conclusion that the attainment demonstration was inadequate, this commentor further concluded that the control strategies submitted with the SIP are insufficient to provide for attainment of the NAAQS. EPA's general response to this assertion is that the attainment demonstration is adequate, and that the modeling summarized in Chapter XII of the SIP and submitted to EPA demonstrates that the SIP will provide for attainment with the control measures included in the SIP. The commentor stated that the SIP does not include a requirement that gasoline sold during the winter months include a level of oxygen sufficient to attain the NAAQS. As discussed above, the SIP includes a requirement for a 3.1% minimum oxygen content; the attainment demonstration shows that this level of oxygen is necessary and

[[Page 10698]]

sufficient to provide for attainment of the NAAQS. The commentor stated that there is no indication that the State will apply the requirements for content and analysis of transportation plans, programs and projects contained in the conformity regulations. These requirements for nonattainment areas classified as serious and above are enforceable through the EPA/DOT conformity regulation, and DRCOG must comply with them when they take effect. There is no requirement in the conformity rule or in the Act that these provisions be incorporated into the CO SIP. However, they are mentioned on page I- 4 of the SIP. The commentor stated that the SIP does not satisfy section 110(a)(2) of the Act. As outlined in detail in the Technical Support Document for EPA's proposed action, the SIP does satisfy the SIP content requirements of section 110(a)(2). The commentor stated that the SIP does not contain adequate measures to control stationary source emissions. Stationary point source emissions represent only 1.1% of base case emissions (based on actual emissions) and 5.6% of attainment year emissions (based on allowable emissions). None of the major sources are located in close proximity to the downtown monitors which record high concentrations, and these sources have little or no impact on Denver's ability to attain the NAAQS. However, stationary point sources of CO are regulated by Colorado Regulation No. 1 (Particulates, Smokes, CO and Sulfur Oxides). As noted above, woodburning is already regulated by Regulation No. 4; woodburning also has very little impact on the downtown monitoring sites. The remaining stationary sources of emissions are natural gas combustion and structural fires, which contribute a total of less than 1% to the attainment year inventory and again have very little impact on the high concentration monitoring sites. The commentor stated that the SIP should include a mandatory employer-based trip reduction program, or demonstrate that such a program is not necessary to demonstrate attainment of the NAAQS. As noted in the proposal, Congress revised the Act in 1995 to make submittal of trip reduction programs voluntary. Thus, EPA could not require the State to submit such a program even if the attainment demonstration were to be found inadequate. The commentor noted that the SIP does not contain an adequate milestone, nor does it contain an economic incentive program for implementation should the milestone not be met. Neither the Act nor EPA policy establish requirements for milestones, so the State was free to adopt its 1995 base case emission inventory as the milestone. The base case represents progress toward attainment (emissions in the 1995 base case were substantially lower than 1990 emissions), which is the intent of this requirement of the Act.

Also, the Act does not require submittal of an economic incentive program until after either (1) the milestone has been missed or (2) the Denver area fails to attain by December 31, 2000. Thus, the SIP is not deficient in this regard. Finally, the commentor stated that EPA should expressly incorporate the baseline (pre-existing) control strategies in its approval of this SIP, that EPA should make it clear that its approval of the SIP is based on the understanding that these control strategies will remain in place, and that EPA should withdraw its approval of the SIP should these control strategies be weakened. As noted in the proposal, the baseline strategies relied upon in the attainment demonstration have already been incorporated into the Colorado SIP, making them federally enforceable; the new control strategies will also be incorporated into the SIP with EPA's final action on the SIP. EPA's approval is based on the enforceability of these measures and the SIP's stated intention that these measures continue to be implemented. If, subsequent to EPA approval, control measures are weakened or discontinued, EPA's available responses include making a finding of SIP non-implementation under section 179(a)(4) and/or section 113(a)(2) of the Act, or making a finding of SIP inadequacy and issuing a call for a SIP revision under Section SIP requirements, are adequate to ensure that pre-existing control measures continue to be implemented.

Approval of the SIP

While several parties requested that EPA disapprove the SIP, for reasons discussed above, two commentors supported EPA's approval of the SIP. EPA is proceeding with final approval of the CO SIP for the reasons discussed above and in our July 9, 1996 and December 6, 1996 notices of proposed rulemaking.

III. Implications of Today's Final Action

In today's action, EPA is approving SIP revisions submitted by the Governor on July 11, 1994, July 13, 1994, September 29, 1995, and December 22, 1995. Specifically, EPA is (1) approving the July 11, 1994 attainment demonstration, VMT tracking and forecasting program, TCM, and contingency measures submittals for Denver; (2) approving the July 13, 1994 attainment demonstration and contingency measures submittals for Longmont; (3) approving the control strategies for Denver, including the September 29, 1995 submittal of revisions to Regulations 11 and 13 (I/M and oxygenated fuels); and (4) approving the further revisions to Regulation 13 submitted on December 22, 1995 that shorten the effective period of the oxygenated fuels program. For the reasons discussed in Section II of this document, EPA is not taking action on the SIP provision submitted on July 11, 1994 that calls for a prohibition of the re-registration of abandoned and impounded vehicles. In this document, EPA is also making a finding that the Denver/Boulder carbon monoxide nonattainment area did not attain the NAAQS by the required attainment date of December 31, 1995, and is revising the area's classification for carbon monoxide in 40 CFR Part 81 from Moderate to Serious. This finding is based on air quality data revealing more than one exceedance of the CO NAAOS during calendar year 1995, resulting in a design value higher than the NAAOS for the period 1994-95. By action dated December 20, 1994, the EPA Administrator delegated to the Regional Administrators the authority to determine whether CO nonattainment areas attained the NAAQS, and to reclassify those that did not. EPA has reviewed this request for revision of the federally- approved SIP for conformance with the provisions of the Act. EPA has determined that this action conforms with those requirements. Nothing in this action should be construed as permitting or allowing or establishing a precedent for any future request for revision to any State Implementation Plan. Each request for revision to any State Implementation Plan shall be considered separately in light of specific technical, economic, and environmental factors and in relation to relevant statutory and regulatory requirements.

IV. Executive Order (EO) 12866

Under EO 12866, 58 FR 51735 (October 4, 1993), EPA is required to determine whether regulatory actions are significant and therefore should be subject to OMB review, economic analysis, and the requirements of the

[[Page 10699]]

EO. The EO defines a "significant regulatory action" as one that is likely to result in a rule that may (1) have an annual effect on the economy of \$100 million or more or adversely affect, in a material way, the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal governments or communities; (2) create a serious inconsistency or otherwise interfere with an action taken or planned by another agency; (3) materially alter the budgetary impact of entitlements, grants, user fees, or loan

programs or the rights and obligations of recipients thereof; or (4) raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in the Executive Order. Today's SIP-related actions have been classified as Table 3 actions for signature by the Regional Administrator under the procedures published in the Federal Register on January 19, 1989 (54 FR 2214- 2225), as revised by a July 10, 1995 memorandum from Mary Nichols, Assistant Administrator for Air and Radiation. The Office of Management and Budget has exempted these regulatory actions from EO 12866 review. Likewise, EPA has determined that today's finding of failure to attain would result in none of the effects identified in section 3(f) of the EO. Under Section 186(b)(2) of the Clean Air Act, findings of failure to attain and reclassification of nonattainment areas are based upon air quality considerations and must occur by operation of law in light of certain air quality conditions. They do not, in and of themselves, impose any new requirements on any sectors of the economy. In addition, because the statutory requirements are clearly defined with respect to the differently classified areas, and because those requirements are automatically triggered by classifications that, in turn, are triggered by air quality values, findings of failure to attain and reclassification cannot be said to impose a materially adverse impact on State, local, or tribal governments or communities.

V. Regulatory Flexibility

Under the Regulatory Flexibility Act, 5 U.S.C. section 600 et. seq., EPA must prepare a regulatory flexibility analysis assessing the impact of any proposed or final rule on small entities (5 U.S.C. sections 603 and 604). Alternatively, EPA may certify that the rule will not have a significant impact on a substantial number of small entities. Small entities include small businesses, small not-for-profit enterprises, and government entities with jurisidiction over populations that are less than 50,000. SIP revision approvals under Section 110 and Subchapter I, Part D, of the CAA do not create any new requirements, but simply approve requirements that the State is already imposing. Therefore, because the Federal SIP approval process does not impose any new requirements, EPA certifies that this final rule would not have a significant impact on any small entities affected. Moreover, due to the nature of the Federal-State relationship under the

CAA, preparation of a regulatory flexibility analysis would constitute Federal inquiry into the economic reasonableness of State actions. The CAA forbids EPA to base its actions concerning SIPs on such grounds. Union Electric Co. v. U.S.E.P.A., 427 U.S. 246, 256-266 (S. Ct. 1976); 42 U.S.C. section 7410(a)(2). As discussed in section IV of this document, findings of failure to attain and reclassification of nonattainment areas under Section 186(b)(2) of the CAA do not, in and of themselves, create any new requirements. Therefore, I certify that today's final action does not have a significant impact on small entities.

VI. Unfunded Mandates

Under Section 202 of the Unfunded Mandates Reform Act of 1995 ("Unfunded Mandates Act"), signed into law on March 22, 1995, EPA must prepare a budgetary impact statement to accompany any proposed or final rule that includes a Federal mandate that may result in estimated costs to State, local, or tribal governments in the aggregate, or to the private sector, of \$100 million or more. Under Section 205, EPA must select the most costeffective and least burdensome alternative that achieves the objectives of the rule and is consistent with statutory requirements. Section 203 requires EPA to establish a plan for informing and advising any small governments that may be significantly or uniquely impacted by the rule. EPA has determined that today's final approval actions do not include a Federal mandate that may result in estimated costs of \$100 million or more to either State, local or tribal governments in the aggregate, or to the private sector. These Federal actions approve pre- existing requirements under State or local law, and impose no new requirements. Accordingly, no additional costs to State, local or tribal governments, or to the private sector, result from these actions. Likewise, EPA believes, as discussed in section IV of this document, that the finding of failure to attain and reclassification to Serious are factual determinations based upon air quality data and must occur by operation of law and, hence, do not impose any federal intergovernmental mandate, as defined in section 101 of the Unfunded Mandates Act.

VII. Small Business Regulatory Enforcement Fairness Act (SBREFA)

Under 5 U.S.C. 801(a)(1)(A) as added by the Small Business Regulatory Enforcement Fairness Act of 1996, EPA submitted a report containing this rule and other required information to the U.S. Senate, the U.S. House of Representatives and the Comptroller of the General Accounting Office prior to publication of the rule in today's Federal Register. This rule is not a "major rule" as defined by 5 U.S.C. 804(2).

VIII. Petitions for Judicial Review

Under Section 307(b)(1) of the Act, petitions for judicial review of this action must be filed in the United States Court of Appeals for the appropriate circuit by May 9, 1997. Filing a petition for reconsideration by the Administrator of this final rule does not affect the finality of this rule for the purposes of judicial review nor does it extend the time within which a petition for judicial review may be filed, and shall not postpone the effectiveness of such rule or action. This action may not be challenged later in proceedings to enforce its requirements (see Section 307(b)(2)).

List of Subjects

40 CFR Part 52

Environmental protection, Air pollution control, Carbon monoxide, Incorporation by reference, Intergovernmental relations, and Reporting and recordkeeping requirements.

40 CFR Part 81

Environmental protection, Air pollution control, National parks, Wilderness areas.

Dated: January 31, 1997. Max H. Dodson, Acting Regional Administrator. Chapter I, title 40 of the Code of Federal Regulations is amended as follows:

PART 52--[AMENDED]

1. The authority citation for Part 52 continues to read as follows:

[[Page 10700]]

Authority: 42 U.S.C. 7401-7671q.

Subpart G--Colorado

2. Section 52.320 is amended by adding paragraph (c)(80) to read as follows:

Sec. 52.320 Identification of plan.

 ****(c) ***(80) On July 11, 1994, July 13, 1994, September 29,1995, and December 22, 1995, the Governor of Colorado submitted revisions to the Colorado State Implementation Plan (SIP) to satisfy those CO nonattainmentarea SIP requirements for Denver and Longmont, Colorado due to be submitted byNovember 15, 1992, and further revisions to the SIP to shorten the effectiveperiod of the oxygenated fuels program. EPA is not taking action on the SIPprovision submitted on July 11, 1994 that calls for a prohibition of there-registration of abandoned and impounded vehicles. (i) Incorporation byreference. (A) Regulation No. 11, Motor Vehicle Emissions InspectionProgram, 5 CCR 1001-13, as adopted on September 22, 1994, effective November30, 1994. Regulation No. 13, Oxygenated Fuels Program, 5 CCR 1001-16, asadopted on October 19, 1995, effective December 20, 1995.

•

PART 81--[AMENDED]

1. The authority citation for Part 81 continues to read as follows:

Authority: 42 U.S.C. 7401-7671q.

2. In 81.306, the Carbon Monoxide table is amended by revising the entry for "Denver-Boulder Area" to read as follows:

Sec. 81.306 Colorado.

* * * * *

Colorado--Carbon Monoxide

Designation Classification Designated area

Denver-Boulder

Area: The boundaries for the Denver nonattainment area for carbon monoxide (CO) are described as follows: Start at Colorado Highway 52 where it intersects the eastern boundary of Boulder County; Follow Highway 52 west until it intersects Colorado Highway 119; Follow northern boundary of Boulder city limits west to the 6000-ft. elevation line; Follow the 6000- ft. elevation line south through Boulder and Jefferson Counties to US 6 in Jefferson County; Follow US 6 west to the Jefferson County-Clear Creek County line; Follow the Jefferson County western boundary south for approximately 16.25 miles; Follow a line east for approximately 3.75 miles to South Turkey Creek; Follow South Turkey Creek northeast for approximately 3.5 miles; Follow a line southeast for approximately 2.0 miles to the junction of South Deer Creek Road and South Deer Creek Canyon Road; Follow South Deer Creek Canyon Road northeast for approximately 3.75 miles; Follow a line southeast for approximately five miles to the northernmost boundary of Pike National Forest where it intersects the Jefferson County-Dougls County line; Follow the Pike National Forest boundary southeast through Douglas County to the Douglas County-El Paso County line; Follow the southern boundary on Douglas County east to the Elbert County line; Follow the eastern boundary of Douglas *County north to the Arapahoe County line: Follow the southern boundary of Arapahoe County east to Kiowa Creek:* Follow Kiowa Creek northeast through Arapahoe and Adams Counties to the Adams-Weld County line; Follow the northern boundary of Adams County west to the Boulder County line; Follow the eastern boundary of Boulder County north to Highway 52.

Adams County(part)	Nonattainment	4/9/97	Serious.		
Arapahoe County (part)	Nonattainment	4/9/97	Serious.		
Boulder County (part)	Nonattainment	4/9/97	Serious.		
Denver County (part)	Nonattainment	4/9/97	Serious.		
Douglas County(part)	Nonattainment	4/9/97	Serious.		
Jefferson County (part)	Nonattainment	4/9/97	Serious.		
\1\ This date is November 15, 1990, unless otherwise noted.					

Appendix J – Temporal Distribution of Emissions

** Temporal allocation factors used in the FORTRAN code PRCEMS11**

** These factors are the same as those used in the approved CO SIP except **

** for on-road mobile sources; for on-road, the factors have been revised **

** For more details about PRCEMS11, refer to appendix of Chapter 7 of the **

** CO SIP Technical Support Document **

6 F	
&lactors	
AMP_A_HF'=	0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
	0.0000,1.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
AMP B HF=	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000.1.0000.0.0000.0.0000.0.0000.0.0000.
	0.0000, 0.00
	0.0000, 0.00
AMP_C_HF'=	0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
	0.3734,0.6266,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
AMP X HF=	
	0.0000, 0.00
	0.0000, 0.00
AMP_Y_HF=	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.5957,0.4043,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000.0.0000.0.0000.0.0000.0.0000.0.0000
AMP Z HF=	
1011 _2_111 -	
	0.0000, 1.0000, 0.00
	0.0000, 0.00
	0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
PMP_A_HF=	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.2914,0.3555,0.3531,
	0.0000.0.0000.0.0000.0.0000.0.0000.0.0000
PMP B HF=	
1 m _b_m -	
	0.0000, 0.00
	0.0000, 0.0000, 0.0000, 0.2914, 0.3555, 0.3531,
	0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
PMP_C_HF=	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.2816,0.3597,0.3588,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
DMD Y HE-	
1 111 _21_111 =	
	0.0000, 0.0000, 0.0000, 0.2891, 0.3554, 0.3555,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
PMP_Y_HF=	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.0000,0.0000,0.2891,0.3554,0.3555,
DMD 7 HF-	
1 111 _2_111 -	
	0.0000, 0.00
	0.0000, 0.0000, 0.0000, 0.2914, 0.3555, 0.3531,
	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
OFP_A_HF=	0.0166,0.0113,0.0099,0.0096,0.0183,0.0272,
	0.0751,0.0000,0.0857,0.0619,0.0677,0.0801,
	0.0751,0.0732,0.0780,0.0000,0.0000,0.0000,
	0.0980.0.0625.0.0541.0.0491.0.0274.0.0193.
OFP B HF=	
OFT_D_III =	0.0100, 0.0113, 0.0000, 0.0000, 0.0103, 0.0272, 0.0751, 0.0000, 0.0957, 0.0610, 0.0677, 0.0901
	0.0751,0.0000,0.0857,0.0019,0.0077,0.0801,
	0.0751, 0.0732, 0.0780, 0.0000, 0.0000, 0.0000,
	0.0980,0.0625,0.0541,0.0491,0.0274,0.0193,
OFP_C_HF=	0.0173,0.0105,0.0088,0.0086,0.0159,0.0286,
	0.0000,0.0000,0.0992,0.0682,0.0729,0.0869,
	0.0820,0.0794,0.0863,0.0000,0.0000,0.0000.
	0.1081.0.0674.0.0574.0.0522.0.0299.0.0204
OFD X HF-	
0. 1 _N_111 -	0 0760 0 0000 0 0000 0 0671 0 0752 0 0004
	0.0818, 0.0802, 0.0867, 0.0000, 0.00
	0.1341,0.0737,0.0622,0.0540,0.0311,0.0196,
OFP_Y_HF=	0.0147,0.0082,0.0065,0.0065,0.0115,0.0213,

CDPHE/APCD/Technical Services Program

Technical Support Document
Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

	0.0769,0.0000,0.0000,0.0671,0.0753,0.0884,
	0.0818,0.0802,0.0867,0.0000,0.0000,0.0000,
OFP Z HF=	0.0166,0.0113,0.0099,0.0096,0.0183,0.0272,
	0.0751,0.0000,0.0857,0.0619,0.0677,0.0801,
	0.0751,0.0732,0.0780,0.0000,0.0000,0.0000,
RR HF=	0.0357,0.0357,0.0357,0.0357,0.0357,0.0357,
_	0.0357,0.0536,0.0536,0.0536,0.0536,0.0536,
	0.0536,0.0536,0.0536,0.0357,0.0357,0.0357,
HLI HF=	0.0120,0.0120,0.0120,0.0120,0.0120,0.0120,
—	0.0120,0.0160,0.1000,0.1000,0.1000,0.1000,
	0.1000,0.1000,0.1000,0.1000,0.0160,0.0120,
AC_HF=	0.0110,0.0080,0.0010,0.0030,0.0040,0.0040,
_	0.0130,0.0340,0.0530,0.0810,0.0740,0.0880,
ACS_HF=	0.0110,0.0080,0.0010,0.0030,0.0040,0.0040,
	0.0130,0.0340,0.0530,0.0810,0.0740,0.0880,
	0.0600, 0.0630, 0.0490, 0.0660, 0.0500, 0.0720, 0.0830, 0.0730, 0.0440, 0.0330, 0.0250, 0.0150
AG_HF=	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.1000,0.1000,0.1000,0.1000,0.1000,
CST_HF=	0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
	0.0000,0.1000,0.1000,0.1000,0.1000,0.1000,
IND_HF=	0.0120,0.0120,0.0120,0.0120,0.0120,0.0120,
	0.0120,0.0160,0.1000,0.1000,0.1000,0.1000,
	0.0120,0.0120,0.0120,0.0120,0.0120,0.0120,
LTC_HF=	0.0120,0.0120,0.0120,0.0120,0.0120,0.0120,
	0.0120,0.0160,0.1000,0.1000,0.1000,0.1000,
	0.0120,0.0120,0.0120,0.0120,0.0120,0.0120,
LG_HF=	0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,
	0.07692,0.07692,0.07692,0.07692,0.07692,0.07692,
	0.07692,0.00000,0.00000,0.00000,0.00000,0.00000,
FP_HF=	0.0000,0.0000,0.0000,0.0000,0.0000,0.0050,
	0.0100, 0.0150, 0.0200, 0.0200, 0.0200, 0.0300, 0.0350, 0.0420, 0.0500, 0.0500, 0.0500, 0.0740
	0.0980,0.1200,0.1440,0.1090,0.0720,0.0360,
STV_HF=	0.0450,0.0230,0.0000,0.0000,0.0000,0.0040,
	0.0090, 0.0140, 0.0190, 0.0240, 0.0290, 0.0320, 0.0320, 0.0350, 0.0430, 0.0460, 0.0490, 0.0530, 0.0700.
	0.0850,0.1000,0.0920,0.0840,0.0760,0.0680,
SFR_HF=	0.04167,0.04167,0.04167,0.04167,0.04167,0.04167,
	0.04167,0.04167,0.04167,0.04167,0.04167,0.04167,
	0.04167,0.04167,0.04167,0.04167,0.04167,0.04167,
NG_HF=	0.0362,0.0384,0.0384,0.0408,0.0432,0.0475,
	0.0370,0.0353,0.0344,0.0363,0.0394,0.0423,
	0.0424,0.0427,0.0428,0.0423,0.0406,0.0390,
MIN_HF=	0.04167, 0
	0.04167, 0.04167, 0.04167, 0.04167, 0.04167, 0.04167, 0.04167,
	0.04167,0.04167,0.04167,0.04167,0.04167,0.04167,
MJA_HF=	U.U4167,U.U4167,U.U4167,U.U4167,0.04167,0.04167, 0.04167.0.04167.0.04167.0.04167.0.04167.0.04167
	0.04167, 0.04167, 0.04167, 0.04167, 0.04167, 0.04167, 0.04167,
	0.04167,0.04167,0.04167,0.04167,0.04167,0.04167,&END

Table 36. Temporal allocation factors used to distribute AM-Peak, PM-Peak, and Off-Peak on-road mobile emissions for 2006 and 2013.

Hour	AM-Peak Factor	PM-Peak Factor	Off-Peak Factor
0	0	0	0.0147

CDPHE/APCD/Technical Services Program

1	0	0	0.0082
2	0	0	0.0065
3	0	0	0.0065
4	0	0	0.0115
5	0	0	0.0213
6	0	0	0.0769
7	0.5957	0	0
8	0.4043	0	0
9	0	0	0.0671
10	0	0	0.0753
11	0	0	0.0884
12	0	0	0.0818
13	0	0	0.0802
14	0	0	0.0867
15	0	0.2891	0
16	0	0.3554	0
17	0	0.3555	0
18	0	0	0.1341
19	0	0	0.0737
20	0	0	0.0622
21	0	0	0.0540
22	0	0	0.0311
23	0	0	0.0196

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

Appendix K – Section 110 of the Clean Air Act

Section 110 of the Clean Air Act

Infrastructure Component of the Existing State Implementation Plan

This document explains how Colorado's existing State Implementation Plan (SIP), together with relevant state statutory provisions, comply with the requirements of subparagraphs (B) through (M) of Section 110(a)(2) of the Federal Clean Air Act ("CAA"). Since the SIP already complies with the relevant federal requirements, no SIP revision is necessary to establish the air quality control infrastructure required by Section 110(a)(2). State statutes are cited herein solely for the purpose of demonstrating that the State has the adequate authority under State law to promulgate and administer the SIP. The citation of such state statutory provisions shall not be construed as a submittal to EPA of such statutory provisions for incorporation into the SIP.

Section 110 (a)(2)(B)- Ambient Air Quality Monitoring and Data System

Federal Requirements

Section 110 (a)(2)(B) of the CAA provides that the SIP must: (1) provide for the establishment and operation of appropriate devices, methods, systems, and procedures to monitor, compile, and analyze data on ambient air quality; and (2) upon request, make such data available to the EPA. Also, Federal regulations concerning ambient air quality monitoring programs are found in 40 CFR 58.

Authority and Colorado SIP Provisions

The State of Colorado has an approved monitoring SIP, the authority to conduct monitoring, and the ability to properly handle all related data. The provisions for episode monitoring, data compilation and reporting, public availability of information, and annual network reviews are found in the statewide monitoring SIP which was approved by EPA on July 9, 1980 (45 FR 46073) and August 11, 1980 (45 FR 53147). The State has since revised the monitoring SIP to include all new federal requirements. The revised SIP includes a commitment to operate a PM monitoring network in accordance with those criteria established by EPA regulations (40 CFR Part 58.20 and Appendices A through G). The monitoring SIP also makes the data available to the EPA. The Colorado Air Quality Control Commission (AQCC) adopted monitoring SIP revisions on March 18, 1993.

Section 110 (a)(2)(C)- Program for Enforcement of Control Measures

Federal Requirements

Section 110 (a)(2)(C) of the CAA says that Colorado's SIP must include a program to enforce the measures described in Section 110 (a)(2)(A), and to regulate the modification and construction of any stationary source within the areas covered by the SIP as necessary to assure that the National Ambient Air Quality Standards (NAAQS) are achieved, including a permit program.

Authority and Colorado SIP Provisions

Regulation 3 regulates the construction and modification of stationary sources as necessary to assure that the NAAQS are achieved, and includes a permit program as required in Parts C and D of the CAA

Colorado also has a program for the enforcement of control measures included in the SIP. The Division of Administration in the Colorado Department of Public Health and Environment ("the Division") has the authority to enforce compliance with the emission control regulations adopted by the AQCC, and to enforce the requirements of the SIP. (Section 25-7-115, C.R.S.) The Division's authority includes the authority to issue compliance orders, and to assess civil and noncompliance penalties. (Section 25-7-115, C.R.S.) The Division has the authority to conduct inspections, collect data, and require sources to submit emissions data. (Section 25-7-111, C.R.S.) The Division and the Colorado Department of Revenue jointly enforce the Automobile Inspection and Readjustment program codified in Regulation No. 11 through the denial of registration of vehicles without the requisite inspection and taking enforcement actions, pursuant to Sections 42-4-310, 42-4-311 and 32-4-312, C.R.S. As is described below, the Division has adequate personnel and funding to enforce the control measures included in the SIP.

Section 110 (a)(2)(D)- Interstate Transport

Federal Requirements

Section 110 (a)(2)(D) of the CAA requires the SIP to include provisions prohibiting any source or other type of emissions activity in one state from contributing significantly to non-attainment in another state or from interfering with measures required to prevent significant deterioration of air quality or to protect visibility.

Section 110 (a)(2)(D) of the CAA also requires the SIP to ensure compliance with both Sections 115 and 126 of the CAA. Section 115 provides that air pollutants emitted from sources in Colorado may not endanger public health or welfare of a

foreign country. Section 126 requires the SIP to provide for notice to affected states of major proposed new or modified sources which are subject to Part C (relating to significant deterioration of air quality) or which may significantly contribute to levels in excess of the NAAQS in such other states.

Authority and Colorado SIP Provisions

Section A of part 2 of the AQCC Common Provisions (5CCR 1001-2) is adequate to comply with the requirement to prohibit sources in Colorado from contributing to nonattainment in another state. Furthermore, the control measures included in the SIP to protect the NAAQS in Colorado adequately protect other states from significant air pollution from sources in Colorado. If the State is meeting the NAAQS in its own state, then levels of pollutants will never be reached which might exceed the NAAQS in a neighboring state or endanger public health or welfare in a neighboring country.

The SIP also complies with the notice requirements of Section 126 of the CAA. Regulation 3, Part B, Section IV.C.4 provides for notice to any state that may be affected by emissions from a major source or major modification subject to the Prevention of Significant Deterioration program. Colorado also has a regulation requiring installation of BART on stationary sources if visibility impairment in any class I area is reasonably attributed to such stationary source (Regulation 3, Part B.XI.D).

Section (a)(2)(E)- Adequate Resources, State Boards, and Authority

Federal Requirements

Section 110 (a)(2)(E) of the CAA requires the SIP to include: (1) necessary assurances that Colorado has adequate personnel, funding, and authority to carry out the SIP; (2) requirements respecting State boards; and (3) necessary assurances that, where Colorado has relied on a local or regional government, agency, or instrumentality for the implementation of the SIP, Colorado has the responsibility for ensuring adequate implementation of the SIP provision.

Personnel, Funding, and Authority

There are no state or federal provisions prohibiting the implementation of any provision of the Colorado SIP. Colorado has the funding, personnel, and authority to carry out the SIP. Furthermore, the State of Colorado has the responsibility for implementing the SIP, including the provisions administered by local governments. All of the regulatory provisions included in the SIP were adopted by the AQCC pursuant to authority delegated to it by statute. The AQCC's general authority to adopt the rules and regulations necessary to implement the SIP is set out in Section 25-7-105 (1)(a)(I), C.R.S. The general authority for the Division to administer and enforce the program is set out at 25-7-111, C.R.S. Additional authority to regulate air pollution and implement provisions in the SIP is set out elsewhere in the Colorado Air Pollution Prevention and Control Act (Article7 of Title 25, C.R.S.) The AQCC's authority includes the authority to regulate particulate emissions, regardless of size (Section 25-7-109 (2)(b), C.R.S.). *CDPHE/APCD/Technical Services Program* January 4, 2000 527

In addition, the AQCC and the Division have the authority delegated to them in Sections 42-4-301 to 42-4-316, C.R.S. (concerning motor vehicle emissions) and 42-4-401 to 42-4-414 (concerning emissions from diesel-powered vehicles). These provisions grant the agencies ample authority to carry out the SIP.

The Division is adequately staffed and has an appropriate annual budget covering the six separate programs within the Division (Stationary Sources, Mobile Sources, Technical Services, Planning and Policy, Business Services, and Financial Services). In fiscal year 1997-1998, the Division had a staff of 153 people and a \$12.86 million budget.

State Boards

Section 128 of the CAA indicates Colorado's SIP must contain requirements that any body which approves permits or enforcement orders under the CAA must have a majority of members who represent the public interest and do not derive any significant portion of their income from persons subject to permits or enforcement orders.

The SIP contains adequate provisions implementing the requirements of Section 128. Such provisions are contained in the procedural rules (5 CCR 1001-1) approved by EPA at 40 CFR Section 52.320 (c)(10). The AQCC modified the procedural rules in January 1998. The modifications comply with the requirements of Section 128 and have already been submitted to EPA for approval as a SIP revision.

Relationships with Other Agencies Responsible for Carrying Out State Activities

Where the State relies on local governments to implement a provision of the SIP, the AQCC has promulgated a State regulation requiring the local government to implement such provision. For example, the Colorado Air Quality Control Commission SIP-Specific Regulations (5 CCR 1001-20) establishes requirements for local governments to reduce street sand and to implement local ordinances included in the SIP. Local governments are also subject to the street sanding restrictions set out in Regulation No. 16. In this way the State retains the responsibility for ensuring implementation of the SIP.

State contractual agreements- Local governments implement some aspects of the SIP pursuant to contracts with the Division but the state retains the responsibility for ensuring adequate implementation of the SIP. The agreements with local governments are described here for informational purposes only and not for purposes of incorporation into the SIP. The Division contracts with local governments in two distinct ways:

1. Colorado grants monies to local governments to help pay for their support of SIP elements via public and private partnerships, education and informational campaigns.

2. Local agencies and governments also carry out specific strategies and programs pursuant to contracts with the Division. Pursuant to such contracts, the State

provides grant money to local health departments. In return, the local health departments conduct inspections and maintain air quality monitors.

Section (a)(2)(F)- Stationary Source Monitoring System

Federal Requirements

Section 110 (a)(2)(F) of the CAA provides that the State must require stationary sources of air pollutants to monitor emissions and make periodic reports on such emissions, and requires the State to correlate such reports with emission limitations or standards established under the CAA.

Authority and Colorado SIP Provisions

Regulations 1 and 3 implement the requirements of Section 110(a)(2)(F). Section IV of Regulation 1 requires specified sources to monitor emissions. Regulation 3 and section 25-7-114.1, C.R.S. require all stationary sources to report their emissions on a regular basis through Air Pollution Emission Notices (APENs). In addition, Regulation 3, Part A, sectionVIII provides for emissions monitoring and record-keeping. These SIP provisions (together with Regulation No. 6, Part A, which is included in the State Delegation Package) require monitoring whenever monitoring is prescribed by EPA regulation.

Furthermore, the Division may require owners and operators of stationary air pollution sources to install, maintain, and use instrumentation to monitor and record emission data as a basis for periodic reports to the Division under the Colorado Air Quality Control Commission Common Provisions (5CCR 1001-2).

Section 110 (a)(2)(G)- Emergency Power

Federal Requirements

The requirement to develop and implement emergency plans appears in Sections 110 (a)(2)(G) and 303 of the CAA. Specifically, CAA Section 110 (a)(2)(G) provides that the SIP must provide authority comparable to that in Section 303 and adequate contingency plans to implement such authority.

Authority and Colorado SIP Provisions

Sections 25-7-112 and 25-7-113 provide the State with the authority comparable to that in Section 303 of the CAA. The SIP includes contingency plans to implement the emergency powers in the Denver nonattainment area. The Denver Emergency Episode Plans address ozone, PM_{10} , and carbon monoxide, and are similar to the emergency action plan described in 40 CFR 51.150 and 51.151.

<u>Section 110 (a)(2)(H)- Provisions for SIP Revisions due to NAAQS</u> <u>Changes or Findings of Inadequacies</u>

Federal Requirements

The federal requirements regarding SIP revisions due to NAAQS changes or findings of inadequacies are outlined in Section 110(a)(2)(H) of the CAA. The 110 SIP shall provide for revision of the SIP to: (1) address NAAQS revisions, (2) adopt new control measures, and (3) deal with inadequacies.

<u>Authority</u>

The AQCC has the authority and the duty to adopt and revise the SIP as necessary to comply with the federal requirements. Section 25-7-105(1)(a)(I), (C.R.S.) directs the AQCC to promulgate a comprehensive SIP which will assure attainment and maintenance of the NAAQS, prevent significant deterioration of air quality in the State of Colorado, and meet all requirements of the CAA. The AQCC also has the authority to promulgate the emission control regulations necessary to comply with the relevant federal requirements (Section 25-7-109, C.R.S.).

Section 110 (a)(2)(I)- Part D requirements

Federal Requirements

Section 110(a)(2)(I) of the CAA requires the SIP to meet the applicable requirements of part D of the CAA for each nonattainment area in the State.

Authority and Colorado SIP Provisions

Colorado has an approved SIP element for every nonattainment area in the State.

Section 110 (a)(2)(J)- Consultation

Federal Requirements

Section 110 (a)(2)(J) of the CAA requires the SIP to include a procedure for consultation, as described in Section 121 of the CAA. Section 121 requires the State to provide, in accordance with regulations promulgated by EPA, a satisfactory process of consultation with local governments and Federal land managers.

Authority and Colorado SIP Provisions

The Division consults with local agencies, governments and elected officials during the SIP development process and during the transportation planning process. Engineering and meteorological consultation are provided by the State to local agencies. The State assists local agencies in planning air management programs for their respective areas. The plans are derived in coordination with the local agencies for an effective air management program. The AQCC holds public hearings on all SIP revisions and all procedures are followed accordingly. The general public has an opportunity to provide comments at every AQCC hearing.

The SIP includes a consultation process that the AQCC uses to determine whether transportation plans and projects conform to the SIP (Regulation 10, Part B, "Criteria for Analysis of Conformity"). Regulation 10, Part B, Section IV.F includes a specific consultation procedure for SIP revisions.

Finally, as part of the State of Colorado's Visibility SIP (Appendix I), the Division consults with the Federal Land Managers as necessary and required. This consultation process was adopted by the AQCC on November 19, 1987.

Section 110 (a)(2)(J)- Public Notification

Federal Requirements

Section 110 (a)(2)(J) of the CAA provides that the SIP must meet the applicable requirements for public notification described in Section 127 of the CAA.

Colorado SIP Provisions

Colorado has an adequate public notification process. As described in Section 127, the Division notifies the public of instances or of areas in which any NAAQS is exceeded. Included in this notification are public awareness announcements regarding health hazards and manners in which the public can participate in regulatory and other efforts to improve Colorado's air quality. The Division compiles a report to the public on an annual basis. The annual report is required by 25-7-105(5), C.R.S. and is included in the monitoring SIP.

Not only does the State provide information about readings in excess of the NAAQS after the fact, the Denver PM_{10} SIP also provides for advance warnings to the public that the NAAQS may be exceeded whenever meteorological conditions make it possible or likely for ambient concentrations to exceed the NAAQS

<u>Section 110 (a)(2)(J)- Prevention of Significant Deterioration</u> <u>and Visibility Protection</u>

Federal Requirements

Section 110 (a)(2)(J) of the CAA provides that the SIP must meet the applicable requirements of Part C (relating to the prevention of significant deterioration of air quality and visibility protection).

Colorado SIP Provisions

Regulation 3 implements the Prevention of Significant Deterioration (PSD) program set out in Subpart I of Part C of the CAA.

Colorado has an approved Visibility SIP, which includes a Long Term Strategy (LTS) for making reasonable progress toward remedying existing, and preventing, future visibility impairment. The Visibility SIP was adopted by the AQCC in 1987. The LTS was revised in 1992, August 1996 and April 1997. The permitting provisions necessary to assure reasonable progress toward the national goal of preventing future, and remedying existing, visibility impairment in Class I areas are set out in Regulation 3, Part C, Section .XI.E.

Section 110 (a)(2)(K)- Air Quality Modeling and Data Handling

Federal Requirements

Section 110 (a)(2)(K) of the CAA requires the SIP to provide for air quality modeling to predict the effect emissions of criteria pollutants will have on ambient air quality, and to provide for the submission of such air quality modeling data to the EPA.

Authority and Colorado SIP Provisions

The Division has the authority and resources to model criteria pollutants, including $PM_{2.5}$. The Modeling, Meteorology, and Emission Inventory Unit within the Division performs and reviews air quality impact analyses for a variety of programs, including SIP revisions, transportation conformity determination, stationary source permitting, environmental impact statements, and hazardous waste site studies. The analyses include modeling, meteorological analysis, and emission inventory development for mobile sources and area stationary sources such as woodburning. The unit also performs air quality forecasting for the Denver-area High Pollution Season, open burning, and for special air quality studies.

The air quality modeling performed by the Division includes any air quality modeling required by EPA regulations to support SIP revisions. Where required by EPA, the air quality modeling requirements are included in the SIP. The SIP provisions requiring air quality modeling include:

<u>PSD and Increment Consumption</u>- Colorado's PSD program includes a requirement that the State periodically assess the adequacy of its plan to prevent significant deterioration of air quality. This is presented in Regulation 3, Part B, Section VII.

<u>Permits</u>- Air quality modeling requirements applicable to stationary sources are set out in Regulation 3. Regulation 3, Part A, § VIII describes Colorado's technical modeling and monitoring requirements. Regulatory requirements for Air Quality Related Values as related to modeling are described within Colorado Regulation 3, Part B § X and XI.

Transportation conformity- Metropolitan Planning Organizations in Colorado must perform regional emissions analyses to predict the effect that transportation plans, programs and projects will have on ambient air quality in nonattainment areas in Colorado (Regulation 10, Part B).

Section 110 (a)(2)(L)- Permitting Fees

Federal Requirements

The federal requirement is set out in Section 110(a)(2)(L) of the CAA.

Colorado SIP Provisions

The State of Colorado requires the owner or operator of a major stationary source to pay a fee to cover the reasonable costs of reviewing and acting upon any permit applications. The requirement to pay such fees is described in Regulation 3. Regulation 3, Part A.VI requires each person required to obtain a construction or an operating permit, or file an APEN, to pay a fee to cover the cost of processing the permit. Also, owners or operators must pay an annual fee based on total emissions, which funds are used to administer programs for the control of air pollution from stationary sources.

Section (a)(2)(M)- Consultation/Participation by Affected Local Entities

Federal Requirements

Section 110 (a)(2)(M) of the CAA requires the SIP to provide for consultation and participation by local political subdivisions affected by the Colorado SIP.

Authority and Colorado SIP Provisions

The SIP includes a consultation process that allows local political subdivisions to participate in the development of SIPs and SIP revisions (Regulation 10, Part B, Section IV). In addition, the AQCC holds a public hearing following notice before adopting any regulatory revisions to the SIP. Local political subdivisions have an opportunity to participate in the hearing.

Regulation 3 also provides opportunity for local entities to participate in the permitting process. Pursuant to Regulation 3, affected local governments receive notice and have the opportunity to comment on and participate in construction permit review procedures and operating permit application procedures (see, Regulation 3, Part B, Section III.C.4).

Appendix L – Denver International Airport Emission Inventory
November 15, 1999

9911507

Mike Silverstein, Planner Air Pollution Control Division Colorado Department of Public Health and Environment 4300 Cherry Creek Drive South Denver, CO 80222-1530

RE: Final Draft 1998 Emissions Inventory for Denver International Airport (DIA) and Carbon Monoxide Projections

Dear Mike:

Attached please find the Final Draft 1998 Emissions Inventory for DIA. This replaces the September 1999 Draft, which was sent to Jim DiLeo in the Policy and Planning Section of APCD. The revision incorporates comments received from FAA, and the results of a detailed survey conducted on ground support equipment (GSE) at DIA. Default GSE values from FAA's EDMS model, which were used in the September 1999 Draft Emissions Inventory, have now been replaced with site-specific data.

Also please find DIA's Carbon Monoxide (CO) emissions forecasts. The 1998 Emissions Inventory was used as a baseline in developing these emissions forecasts. DIA is requesting that the forecasts be specifically included in the CO Maintenance Plan, to facilitate general conformity determinations.

Please call me, at 303-342-2636 if you have any comments on the inventory or the forecasts. I am planning to meet with Barbara MacRae tomorrow to discuss some of the technical issues associated with the forecasts and the CO Maintenance Plan.

Sincerely,

Janet S. Kieler, P. E. Project Manager

CC: Barbara MacRae, APCD Patrick Cummins, RAQC Lance Ingalls, DIA Arthur Mizzi, Burns, Figa & Will Jim DiLeo, APCD Arlene Dykstra, DIA David Gaige, URS AD.09.02.01.04

	CO Emission	s (tons/year)		
Inventory Sub-category	1998	2001	2006	2013
Aircraft	2,164.20	2,727.01	3,674.95	5,057.65
Ground Support Equipment	3,537.45	4,542.35	6,109.60	7,701.33
Rental Car Shuttles	58.83	67.49	84.41	107.80
Employee/Public Shuttle Buses	25.59	29.36	36.72	46.89
City Fleet & Plows	233.36	265.92	319.31	380.67
Central Plant Engines	13.33	15.29	19.12	24.42
Central Plant Boilers	0.78	0.89	1.12	1.43
Misc. NG sources	6.98	8.01	10.01	12.79
Diesel-fueled sources	9.06	10.39	13.00	16.60
Fire Fighter Training	N/A	21.11	21.11	21.11
Rental Car Refueling				
Others - including paint booths and fuel tank farm				
Oil & Gas Production				
Oil & Gas Well Construction	5.72	5.72	5.72	5.72
Agricultural Operations				
Construction Activities	45.43	90.86	90.86	90.86
Total	6,100.73	7,784.40	10,385.93	13,467.28
Source Category	1998 DIA CO Emissions (tons/day)	2001 DIA Forecast CO emissions (tons/day)	2006 DIA Forecast CO emissions (tons/day)	2013 DIA Forecast CO emissions (tons/day)
Point Sources	0.08	0.15	0.18	0.21
Wood Burning				
Natural Gas				
Structural Fires				
Agricultural Equipment				
Airport-Aircraft	5.93	7.47	10.07	13.86
Airport Service Equipment	9.69	12.44	16.74	21.10
Construction Equipment 0.12 0.25		0.25	0.25	0.25
Industrial Equipment	0.02	0.02	0.02	0.02
Light Commercial Equipment				
Helicopters				
Railroads				
On-Road Mobile	0.87	0.99	1.21	1.47
Total	16.71	21.33	28.45	36.90

Appendix M – Analysis of the Probability of a Carbon Monoxide Exceedance in Denver During the First Week of February for the Years 2002 through 2013 and Two Possible Levels of Oxygenate in Automotive Fuels Based on Historical Carbon Monoxide Data for 1975 through 1994

Air Pollution Control Division Colorado Department of Public Health and Environment INTER-OFFICE *MEMORANDUM*

TO: Sheila Burns, Kim Livo, Rick Barrett, Barbara MacRae

FROM: Pat Reddy

DATE: November 12, 1999

SUBJECT: Oxyfuels analysis for February 1-7, 2002 through 2013

I have attached a copy of the draft report on the results of the latest oxyfuels analysis. This report is a completely revised version of a similar document from 1996 for an earlier round of oxyfuels analysis. The bottom-line is this: we can meet all of the EPA criteria for changing the program if we go to zero oxygen in 2004 or if we start at 1.5% oxygen in 2002 and 2003 and then go to zero for 2004 through 2013. After 2013, a zero-oxygen content would not bring us below the EPA criteria. I have double-checked calculations, but will check these one more time on Tuesday of next week. This draft should provide all the information Kim needs for the AQCC status meeting next Friday. Let me know if you find any errors or omissions. Thanks.

cc: WP4.2.3.5

Analysis of the Probability of a Carbon Monoxide Exceedance in Denver During the First Week of February for the Years 2002 through 2013 and Two Possible Levels of Oxygenate in Automotive Fuels Based on Historical Carbon Monoxide Data for 1975 through 1994

November 12, 1999

Patrick J. Reddy

Meteorology Modeling and Emissions Inventory Unit Technical Services Program Air Pollution Control Division Colorado Department of Public Health and Environment APCD-TS-B1 4300 Cherry Creek Drive South Denver, Colorado 80246 This report describes an analysis of the probability of one or more carbon monoxide (CO) exceedances in downtown Denver during the first week of February in the years 2002 through 2013. The purpose of the analysis is to determine the risks of an exceedance associated with eliminating or altering the oxyfuels content during this week, starting in 2002. Before approving previous changes to the Denver area oxyfuels program, the Environmental Protection Agency (EPA) required that the estimated probability of an exceedance be less than 5% for each week to be changed. The EPA also required that all of the 20 years of adjusted concentrations for that week be less than 9.0 ppm. These criteria and the data used to verify them are explained in greater detail later in this report.

In an attempt to fulfill both requirements, we have considered the risks associated with two oxyfuels scenarios for this first week of February: (1) no oxygen for 2002 through 2013; and (2) **1.5% oxygen for 2002 and 2003 and no oxygen from 2004 through 2013**. If the current program were to follow the schedule outlined in the Proposed Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area (Regional Air Quality Council and Colorado Department of Public Health and Environment, 1999), the oxygen content for this week would decline in steps from 2.7% in 2002 to 1.7% in 2013. The first two scenarios represent additional measures that could be proposed for adoption by Colorado's Air Quality Control Commission. The study results described in this report show that scenario (2) would meet both of the EPA criteria while scenario (1) would not.

The analysis is based on a mean climatology of 20 years of daily peak 8-hour carbon monoxide (CO) concentrations at the downtown Denver CAMP monitor for the week of interest (February 1 through 7). Concentrations have been adjusted to reflect estimated differences between CO emissions during the measurement years (1975 through 1994) and the analysis years (February of 2002 through 2013) for two different fuel additive scenarios. In other words, for each analysis year, we have scaled or normalized historic concentrations to correspond to projected emissions for the year of interest. For example, a concentration that occurred during a measurement year when emissions were twice what they are expected to be in February of 2002 would have been divided by 2. For each combination of year and oxygen content the scaling process yielded 138 adjusted daily maximum concentrations which were used to calculate risks. The estimated probabilities of one or more CO exceedances at CAMP during the first week of February are presented in Table 1. The risks rise and fall with estimated area-wide emissions for each target year (2002 through 2013). Since these emissions totals drop to a minimum in 2006 and climb slowly afterwards, the risks for each year between 2004 and 2013 are each less than 0.4% and are not listed in Table 1. We will summarize the derivation of these estimates in the text that follows.

Daily peak eight-hour average CO values were obtained for the week of interest for February of 1975 through 1994 for the CAMP monitoring site. These values were adjusted to levels that would have been expected if the metro-area CO emissions had been equivalent to projected winter CO inventories for the target years (2002 to 2013) for each of the two oxygenated fuels scenarios under consideration.

Oxygen Content and Year	Estimated Probability of One or More CO Exceedances during the First Week of February
No Oxygen	
2002	0.9%
2003	0.8%
2004	0.3%
2013	0.4%
1.5% Oxygen	
2002	0.3%
2003	0.1%

Table 1. Estimated probabilities for one or more exceedances by year and oxygen content.

The Mobile Sources Program of the Air Pollution Control Division used the MOBILE5a model to provide metro mean CO emission factors for mobile sources for 1975 through the winter of 1993-1994. These reflected the actual percentage of oxygen in use during each year. The Meteorology Modeling and Emissions Inventory group of the Division's Technical Services Program also generated factors for the winters of 1995 through 2013. The 1995 through 1999 output is based on the current and historical suite of control measures. MOBILE5a was also used to generate output for 2000 through 2013 for the *no-oxygen* and *1.5%-to-no-oxygen* cases. In all other respects, the MOBILE5a runs for 2000 through 2013 were consistent with the suite of control measures incorporated into the Proposed Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area (Regional Air Quality Council and Colorado Department of Public Health and Environment, 1999) submitted to the Air Quality Control Commission. Factors were computed for January conditions and are assumed to be representative for February. A plot of winter CO emissions factors for a zero-oxygen scenario and the historic, current, and maintenance plan oxyfuels program can be found in Figure 1.

The Mobile Sources Program also provided estimated, metro-area, daily vehicle miles traveled (VMT) for 1975 through 1989. These VMT values are for the Denver Transportation Management Area and were obtained from the Denver Regional Council of Governments (DRCOG) Transportation Planning Division. Preliminary, unofficial estimates of VMT for 1990 through 2020 were provided by DRCOG in October of this year (May, 1999). Figure 2 shows the estimated daily VMT for each year.

Figure 1. Automotive CO emissions in grams per mile estimated for a typical January day, using MOBILE5a for historic, current and maintenance schedules and also for a no-oxygen scenario.

Figure 2. Estimated and projected daily vehicle miles traveled by year for the Denver Transportation Management Area.

The estimated proportion of the total CO inventory accounted for by mobile sources was obtained for 1988, 1989, 1996, and 2001 from a 1994 version of the CO State Implementation Plan (SIP). The fractions for both Episodes A and B were used for 1988/1989 and 1996. The year 2001 value was taken from the projected Episode A inventory of this SIP. The fraction for 1978 was obtained from the 1982 CO SIP (Denver Regional Council of Governments, 1982). A second degree polynomial was fit through the six resulting proportions to provide estimates for each year from 1975 through 1999. Proportions for 2000 through 2020 are based on the modeling conducted for the Proposed Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area (Regional Air Quality Council and Colorado Department of Public Health and Environment, 1999). Figure 3 shows the fractions from 1975 through 2020. The inflection in the curve at the year 2000 is due to a transition to a maintenance control strategy. Once the proposed maintenance plan becomes effective, the suite of control strategies would no longer be structured to reduce emissions. Instead it would be designed to maintain air quality at 1999 or 2000 levels. This is why there is an abrupt change in the curve at 2000.

The emission factors, VMT values, and proportions were used to approximate the total CO emissions inventory for each year of interest. The emissions factors were multiplied by the VMT, and then this product was divided by the fraction of total emissions due to mobile sources to obtain an estimate of the total CO inventory. The last column of Table 2 lists the estimated Denver metro area CO emissions inventories for 1975 through 2013 assuming historic, current, and maintenance plan fuel oxygen contents. The VMT numbers, emission factors, and mobile sources fractions for these 39 years are also presented in Table 2. Figure 4 shows the emission inventories from Table 2 and inventories for a no-oxygen scenario from 2002 through 2013.

For each fuel additive scenario, historical, daily peak eight-hour average CO concentrations were multiplied by the appropriate ratios to obtain concentrations *roughly* equivalent to concentrations that would have occurred under the same meteorological conditions if emissions had been equivalent to the target-year inventory for a particular oxygen content. Table 3 lists the inventory ratios applied to actual CO concentrations for 1975 through 1994. These ratios represent the result of dividing the 2002 inventory by the historic inventories for each year from 1975 through 1994. The resulting ratios were later used to correct the peak CO data for each first week of February of the study period. Similar ratios were developed for the other target years between 2002 and 2013.

Table 4 lists the actual peak concentrations for February 1 through 7 for 1975 through 1994. There are 21 exceedances of the standard (9.5 ppm or above) in this data set. There are also 2 concentrations below 1.5 ppm. Maximum 8-hour CAMP concentrations this low are usually inaccurate. Many of the 8-hour concentrations below 1.5 ppm are partially based on concentrations of zero recorded during hours when valid instrument readings were not available. Eight-hour concentrations of 1.5 ppm or lower are not considered to reflect actual conditions and were deleted from the analyses. In some instances removal of these was necessary to normalize the distributions for statistical calculations described below. Table 5 list the concentrations from Table 4 after they had been adjusted for the projected no-oxygen case for 2002. After these adjustments had been applied, there was only one CO exceedance and only one value above the EPA's 9.0 ppm criteria for changing the program.

Figure 3. Estimated fraction of Denver carbon monoxide emissions inventory due to mobile sources.

Figure 4. Carbon monoxide inventories for the Denver Transportation Management Area for the historic, current, and CO maintenance plan oxyfuels schedules and also for a future no-oxygen scenario.

January of YearEstimated Daily Vehicle Miles TraveledVehicle CO Emission Factors in Grams/Mile for Historic, Current and CO Maintenance Oxygen Content Through 2013Fraction of Total CO Emissions Inventory Due to Mobile SourcesHistoric, Curren Maintenance O Emissions Invent Metric Tons/ I197523,400,000110.350.942,747197625,100,000107.170.942,862197726,800,000103.440.942.949	t and CO ory in <u>Day</u>
Traveled and CO Maintenance Oxygen Content Through 2013 Inventory Due to Mobile Sources Emissions Invent Metric Tons/ I 1975 23,400,000 110.35 0.94 2,747 1976 25,100,000 107.17 0.94 2,862 1977 26,800,000 103.44 0.94 2.949	ory in <u>Day</u>
1975 23,400,000 110.35 0.94 2,747 1976 25,100,000 107.17 0.94 2,862 1977 26,800,000 103.44 0.94 2,949	
1976 25,100,000 107.17 0.94 2,862 1977 26,800,000 103.44 0.94 2.949	
1977 26.800.000 103.44 0.94 2.949	
1978 28,000,000 98.61 0.93 2,969	
1979 29,300,000 95.85 0.93 3,020	
1980 28,700,000 92.03 0.93 2,840	
1981 31,400,000 87.51 0.92 2,987	
1982 32,000,000 82.55 0.92 2,871	
1983 33,100,000 74.13 0.91 2,696	
1984 34,600,000 69.14 0.91 2,629	
1985 33,700,000 63.87 0.90 2,392	
1986 35,400,000 59.17 0.89 2,354	
1987 36,200,000 54.18 0.89 2,204	
1988 36,200,000 42.65 0.88 1,754	
<u>1989</u> 37,000,000 37.06 0.87 1,576	
1990 39,100,000 34.10 0.86 1,550	
<u>1991</u> 41,100,000 29.83 0.85 1,442	
1992 43,100,000 26.89 0.84 1,380	
<u>1993</u> 45,200,000 24.78 0.83 1,349	
<u>1994</u> 47,200,000 22.86 0.82 1,316	
<u>1995</u> 49,200,000 <u>19.66</u> 0.80 <u>1,209</u>	
<u>1996</u> 51,200,000 <u>16.78</u> 0.79 <u>1,088</u>	
<u>1997</u> <u>52,700,000</u> <u>14.27</u> <u>0.78</u> <u>964</u>	
1998 54,200,000 13.61 0.76 971	
1999 55,800,000 12.81 0.75 953	
2000 57,300,000 11.94 0.75 912	
2001 58,800,000 11.37 0.76 880	
2002 60,100,000 10.77 0.76 852	
2003 61,300,000 10.49 0.76 846	
2004 62,600,000 10.03 0.76 826	
2005 63,800,000 10.06 0.77 834	
2006 65,100,000 9.73 0.77 823	
2007 66.300.000 9.58 0.77 825	
2008 67.400.000 9.49 0.77 831	
2009 68.600.000 9.41 0.77 838	
2010 69 800 000 9 37 0 77 840	
2010 0,000,000 0,00	
2011 71,000,000 7.51 0.77 858 2012 72,100,000 0.26 0.77 947	
2012 72,100,000 7.20 0.77 807 2013 73,300,000 0.06 0.77 842	

Table 2. Inputs to CO emissions inventory calculations and resulting inventories by
year assuming historic, current, and maintenance plan fuel oxygen contents.

Year	No Oxygen in Fuels in 2002	1.5% Oxygen in Fuels in 2002
February 1975	0.403	0.354
February 1976	0.387	0.340
February 1977	0.375	0.330
February 1978	0.373	0.328
February 1979	0.366	0.322
February 1980	0.390	0.343
February 1981	0.370	0.326
February 1982	0.385	0.339
February 1983	0.410	0.361
February 1984	0.421	0.370
February 1985	0.463	0.407
February 1986	0.470	0.413
February 1987	0.502	0.441
February 1988	0.631	0.554
February 1989	0.702	0.617
February 1990	0.714	0.627
February 1991	0.767	0.674
February 1992	0.802	0.705
February 1993	0.820	0.721
February 1994	0.841	0.739

Table 3. Ratios used to adjust or prorate historic CO concentrations to a 2002 inventory.

Year	Feb 1	Feb 2	Feb 3	Feb 4	Feb 5	Feb 6	Feb 7
1975	<u>10.6</u>	<u>11.5</u>	<u>11.8</u>	<u>10.2</u>	6.1	<u>12.9</u>	<u>13.1</u>
1976	<u>9.8</u>	7.3	6.0	4.2	7.2	8.9	7.1
1977	9.3	5.7	7.7	7.2	6.4	8.7	5.7
1978	7.9	<u>10.9</u>	9.0	5.7	7.6	9.3	7.2
1979	<u>17.8</u>	<u>11.3</u>	8.4	6.2	<u>11.7</u>	<u>12.1</u>	7.8
1980	<u>12.6</u>	6.7	7.2	7.6	4.7	8.3	4.9
1981	2.2	6.0	8.9	7.4	7.0	8.3	3.7
1982	4.2	4.8	4.1	3.4	5.5	5.9	6.1
1983	4.4	6.1	4.4	6.9	5.5	2.6	5.2
1984	<u>9.8</u>	8.0	6.7	4.1	4.3	<u>9.8</u>	<u>9.9</u>
1985	7.6	5.7	6.2	6.3	<u>10.4</u>	8.0	<u>11.4</u>
1986	4.7	4.4	7.1	6.4	4.9	4.8	4.6
1987	3.4	5.5	7.8	5.9	6.7	<u>11.8</u>	<u>10.5</u>
1988	3.3	5.1	4.3	3.7	3.3	3.7	3.8
1989	5.2	2.1	1.9	0.8	1.4	2.3	3.7
1990	4.5	3.5	3.0	3.8	3.4	4.7	8.6
1991	<u>12.8</u>	5.6	5.3	3.6	5.6	4.8	5.4
1992	5.1	2.6	1.9	2.1	3.6	3.0	2.5
1993	3.4	2.1	2.4	2.9	4.3	3.7	4.2
1994	3.7	4.2	6.6	6.5	2.9	3.0	3.7

Table 4.Actual CAMP carbon monoxide concentrations in ppm for the first week of
February from 1975 through 1994, Values 9.5 ppm or above are highlighted.

values above 3.5 ppm are inginighted.							
YEAR	Feb 1	Feb 2	Feb 3	Feb 4	Feb 5	Feb 6	Feb 7
1975	4.27	4.63	4.75	4.11	2.46	5.20	5.28
1976	3.79	2.82	2.32	1.62	2.78	3.44	2.74
1977	3.49	2.14	2.89	2.70	2.40	3.26	2.14
1978	2.94	4.06	3.35	2.12	2.83	3.47	2.68
1979	6.52	4.14	3.08	2.27	4.29	4.43	2.86
1980	4.91	2.61	2.80	2.96	1.83	3.23	1.91
1981	0.81	2.22	3.30	2.74	2.59	3.07	1.37
1982	1.62	1.85	1.58	1.31	2.12	2.27	2.35
1983	1.81	2.50	1.81	2.83	2.26	1.07	2.13
1984	4.12	3.37	2.82	1.73	1.81	4.12	4.17
1985	3.52	2.64	2.87	2.91	4.81	3.70	5.27
1986	2.21	2.07	3.34	3.01	2.30	2.26	2.16
1987	1.71	2.76	3.92	2.96	3.36	5.92	5.27
1988	2.08	3.22	2.71	2.33	2.08	2.33	2.40
1989	3.65	1.47	1.33			1.61	2.60
1990	3.21	2.50	2.14	2.71	2.43	3.35	6.14
1991	<u>9.82</u>	4.30	4.07	2.76	4.30	3.68	4.14
1992	4.09	2.08	1.52	1.68	2.89	2.41	2.00
1993	2.79	1.72	1.97	2.38	3.53	3.03	3.44
1994	3.11	3.53	5.55	5.47	2.44	2.52	3.11

Table 5.Adjusted CAMP carbon monoxide concentrations in ppm for the first week
of February from 1975 through 1994, assuming a winter 2001/2002
No-Oxygenate carbon monoxide emissions inventory for each year.
Values above 9.5 ppm are highlighted.

Probabilities of an exceedance can be determined fairly easily for a large data set if the data are normally distributed. The actual and adjusted values for the first week in February for the entire 20 year period are not normally distributed (data in Tables 4 and 5 and the data sets for the other target years). Plots of the distributions for the adjusted values for a no-oxygen scenario and 2002 inventory can be found in Figure 5. These plots show what look like a borderline lognormal distribution. Seven tests for normality were applied to each of the adjusted data sets. The tests used were the Shapiro-Wilk W, Anderson-Darling, Martinez-Iglewicz, Kolmogorov-Smirnov, D'Agostino Skewness, D'Agostino Kurtosis, and D'Agostino Omnibus. Test results for each adjusted data set were identical. Each passed six and failed one of the normality tests. Test results do not rigorously support the assumption of normality.

Each of the adjusted data sets, however, were transformed to yield normally distributed data. For each fuel additive option, the natural logs of the 138 peak concentrations have been tested for normality. Plots of the histogram and normal probability plot for the 2002 no-oxygen case are presented in Figure 6. The distributions of the transformed values appear normal, and the normal probability plot falls largely within confidence intervals for this condition. In addition, each data set passed all seven formal tests for normality. Finally, we know that most air quality data can be expected to have a lognormal distribution, so the logs of the data can be expected to be normally distributed.

With this information on hand, the assumption of normality for the transformed data sets is fairly reasonable. Statistics for these transformed data sets were fed into a statistical spreadsheet normal probability calculator to derive the probabilities of an exceedance for any single day in the first week of February. These values were used in equation (1) below to obtain the probabilities of one or more exceedances for the entire week:

 $PROBABILITY_{7DAYS} ' 1 \& (1 \& PROBABILITY_{1DAY})^7$ (1)

where *PROBABILITY*_{7DAYS} is the probability of one or more exceedances during the first week of the month and *PROBABILITY*_{1DAY} is the probability of an exceedance on any single day. The resulting 7-day probabilities are listed in Table 1 at the beginning of this report. All of these show a very low risk, less than 1%, for an exceedance. In each case the risk is well below the EPA threshold of 5%. The EPA criteria for changing the program, however, also requires that there are no values of 9.0 ppm or higher in the adjusted data sets.

Table 5, above, shows a 9.82 ppm in the data corrected to 2002 with no oxygenates in the fuels. This is the only value at or above 9.0 ppm in this data set. The 9.82 ppm drops to 9.65 ppm for 2003 with no oxygen and 8.77 ppm for 2004 with no oxygen. As it turns out, any future inventory would need to be below 1,000 metric tons per day before this number drops below 9.0 ppm. *All of the inventories from 2002 through 2013 would be below 1,000 metric tons per day if the proposed program modification used a 1.5% oxygen mix for the first week in February in 2002 and 2003 and no oxygen for the same week in 2004 through 2013.* The high values for 2002 and 2003 would drop to 8.63 ppm and 8.00 ppm, respectively with 1.5% oxygen.

Figure 5. Histogram and normal probability plot for the 138 peak CO concentrations adjusted for no oxygen in 2002. The adjusted concentrations in ppm are plotted along the x-axis of the histogram at the top of the figure and the y-axis of the normal probability plot at the bottom of the figure.

Figure 6. Histogram and normal probability plot for the natural logs of the 138 peak CO concentrations adjusted for no oxygen in 2002. The natural logs of the adjusted concentrations are plotted along the x-axis of the histogram at the top of the figure and the y-axis of the normal probability plot at the bottom of the figure.

References

- Denver Regional Council of Governments, 1982. "1982 Revision Denver Regional Element of the State Air Quality Implementation Plan".
- May, Jeff, 1999. Personal communication of preliminary, unofficial estimates of Denver Transportation Management Area VMT - on October 21, 1999.
- Regional Air Quality Council and Colorado Department of Public Health and Environment, 1999. "Proposed Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area", submitted to the Colorado Air Quality Control Commission on September 27, 1999.

Appendix N – Transportation Modeling Documentation

Technical Support Document Carbon Monoxide Redesignation Request and Maintenance Plan for the Denver Metropolitan Area

DRCOG Denver Regional Council of Governm	2480 W. 26 Denver, Ca (303) 455- e-mail: dr Accessible	th Avenue • Suite 200 blorado 80211-5580 1000 • FAX (303) 480- cog@drcog.org • we on RTD Route 28	08 6790 ebsite: www.drcog.org
A partnership	of local governments serving the region	since 1955	
Memorandum			
Jim DiLeo, Air Po	Ilution Control Division	ARM	
From: Jeffrey H. May, T	ransportation Planning and F	rogramming Coo	ordinator
Modeling Differen 2020 Regional Tr	ces Between Carbon Monox ansportation Plan Amendme	ide Maintenance nt Conformity Net	Plan and twork
Date: October 13, 1999			
At your request, this memo defi transit data sets which were us Maintenance Plan; and (2) the conformity finding. The CO Ma for the 1998 conformity finding (TIP). The changes in network proposed amendments to the F widening. The complete list of changes have been made to th to the principal arterial network table). Changes to the transit r stations on the Central Platte V In addition to the above networ freeway system were modeled methodology change which affic commercial trips where assump system was changed to reflect freeway system. Lastly, new p zones was developed based on	ines the differences between ed in (1) the development of Regional Transportation Plan intenance Plan used the net for the 1999-2004 Transport between the referenced futur TP including the I-25 South these amendments is attach e highway network which ref by local governments over the twork were made which ref alley line and the Southeast k changes, the auxiliary lane to improve estimates of free ected the model runs concern ptions concerning truck loadi a more reasonable pattern of opulation and employment a more current knowledge of	the year 2020 his the Carbon Mono- n (RTP) Amendm work and model r <i>ation Improvemen</i> ire year networks east Corridor high ed. In addition, a lect additional Ian he last year (see flected additional Corridor. s along segments way volumes. A ned representatio ngs and their imp f heavy truck usa llocations to traffic development pat	ghway and oxide (CO) ents run defined <i>nt Program</i> are the tway number of thes added attached LRT s of the on of act on the ge of the c analysis terns.
cg/8.08/6.13/9.02.24 Attachments c: Patrick Cummins, Regic	nal Air Quality Council		
Polity Page, Chairman Jan Schenck, Vice Chairman Sharan Richardson, Secretary-Treasurer Margaret W. Carpenter, Immediate Past Chairman Guillermo "Bill" V. Vidal, Executive Director	Executive Committee Jan Schenck, Chairman Sharon Richardson, Vice Chairman Lorraine M. Anderson Margaret W. Carpenter Roland E. Cole	Paul D. Danish Michelle Lawrence Polly Page Robert Poirot	Ted Strickland William "Will" R. Toor Wellington E. Webb Melanie A. Worley

Highway Network Changes

Figures 1 and 2 illustrate the recommended highway network amendments for the RTP and Metro Vision respectively. The requested amendments and recommendations are as follow:

Broncos Parkway / Easter Avenue Extension (Arapahoe County): **Proposal** – Add a four-lane roadway to the RTP network from Havana Street to Parker Road roughly one mile to the south of Arapahoe Road. **Cost** – Total cost to construct the missing pieces and a bridge over Cherry Creek would be \$9.6 million (\$6.0 of regional funds requested). **Recommendation** – Do not add to the RTP network. Instead, include it in the Metro Vision preferred network. Funding constraints do not permit the addition of new regionally funded roadways to the RTP network. The Federal Aviation Administration (FAA) has also not yet approved the portion of this roadway that would pass through the Runway Protection Zone of Centennial Airport.

<u>Boulder Intermodal Passenger Facilities</u> (City of Boulder): **Proposal** – Identify two new facilities in the RTP. One at Crossroads Mall (specific site in South Boulder to be determined by RTD) and one on the CU Campus along Broadway. **Cost** – Total cost for the two facilities is estimated at \$4 million (\$3.2 of regional funds requested) **Recommendation** – Show these facilities in the RTP as transit centers, but do not designate specific funding. Note that the text of the RTP will be revised to describe facilities as transit centers and transfer stations per terminologies used by RTD. All types of transit passenger facilities would be eligible for funding through the TIP, but may not necessarily have associated costs identified in the RTP.

<u>Broomfield Interchange at US-36, SH-128, and US-287</u> (Broomfield): **Proposal** – Show increased cost for this interchange reconstruction project. Note that the project is already included in the RTP. **Cost** - \$71 million (\$57 million of regional funds). Current RTP shows a total cost of \$67 million without a specific regional funding requirement. **Recommendation** – Keep this project in the RTP and Metro Vision networks reflecting the updated cost. The cost increase is in line with other RTP projects whose 1996 dollar cost estimates were increased to reflect 1998 dollar estimates.

Southeast Corridor Widening of I-25 and I-225 (CDOT): **Proposal** – Add two through travel lanes to I-25 between Broadway and I-225 and from C-470 to Lincoln Avenues. Add 4 through travel lanes to I-25 between I-25 and C-470. Add 2 through travel lanes to I-25 between I-25 and Parker Road. Additional auxiliary and ramp lanes will be added at various locations along the corridor. Include \$3 million of travel demand management commitments during the construction of the project. **Cost** – Total of \$593.6 million, which is an increase of \$495 million over that contained in the existing RTP. **Recommendation** – Add this project to the RTP and Metro Vision highway networks. The project will provide needed improvements in the highest priority congestion corridor in the Denver Region. Passage of the TRANS ballot measure in November will expedite the funding and completion of this project and help to avoid longer-term inflationary cost increases.

2

Table 1 Locally Funded RTP Network Changes

lunia di sti su	Design Desidence	Improvement
Jurisaiction	Project Hoadway	Change
Arapanoe Co.	Jordan Road	Widen from 2 to 4 lanes
	From: Arapahoe Hd.	-
	To: Douglas Co. Line	
Arapahoe Co.	Arapahoe Road	Should be 6 lanes to
	From: Parker Rd.	reflect current number
	To: Richfield St.	of lanes
Arvada	64th Avenue	Widen from 2 to 4 lanes
	From: SH-93	1 B
	To: Indiana St.	
Aurora	Tower Rd.	Widen from 2/4 to 6 lanes
	From: Colfax Ave.	
	To: 1-70	
Aurora	Tower Rd.	Widen from 2 to 6 lanes
	From: 1-70	
	To: 38th Ave	
Broomfield	Sheridan Blvd	new 4 lane road
Dioonnicia	From: 136th Ave	now + lane road
č.	To: 144th Ave	
Broomfield	CH 100	Widen from 2 to 4 lance
DIOOIIIIIeid	Sri-120	widen from 2 to 4 lanes
	From: Indiana Street	成
	(west city limits)	
	10: 96th St.	
Broomtield	SH-128	widen from 2 to 4 lanes
	From: 96th St.	74
	To: SH-121	
Broomfield	144th Ave.	Widen from 2 to 4 lanes
	From: 124th St.	
	To: Zuni St.	-
Denver	Pena Boulevard	Widen from 4 to 6 lanes
	From: I-70	
	To: E-470	
Denver	Pena Boulevard	Third ramp movement
	At Tower Road	added to this partial
		interchange
Thornton	104th Ave.	Widen from 4 to 6 lanes
	From: Fox Run Pkwy.	
	To: Colorado Blvd.	
Parker	Hilltop Road	Widen from 2 to 4 lanes
	From: SH-83	
	To: Parker town line	
Erie /	Isabelle Road	Widen from 2 to 4 lanes
Boulder Co.	From: US-287	
	To: E. County Line Bd	
Parker /	Jordan Boad	Should be 4 lanes to
Douglas Co	From: Douglas Co. I.n.	reflect current number
Dougias Co.	To: 0 1 mi n/of E 470	of lange
Parker /	Lordan Boad	Chould be A lance to
Daugles Co		Should be 4 lanes to
Douglas Co.	Tay Maington at	reflect current number
	10: Mainstreet	llotianes

DRCOC	al Council of Go	vernments	2480 W. 26th Avenue Denver, Colorado 802 (303) 455-1000 • FAX e-mail: drcog@iex.ne	• Suite 2008 211-5580 (303) 480-6790 et • website: www	.drcog.org
	A partner	rship of local governments serving	the region since 1955		
Memor	andum				
To:	Regional Revi	ew Team Members			
From:	Jeffrey H. May	, Transportation Plannir	ng and Programmin	g Coordinator	012
	Travel Model I	Documentation			1-
	February 12, 1	999			
In prepara Plan, the F Program, s	tion for finding con Fiscally Constraine several refinemen	nformity of the <i>Metro Vis</i> ed Element and the 199 ts to the regional travel i	<i>tion 2020 Regional 9 -2004 Transporta</i> model were institute	Transportation tion Improveme ed.	ənt
A supplem describes Document <i>Metro Visi</i> dated Octo at 303-480	these changes an ation Update for t on 2020 Regional ober 1998. If you 0-6789, or Christo	entation of the regional t nd improvements. It is ti he <i>1999-2004 Transport</i> <i>I Transportation Plan, the</i> have any technical ques pher Primus at 303-480-	ravel model is prov tled "DRCOG Regio tation Improvement e Fiscally Constrain stions, please conta 6768.	rided that onal Travel Moo <i>t Program</i> and <i>ned Element</i> [*] and act Liyang Feng	del nd 9
Further mo associated Transporta	odeling supplement with the 1999 plate ation Improvement	nts are expected for the an amendment process a t Program in the year 20	upcoming conformi and with the 2001-2 00.	ity findings 2006	
cg/1.04.03 Enclosure					
Board Officers		Executive Committee			
Margaret W. Carpenter Polly Page, Vice Chairm Jan Schenck, Secretary Roland E. Cole, Immedia Robert D. Farley, Executi	, Chairman Ian -Treasurer ate Past Chairman ve Director	Polly Page, Chairman Jan Schenck, Vice Chairman Margaret W. Carpenter Roland E. Cole	M. Michael Cooke Paul D. Danish Candy C. Figa Martin J. Flaum	Michelle Lawrence Robert Poirot Sharon Richardso Wellington E. Web	ce on ob

DRCOG Regional Travel Model

Documentation Update for the

1999-2004 Transportation Improvement Program and

MetroVision 2020 Regional Transportation Plan,

the Fiscally Constrained Element

October 1998

Denver Regional Council of Governments 2480 West 26th Avenue, Suite 200B Denver, CO 80211

Preparation of this document has been financed in part through grants from the U.S. Department of Transportation, Federal Transit Administration and Federal Highway Administration

Introduction1
Software1
Demographics1
Networks4
Trip Generation4
K-Factor Adjustment6
Transit Improvements6
Multi-User Equilibrium Assignment9
Optimization of Assignment Iterations10
Speed Balancing for 10-Period Assignment13
1995 Traffic Assignment Validation16
Updated File Name Structure19
Sketch Planning Models20

TABLE OF CONTENTS

LIST OF APPENDICES

Appendix A	Multi-User Assignment Setup Files21
Appendix B	Output Speed Comparison24

LIST OF TABLES

Table 1	Regional Demographic Data Summary2
Table 2	Comparison of 1995 and 1996 Demographic Data2
Table 3	Major Trip Production Rates5
Table 4	Pre-balanced Productions and Attractions5
Table 5	Home-Based Work Mode Choice Parameters, Coefficients, and Constants8
Table 6	Home-Based Non-Work and Non-Home-Based Mode Choice Parameters, Coefficients, and Constants9
Table 7	Assignment Iterations Impact on Performance Measures11
Table 8	Assignment Iterations Impact on Link V/C Ratio11
Table 9	V/C Ratio Caps Impact on Performance Measure12
Table 10	V/C Ratio Caps Impact on Link V/C Ratio13
Table 11	Highway Assignment Validation Results18
Table 12	Highway Assignment Validation Results by Volume Class18
Table 13	File Names20

LIST OF FIGURES

Figure 1	Demographic Data Estimates	3
Figure 2	K-Factor Modifications	6
Figure 3	Speed Summary Control File	14
Figure 4	Speed Balancing Control File	15
Figure 5	Speed Balancing Weight File	15

Introduction

The Denver Regional Council of Governments (DRCOG) operates and maintains the regional travel model. In preparation for the conformity of the 1999 – 2004 Transportation Improvement Program (TIP) and the MetroVision 2020 Regional Transportation Plan (RTP), the Fiscally Constrained Element, several refinements to the regional travel model were developed, tested, and implemented. These refinements can be categorized into two types: updated demographic forecasts and transportation networks, and technical improvements. The technical improvements include revision of trip generation rates, trip distribution adjustments, traffic assignment refinement, and transit model improvements. This document serves as an addition to the DRCOG regional travel model documents: "Travel Models for Regional and Subarea Planning in the Denver Region" dated April 1992, "Supplemental Documentation of DRCOG Regional Travel Model used in the 1995 Air Quality Conformity Process" dated September 1995, and "Supplemental Documentation of DRCOG Regional Travel Model" dated July 1996.

Software

The regional travel model is operated on a Pentium personal computer using the MINUTP travel demand model software. The 96B version of MINUTP is utilized.

Demographics

The economic and demographic data sets were developed using recently estimated base data for population and households (1996-7), employment (1996) and household income (1995). This data was estimated using methodology discussed in the appendices of the reports "Small Area Employment Estimates Update for 1996," "1995 Small Area Income Estimates," and "1997 Population and Household Estimates" (available from DRCOG's Public Affairs Department).

The base data (DRCOG label 96E) was combined with locally reviewed land use data (first collected in 1980 and updated in 1995). Both groups of data were loaded into the DRCOG demographic regional forecast model (referred to as the Zonal Attractiveness Index Model or ZAI Model). This model allocates population and employment growth to available land areas through a ranking score of land area attractiveness. The Zonal Attractiveness Score is derived estimating each Transportation Analysis Zone's (TAZ) characteristics on a number of variables (including current use, available vacant land, environmental constraints, congestion levels, infrastructure improvements, local comprehensive plans, redevelopment and economic growth, changes in income levels,

historic population growth, historic employment growth, and accessibility to roads, transit, open space, and congestion levels). The resulting score is used to determine the relative growth level of a given TAZ.

Using the 2001 Transportation Improvement Program transportation network and the 2011 Fiscally Constrained transportation network, the ZAI model was run for two interval time periods (2001-2011 and 2011-2020). The results were controlled for the DRCOG adopted regional forecasted totals for 2011 and 2020.

Five data sets were produced: 1995, 1996, 2001, 2011, and 2020. Table 1 presents the region's 1995 population households and employment for the Denver metro area, with the changes between the previous and new data sets displayed. In Table 2, a comparison of the new 1996 and 1995 demographic data is displayed.

Table 1

Regional Demographic Data Summary

	Population	Household	Employment
Previous Estimate	2,034,249	825,589	1,118,480
New Estimate	2,050,114	831,201	1,118,515
Difference	+15,865	+5,612	+35

Table 2

Comparison of 1995 and 1996 Demographic Data

	Population	Household	Employment
1995	2,050,114	831,201	1,118,515
1996	2,092,778	848,997	1,148,877
Difference	42,664	17,796	30,362
% Difference	+2.08	+2.14	+2.71

As a reference, Figure 1 displays the total population, employment, and household estimates for all five modeling years.

Figure 1 Demographic Data Estimates

Networks

Highway and transit networks were generated for each of the years 1995, 1996, 2001, 2011, and 2020. The 2020 network is directly defined by the 2020 Regional Transportation Plan, the Fiscally Constrained Element. The RTP specifies fiscally constrained highway and transit transportation system improvements to be completed by the year 2020. The RTP was adopted by DRCOG in September 1998.

For 2001, the network has two sources of planned improvements. Federally and state funded projects are identified in the 1999-2004 TIP. Secondly, a survey of local governments was performed to ascertain non-federally funded projects that are expected to be completed by the year 2001. Commitments must be documented. The survey identifies local roadways such as minor arterials and collectors, as well as major facilities such as E-470.

The set of improvements for 2011 is based on a staging plan. The staging is based on the first portion of anticipated revenues, and a set of projects drawn from the 2020 RTP so that fiscal constraint is met. The rapid transit network includes the southwest light rail line, the southeast light rail line, the east corridor commuter rail line, and the west corridor light rail line. The highway staging was approved by the DRCOG Transportation Advisory Committee and Transportation Policy Committee in March 1998.

The list of improvement projects by completion year is displayed in Appendix C of the "Conformity of the 1999-2004 Transportation Improvement Program and MetroVision 2020 Regional Transportation Plan, the Fiscally Constrained Element with the State Implementation Plan for Air Quality."

Trip Generation

The regional model's trip production rates were originally based on a 1985 Origination and Destination (O&D) Study in the Denver region. During the past 10 years, trip rates have risen. The 1992 Boulder County O&D Survey supplied new information on travel patterns. In general, the trip rates from the Boulder survey are higher than the 1985 rates.

DRCOG's most recent traffic count estimates from Colorado Department of Transportation (CDOT), along with Highway Performance Monitoring System (HPMS) estimates, were used to provide estimates of Vehicle Miles of Travel (VMT) in 1995. An initial 1995 model run was performed, using a set of trip rates based on the 1992 Boulder County O&D study, with a minor revision to Home-Based-Work (HBW) trip rates. The result showed that the initial VMT estimates were below the 1995 observed traffic volume. Technically, several modeling factors could influence VMT estimates, such as the average trip length defined in the model, the percentage mix among all trip purposes, and trip rates. The recalibration of these factors relies on the data provided by a travel survey. DRCOG conducted a new travel survey in 1997, however the data is not yet available. As an interim solution for the conformity model improvement, the trip rates for the Home-Based Non-Work (HBNW) and Non-Home-Based (NHB) trips were raised to match the latest traffic ground counts while maintaining a stable relative percentage relationship between the two trip purposes.

After the adjustments, the overall trip rate for three major internal purposes (HBW, HBNW and NHB) reached 9.46 trips per household. Compared to the rate used in the 1997-2002 TIP conformity set of model runs, the new rate reflects a 7.5 percent increase. For all trip purposes, the new overall trip rate is now 10.6 trips per household. As a reference, Table 3 presents a comparison of the trip rates from the 1985 O&D Survey, 1992 Boulder County O&D Survey, and the new adopted rates for the regional travel model.

Table 3

	HBW	HBNW	NHB	Total
1985 Regional O&D	1.97	3.61	2.39	7.97
1992 Boulder O&D	1.81	4.30	2.49	8.60
New Rates	1.99	4.63	2.83	9.46

Major Trip Production Rates

As a standard practice in trip generation models, the total number of trips attracted are balanced to the total trips produced by trip purpose. It is assumed that the production information, usually collected through an O&D survey, is more reliable than attraction estimates. However, it is still necessary to check the initial attraction numbers and to make sure the number of attractions are not too different from productions. A large difference will cause a skewed balance. Therefore, an examination of the trip attractions was performed. Although the production rate increased slightly, the balance between all trips produced and attracted for three major trip purposes was well maintained. Table 4 compares pre-balanced trips produced and attracted in the MB95 model.

Table 4

Pre-balanced Productions and Attractions

	HBW	HBNW	NHB
Production	1,655,488	3,847,524	2,356,862
Attraction	1,652,785	3,825,316	2,356,862
% Difference	-0.16	-0.58	0

K-Factor Adjustment

In recent models, it was found that the highway volume assigned on the US-36 corridor was overestimated while the transit ridership was understated. To correct this deficiency, the K-Factor setting was simplified and re-adjusted. After the adjustment, the highway and transit volumes became more reasonable. Figure 2 lists a section of the MINUTP control file which lists the zones involved for K-Factors. A K-Factor matrix is used for all internal trip purposes except the commercial trip purpose. The K-Factor matrix file in the regional model is an input file, KFC9805.DAT, in binary format.

Figure 2

K-Factor Modifications

```
$-----
$ Create K-factor matrix
$
$
    K -FACTOR MATRIX - REGKFACT.DAT
$
  FOR BOULDER-DENVER METRO AREA K-FACTORS USING RSA UNITS
$
   NON- K-FACTORED ZONES = 1.00 (100 / KFACT(100))
Ś
$-----
*PGM MATRIX
*ID 9805 K-FACTOR MATRIX
*UNIT 19=KFC9805.DAT
GET 1
REP 1,100, I=1-1530, J=1-1530
$BOULDER VALLEY TO THE REST OF REGION, <100 MEANS LESS ATTRACTION
$KFC ADJ TEST 7
REP 1,60,I=1261-1413,J=37-1260,1414-1530
REP 1,30, I=37-1260,1414-1530, J=1261-1413
REP 1,300, I=1261-1413, J=1-36
REP 1,100, I=1-36, J=1261-1413
REP 1,80,I=1261-1413,J=1261-1413
OUT 1,901
*
```

Transit Improvements

In June 1997, the Regional Transit District (RTD) contracted KPMG and Barton-
Aschman Associates to improve the transit portion of the regional travel model. The study undertook several major tasks:

- Revising the transit coding procedure
- Revising the transit running time estimation method to be compatible with MINUTP
- Developing an automatic walk access and drive access link generation
 procedure
- Revising the fare processing procedure to reflect fare policies and distance based fares
- Recalibrating the mode choice model to match observed 1995 transit demand.

The project was finished in May 1998, and the improvements have been incorporated into the comprehensive travel modeling process. Tables 5 and 6 provide the old and new parameters, coefficients, and constants for the home-based work and non-work mode choice models. A complete project report provided by KPMG is available under separate cover.

UPARM	Parameter	Old Value	New Value
HOVSIZE	Minimum Occupancy for a Carpool	Vulue	2
PIT	Proportion of Intrazonal Trips That Use Transit	0.006	0.006
PIA	Proportion of Intrazonal Trips That Are Auto-Drivers	0.882	0.882
PET	Proportion of Int/Ext Trips That Use Transit	0	0
PEA	Proportion of Int/Ext Trips That Are Auto-Drivers	1	1
LI	Last Internal Zone	1530	1530
нс	Highway Operating Cost in Cents Per Mile	16	16
О3	Average Car Occupancy for The 3+ Car Occupancy Mode	3.48	3.48
UPARM	Coefficient	Old	New
		Value	Value
	In-Vehicle Time Coefficient	-0.0180	-0.0180
WKT	Walk Transit Time	-0.0540	-0.0540
WT1	Wait1 Trn Time (<7 Min)	-0.0540	-0.0540
WT2	Wait1 Trn Time (>7 Min)	-0.0282	-0.0282
WTT	Wait2 Transit Time (Transfer Time)	-0.0594	-0.0594
TF	Transit Fare	-0.0044	-0.0044
HT1	Hwy Terminal Time Drive Alone	-0.0930	-0.0930
HT2	Hwy Terminal Time 2/Car	-0.0480	-0.0480
HT3	Hwy Terminal Time 3+/Car	-0.0480	-0.0480
нос	Hwy Operating Cost	-0.0035	-0.0035
HPC	Hwy Parking Cost	-0.0095	-0.0095
HTS	HOV Time Saved	0.0140	0.0140
ACT	Auto Conn Time Coefficient	-0.0540	-0.0540
UPARM	Constant	Old	New
C2	CBD indicator for Shared Ride 2	-2 5948	-2 6066
C3	CBD indicator for Shared Ride 3+	-5 6074	-5 5721
CWT	CBD indicator for Walk to Transit	-1.9270	-1.9210
CDT	CBD indicator for Drive to Transit	-2.5100	-3.1709
12	Constant for Shared Ride 2 - Low Income	-1.1676	-1.1676
13	Constant for Shared Ride 3+ - Low Income	-2.7264	-2.7227
I WT	Constant for Walk to Transit - Low Income	-0.7700	-0.2294
LDT	Constant for Drive to Transit - Low Income	-9.9000	-10.3040
M2	Constant for Shared Ride 2 - Medium Income	-2.5985	-2.5985
M 3	Constant for Shared Ride 3+ - Medium Income	-4.4940	-4.4902
MWT	Constant for Walk to Transit - Medium Income	-2.4300	-1.8893
MDT	Constant for Drive to Transit - Medium Income	-4.5000	-4.9023
H2	Constant for Shared Ride 2 - High Income	-2.6528	-2.6528
H3	Constant for Shared Ride 3+ - High Income	-4.4381	-4.4344
нмт	Constant for Walk to Transit - High Income	-9.4700	-8,9293
НДТ	Constant for Drive to Transit - High Income	-5.5500	-5,9523
		0.0000	0.0020

Home-Based Work Mode Choice Parameters, Coefficients, and Constants

Home-Based	Non-Work and	Non-Home-Based	Mode Choice	Parameters,
		Coefficients, and	Constants	

UPARM	Parameter	Old Value	New Value
UP1	HNW Average Auto Occ (If Using Model)	0	0
UP2	NHB Regional Avg. Auto Occupancy	1.39	1.39
UP9	HNW Average Auto Occ for Model Year	1.47	1.5
COST1A	Auto Per Person Cost in Cents (1985\$) - NHB/AAO(1.39)	0.0082	0.0089
COST2A	Population Density - HNW Auto Trips	0.0096	0.0096
POPD	Auto Per Person Cost in Cents (1985\$) - HNW/AAO(1.59)	-0.0705	-0.0705
UPARM	Coefficient	Old Value	New Value
IVT1	In-Vehicle Time Coefficient (HNW)	0.0120	0.0120
IVT2	In-Vehicle Time Coefficient (NHB)	0.0131	0.0131
TOVT1	Out-of-Vehicle Time (HNW: Auto Term. Transit Excess)	0.0761	0.0761
ΤΟΥΤ2	Out-of-Vehicle Time (NHB: Auto Term. Transit Excess)	0.0328	0.0328
COST1	Cost in Cents (1985\$) - HNW	0.0131	0.0131
COST2	Cost in Cents (1985\$) - NHB	0.0133	0.0133
UPARM	Constant	Old Value	New Value
UP3	HNW Auto Constant	-2.6775	-2.7303
UP4	NHB Auto Constant	-4.3100	-4.1380
UP5	Auto Operating Cost (Cents Per Mile - 1985\$)	16.0000	1.6000
UP6	HNW CBD Attraction Constant	0.4500	0.7435
UP7	NHB CBD Production Constant	2.2200	2.2200
UP8	NHB CBD Attraction Constant	0.8400	0.2676
UP10	HNW DIA Attraction Constant		0.7201
UP11	NHB DIA Attraction Constant		-1.8736
HNWC	HNW Decimal Fraction of Low Income Hholds Constant	-4.1656	-4.1656

Multi-User Equilibrium Assignment

The new version of MINUTP allows the loading of multiple trip tables on to a network in a single assignment procedure. This procedure is called multi-user equilibrium assignment. The advantage of using this feature is that the algorithm optimizes the path for different trip tables simultaneously. This is an improvement to the current three-stage equilibrium assignment procedure, in which the algorithm selects the best individual paths separately for low occupant vehicles, 2-person vehicles, and 3+ person vehicles. The multi-user assignment allows overall user equilibrium for system optimization. A test was conducted by using DRCOG₂ KE95 travel model to examine the multi-user assignment method. In the test, the HOV assignment stages (with two trip tables: HOV2 and HOV3+) was combined with the SOV assignment. In order to differentiate the HOV and SOV paths available for different trip tables, a link variable **A**USE@is used to mark highway links. The commercial vehicle assignment was not incorporated into the multiuse assignment process due to the limitations of MINUTP software. The new assignment procedure has two stages: commercial vehicle assignment as stage one; and SOV, HOV2, and HOV3+ passenger car multi-user equilibrium assignment as stage two.

The test result demonstrated that the selected paths were more efficient. Although overall Vehicle-Miles Traveled (VMT) slightly increased from 49.263 million to 49.345 million (0.17 percent), the Vehicle-Hours Traveled (VHT) were reduced by 6,500 hours (0.4 percent). Consequently, the system speed increased 0.2 mph (0.6 percent). The VMT distribution by facility type illustrates more details. Freeways, expressways and principal arterials experienced a VMT reduction (26,000), while minor arterial and collectors had a VMT net gain of about 100,000. This indicates the algorithm selected better paths, in terms of minimizing travel time, by diverting trips from higher grade to lower grade facilities.

By adopting this process, several old assignment jobs were eliminated. Due to the increased complexity of calculation, the overall assignment program execution time is about 30 percent longer than before. The new assignment control file is attached as Appendix A.

Optimization of Assignment Iterations

In 1998 DRCOG expanded on a 1996 study of HCM85 volume-delay function and assignment convergence. Due to software and hardware limitations in 1996, the ideal convergency status and the impact under the multi-user assignment scenario could not be tested. In operation practice, unstable speeds for roadways in certain area types and facility types were found during the model speed balancing process. This indicated that the assignment convergence should be studied further.

In the previous three-period assignment, V/C ratio caps were placed on each of the volume-delay functions to reduce the impact of some over-congested links on the link travel time calculation which would, in turn, produce unreasonable speeds. The necessity of V/C caps in the ten-period assignment were not tested in 1996.

Furthermore, it recently has been suggested by some transportation experts that more iterations would achieve a better equilibrium status and yield a better assignment result.

The purpose of this exercise was to examine:

• The number of iterations and assignment convergency under the multi-user

assignment scenario, and

The impact of volume-delay function V/C caps on ten period assignment.

Two test schemes with three test cases were designed to accomplish the study objectives. Case One and Two form a group to test the convergency status of the assignment. Case One was a multi-user assignment with 15 iterations and V/C caps. Case Two had the same assignment configuration as Case One except the number of iterations was set to infinity. With the assignment tolerance = 0.0001, MINUTP stops automatically when the desired convergency status is reached. This pair of tests was designed to investigate the impact of number of iterations to the assignment performance measures, such as VMT, VHT and speed.

Case Two and Three were another pair of tests to study the impact of V/C ratio caps in the volume-delay functions. Case Three was the same as Case Two, except for the V/C caps. Both had unlimited iterations. The AM peak period assignment was used for the test with the KE95 model.

After the assignment, Case Two converged at iteration 36, with about 1 percent less Passenger Car Equivalent (PCE) VMT than Case One, which terminated at 15 iterations. The VHT in Case Two was about 3.5 percent lower than Case One while delay was 9 percent lower. Table 7 displays the performance measures summarized from Case One and Two.

Table 7

	Case One	Case Two	Difference	% Difference
	15 Iterations	36 Iterations		
PCE VMT	8,760,992	8,680,977	-80,015	-0.9%
PCE VHT	318,730	307,289	-11,441	-3.6%
PCE Speed	27.49	28.25	+0.76	+2.8%
PCE Delay Hours	98,037	89,079	-8,958	-9.2%

Assignment Iterations Impact on Performance Measures

For the link V/C ratio distribution, Case Two demonstrated a better result, with fewer congested links on all links with V/C ratio greater than 1.0. Table 8 presents the comparison.

Table 8

Assignment Iterations Impact on Link V/C Ratio

V/C ratio	Case One 15 Iterations	Case Two 36 Iterations
1.0-1.25	1617 links, 464 miles	1544 links, 447 miles

1.26-2.0	688 links, 169 miles	606 links, 159 miles
>2.0	28 links, 4 miles	24 links, 2 miles

For the VMT distribution by facility type, it was found that the assignment with more iterations tends to have less VMT assigned to congested areas such as CBD core and CBD fringe. In Case Two, about 11,000 VMT (2 percent of total CBD core and fringe VMT) was diverted from the CBD core and fringe areas during the two-hour a.m. peak period in comparison to Case One.

Cases Two and Three examined the impact of V/C caps in the volume-delay function for the capacity restraint assignment. Case Two has the following volume-delay functions.

Freeway:	Tc(1,2)=\$T0*(1.0+0.66*MIN(2,\$VC)^7.2)
Arterial:	Tc(3,4,7)=\$T0*(1.0+0.76*MIN(2.3,\$VC)^5.9)
Two lane roa	ad: Tc(9)=\$T0*(1.0+0.73*MIN(6,\$VC)^2.2)
Other:	Tc(5,6)=\$T0*(1.0+0.15*MIN(3.8,\$VC)^4)
where,	Tc is congested link travel time;
	T0 is free flow link travel time; and
	VC is volume-capacity ratio.

The maximum V/C ratios for freeways, arterials, and collectors are 2.0, 2.3, and 3.8, respectively.

In Case Three, the V/C ratio caps were eliminated with the revised volume-delay functions as follows:

Tc(1,2)=T0*(1.0+0.66*\$VC^7.2) Tc(3,4,7)=T0*(1.0+0.76*\$VC^5.9) Tc(9)=T0*(1.0+0.73*\$VC^2.2) Tc(5,6)= T0*(1.0+0.15*\$VC^4)

As the test results indicated, no significant differences were found between the two cases. For algorithm convergency, Case Three terminated at iteration 37 while Case Two stopped at iteration 36. The assignment performances were very close. The comparisons are presented in Tables 9 and 10.

Table 9

	Case Two	Case Three	Difference	% Difference
	36 Iterations	37 Iterations		
PCE VMT	8,680,977	8,677,835	-3,142	0.036%
PCE VHT	307,289	306,857	-432	0.14%
PCE Speed	28.25	28.28	+0.03	0.11%
PCE Delay	89,079	88,717	-362	0.4%

V/C Ratio Caps Impact on Performance Measure

V/C Ratio Caps Impact on Link V/C Ratio

V/C Ratio	Case Two	Case Three
	36 Iterations	37 Iterations
1.0-1.25	1544 links, 447 miles	1549 links, 449 miles
1.26-2.0	606 links, 159 miles	601 links, 157 miles
>2.0	24 links, 2 miles	21 links, 2 miles

For the core and fringe CBD area VMT distribution, the two cases produced almost the same results.

Based on the test results, the recommendations are:

- Set the maximum number of iterations to 50. This is sufficient under most situations. When the congestion level changes in the future, the maximum number of iterations may need to be raised accordingly. The tolerance should be set to TOL=0.0001, the default setting in MINUTP.
- Since there is no significant impact with or without the V/C caps, the max V/C ratio cap should be removed from the volume-delay functions to simplify the coding. A link post-process procedure is introduced to reset the link travel speed to 1.0 mph on those links with congested speed less than 1.0 mph. This increases the consistency of the final speed reporting.

Speed Balancing for 10-Period Assignment

The objective of this improvement was to develop a speed balancing method for the tenperiod traffic assignment. Previously, speed balancing was accomplished using a separate, less complex three-period assignment. This exercise was conducted in two stages. The first step was to re-calibrate the 10 assignment results against the most recent 1995 ground counts. This is reported in the next section of this document. The second step, which is described in this section, was to develop a speed balancing procedure for the 10-period assignment that is compatible with the previous three-period assignment speed balancing methodology.

In the three-period assignment, the peak speed balancing process uses a.m. and p.m. one hour VMT-weighted speeds by area type and facility type from the current iteration, and compares them to the speeds generated from the previous iteration. A set of midpoint speeds by area type and facility type is produced as proposed speeds for the next iteration. The same process is carried out for the off-peak speed processing, without the VMT weighting. The proposed two new speed sets (peak and off-peak) are then fed back to the highway path building process to obtain peak and off peak skim trees used for Home Based Work (HBW) and Non-Work (NW) trip distributions, respectively. Under the 10-period assignment, six different assignments are used in the peak period, while four assignments are used for the off-peak period. To maintain the proper trip distribution pattern and mode choice characteristics, the new process has to feed back a speed set which is similar to the one from the three-period assignment methodology. To achieve this, several tests were performed using the LA95 and XB20 travel model runs to determine a proper combination of the 10 assignment periods to create a compatible speed set. Five of the 10-period assignment (am2, am3, pm2, pm3, and op4) VMT and VHT were finally selected to produce similar peak and off-peak speeds as the three-period assignment. The segment of the MINUTP control file for summarizing speeds is presented in figure 3.

Figure 3

Speed Summary Control File

```
*PGM NETMRG ,32,33,35,36,40
*ID LA95 PEAK & OFF PEAK VMT, VHT FOR SPEED BAL ONLY
$ VMT IN 1/10 UNIT
$ VHT IN 1/10 HOUR UNIT
  COMP AMHRVMT=(DIST(1)*ACTVOL(1)+DIST(2)*ACTVOL(2))/10/2
   COMP AMHRVHT=(ACTVOL(1)*NIMP(1)+ACTVOL(2)*NIMP(2))/600/2
   COMP PMHRVMT=(DIST(3)*ACTVOL(3)+DIST(4)*ACTVOL(4)/2)/10/1.5
   COMP PMHRVHT=(ACTVOL(3)*NIMP(3)+ACTVOL(4)/2*NIMP(4))/600/1.5
SKIP REV=2
    COMP PKHRVMT = (AMHRVMT + PMHRVMT) / 2
    COMP PKHRVHT=(AMHRVHT+PMHRVHT)/2
    TAB PKHRVMT, AT=1-5, FT=1-7
    TAB PKHRVHT, AT=1-5, FT=1-7
SKIP REV=2
  COMP OPHRVMT=DIST(5)*ACTVOL(5)/10
  COMP OPHRVHT=ACTVOL(5)*NIMP(5)/600
    TAB OPHRVMT, AT=1-5, FT=1-7
    TAB OPHRVHT, AT=1-5, FT=1-7
```

The "a.m. peak" consists of two hours worth of data while, for purposes of calculating a comparable speed to maintain model calibrations, the "p.m. peak" speed estimate is a synthesis of one and one-half hours of data. The a.m. peak and p.m. peak VMT and VHT have the same weight when they are combined into a single peak speed. Appendix B is a comparison between three-period and 10-period assignment output peak and off-peak speeds.

The previous speed balancing process used several linked spreadsheets to summarize the speeds, and determine the proposed speed sets for the next model iteration. While this largely manual process was workable under the three-period assignment scenario, operational difficulty increased significantly for the 10-period assignment process. A fully automated procedure has been designed and developed by using FORTRAN programming language to generate an assignment summary, speed report for air quality analysis, and speed sets for speed balancing. Three programs have been developed: subsum0.exe, subsum1.exe and subsum2.exe. A batch file, all.bat, and a weight file, xxxxwts.ctl, were also developed to run the procedure. Figures 4 and 5 display the batch file and weight file.

Figure 4

Speed Balancing Control File

rem rem This is iteration 9 of the speed balancing process rem make changes for each iteration rem for %%t in (LB95???.TXT) do subsums0.exe %%t LB95WTS.CTL SUBSUMS1.EXE LB95 LB95WTS.CTL SUBSUMS2.EXE LB95 LB95WTS.CTL LB95spd.op6 LB95spd.pk6 ITER6A ITER6B ITER10A rem copy output files to match current iteration names copy LB95*.out LB95*.it9 copy subsums1.out runsum9.out copy subsums2.out spdbal9.out copy subsums2.op LB95spd.ol0 copy subsums2.pk LB95spd.pl0

As shown in Figure 4, the subsums0.exe uses lb95wts.ctl and lb95???.txt file as input to produce lb95???.spd files for the air quality model as well as VMT, VHT and speed summaries for each of the 10-period assignments. The ten lb95???.txt files are link attribute ASCII files generated by a MINUTP NETMRG program for subsum0.exe program to read in link variables. The program subsums1.exe produces VMT, VHT, and speed summaries by a.m. peak, p.m. peak, and off-peak periods. This is a replacement of the spreadsheet summaries. Finally, the subsum2.exe program uses the lb95wts.ctl weight file, which contains the current iteration input peak and off-peak speed information (lb95spd.pk6 and lb95spd.op6), to compare the output speeds, and generates a proposed speed set for the next iteration, iteration 7.

Figure 5

Speed Balancing Weight File

 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 AM1
 AM2
 AM3
 PM1
 PM2
 PM3
 OP1
 OP2
 OP3
 OP4

 1.0
 0.5
 0.5
 2.5
 1.0
 0.5
 8.5
 3.0
 5.5
 1.0

 0
 1
 1
 0
 1
 1
 0
 0
 1

 9/10/97
 LB95
 ITERATION
 8

The lb95wts.ctl file displayed in figure 5 contains several key elements for programs to summarize the assignment results. The first line indicates the MINUTP style input file names. For example, 31 means the first input file is named as lb9531.dat which is one assignment of the a.m. period. The second line of the lb95wts.ctl file displays the time

period of each assignment, such as am1, pm2, etc. These periods are corresponding to the file names listed in line one. The third line is a period duration list. Each number indicates the hours for that period. The duration of each assignment period may differ in different models. The fourth line contains a series of speed balancing switches that decide the combination of the periods in the speed balancing process. The last line is a title line that determines the title of the summary report, such as model year, number of iteration, date, etc. It is necessary to check and revise the ????wts.ctl file each time before running the all.bat batch file.

1995 Traffic Assignment Validation

A statistical analysis of the 1995 validation model run has been performed. The 10period assignment procedure was used in the process. There were 1,222 field observations of one-way link volumes. The data was obtained from 1994, 1995, and 1996 estimates of ground counts. The Transportation Data Management Section prepared them to reflect an average 1995 weekday. The data was categorized several different ways, including facility type, area type, and volume class. Statistical tests were then performed. A brief description of the different statistical methods is provided:

• Percent Error: Sum of the observed volumes subtracted from the sum of the modeled volumes, divided by the sum of the observed volumes. Expressed as a percentage, a value close to 0 percent is desirable. It is a common method to express the difference between two numbers. This measure indicates whether the model is generating and loading an appropriate quantity of trips. It is a common measure of travel modeling with suggested acceptable performance standards:

-	Overall	< 5%
-	Freeway	< 7%
-	Expressways	<10%
-	Principal Arterials	<10%
-	Minor Arterials	<15%

- Mean Error: The mean of the differences of observed volume subtracted from modeled volume. It is expressed as number of vehicles, usually in thousands. A number close to zero is best. Used in conjunction with standard deviation of the error.
- Standard Deviation of the Error: Indicates the amount of variation of the errors. It is expressed as number of vehicles, usually in thousands. Assuming the errors follow a normal distribution (which is expected), 95 percent of the errors are within plus/minus two standard deviations from the mean, and 68 percent of the errors are within plus/minus one standard deviation of the mean.

- PRMSE (Percent Root Mean Square Error): A measure of error that is informally defined as the ratio of Aaverage error@to Aaverage observed volume@ It is expressed as a percent, a value close to zero is desirable. This measure places more weight on (emphasizes) larger errors than smaller errors. It also places less importance on high volume observations. PRMSE is commonly used in travel modeling, an acceptable performance standard, suggested by Montana Department of Transportation, is an overall PRMSE of less than 30 percent.
- Linear Regression: If the model produced volumes that mimicked the observed volumes exactly, a perfect linear relationship would result. Regression uses the method of least squares to fit a line that best describes the set of observed values using the set of modeled volumes.
- R, the coefficient of correlation: A quantitative measure of the strength of the linear relationship between modeled volumes and observed volumes. It is a ratio that is expressed as a decimal. A value close to 1 is desirable.
- R², the coefficient of determination: Describes how well the regression line (the linear relationship) explains the variation of the modeled volumes with the observed volumes. R² is a fraction expressed as a decimal. A value close to 1.0 is desirable. R² \$ 0.88 should be observed from the assignment on all links with traffic counts.
- Slope and Intercept: The values that describe the regression line. A slope close to 1 is desirable. A slope value less than 1 might indicate that the modeled volumes are generally higher than the observed volumes, a value greater than 1 might indicate that the modeled volumes are generally lower than the observed volumes. The intercept is an adjustment factor added on after the slope factor is applied to the modeled volume. Intercepts close to zero may be desirable.

The results of the validation are satisfactory and indicate that the travel model operates successfully. The overall statistics exceeded the accepted performance standards. The percent error is less than 1 percent, the PRMSE is 28 percent, and the coefficient of correlation R is 0.96. Tables 11 and 12 present summaries of highway volume calibration.

Highway Assignment Validation Results

by Roadway Type and Area Type

	Overall	Freeway	Principal	Minor	CBD	Urban	Suburban	Rural
			Arterials	Arterials	Fringe			
Number of Observations	1222	238	662	272	141	351	571	159
Percent Error	-0.9%	0.8%	1.3%	-20.7%	-5.1%	-2.5%	2.0%	1.2%
Mean Error (thousands)	-0.2	0.4	0.2	-1.3	-1.4	-0.6	0.3	0.1
Std Dev Error	5.4	7.8	4.9	3.5	6.8	5.9	4.9	3.5
(thousands)								
PRMSE	28.4%	16.9%	33.2%	60.7%	25.6%	24.8%	29.6%	42.0%
Coefficient of Correlation	0.96	0.96	0.78	0.58	0.97	0.96	0.95	0.93
Regression								
R ²	0.92	0.92	0.61	0.33	0.95	0.93	0.90	0.87
slope	0.97	1.03	0.75	0.71	1.08	1.00	0.85	0.81
intercept (thousands)	0.7	-1.8	3.5	2.7	-0.5	0.7	2.2	1.5

(1995 LA Travel Model)

Table 12

Highway Assignment Validation Results by Volume Class

	(,					
	Volume Class (in thousands)							
	<10	10 - 30	30 - 50	50 - 80	>80			
Number of Observations	440	606	75	68	33			
Percent Error	6.3%	-1.3%	-2.3%	1.7%	-6.9%			
Mean Error (thousands)	0.3	-0.2	-0.8	1.0	-6.7			
Std Dev Error (thousands)	3.3	5.1	7.2	9.3	10.0			
PRMSE	62.3%	28.9%	19.7%	15.5%	12.3%			
Coefficient of Correlation	0.55	0.70	0.80	0.60	0.48			
Regression	Regression							
R ²	0.31	0.48	0.63	0.36	0.23			
slope	0.34	0.53	0.43	0.47	0.68			
intercept (thousands)	3.4	8.4	21.1	31.4	35.7			

(1995 LA Travel Model)

The statistics, when categorized by facility type, reveal reasonable results. Freeways and major principal arterials have very low error rates (less than 1.3 percent) and high coefficients of correlation (0.96 and 0.78, respectively). The errors are well within the respective standards of 5 percent and 7 percent.

Examination of the modeled versus observed volumes by area type demonstrates reasonable results. The coefficients of correlation are above 0.93 for all area types. The greatest error, -5 percent, is seen in the CBD/Fringe category, but is well within a reasonable error level.

The statistical analysis for volume class was also satisfactory. For links with less than 10,000 (one-way) volume, the error (6 percent) is high but still acceptable. Links with volumes 10,000 to 30,000, 30,000 to 50,000, and 50,000 to 80,000 exhibit relatively low errors (1.3, 2.3, and 1.7 percent, respectively). The number of observations of higher volume links is relatively low. There is some evidence that links with a one-way volume above 80,000 may be slightly underloaded in the model. However, the error (-6.9 percent) is not particularly large.

In comparison to the highway assignment statistics obtained after the model was calibrated to 1990, the results are superior. Links with volume less than 10,000 originally had an error of -20 percent and now have an error of 6 percent. Links with volume between 10,000 and 30,000 had an original error of -5 percent are now within -1 percent. Links with volume between 30,000 and 50,000 had an error of -3 percent now have a reported error of -2 percent. Links with volume between 50,000 and 80,000 had a prior error of -1 percent now demonstrate an error of 2 percent. Links with volume greater than 80,000 had an error of -7 percent now also have an error of -7 percent.

Updated File Name Structure

In this conformity cycle of model runs, several new file name conventions have been adopted. This is because of different sets of VMT estimates were produced to suit different analysis purposes. Three major VMT categories were used in the analysis.

- Standard VMT. These numbers are directly produced from the travel model. The loaded network is named as xxxx10ph.sum.
- Transportation Demand Management (TDM) VMT. DRCOG estimated the effectiveness of a variety of TDMs that reduce the system VMT. It is assumed that all the TDMs take effect during the peak periods. In the modeling process, the peak O-D tables were revised to reflect these measures. The loaded network is named as xxxx10pt.sum.
- Winter VMT. Due to seasonal variations, the VMT in the winter season is less than average daily VMT produced by the travel model. In the Denver region, according to CDOT estimates, the winter season VMT is about 6.3% lower than the average daily VMT. The travel model reflects this accordingly. The loaded network is named as xxxx10pw.sum.

Three sets of model data summaries were produced. Each set contains a loaded network summary file for general purpose, a loaded network file for air quality analysis, and a set of link data text file for air quality analysis. The file names were as shown in Table 13.

File Names

	Summary file	Summary file	Link files
		for AQ analysis	for AQ analysis
Standard	xxxx10ph.sum	xxxxhnet.10p	xxxx???.lnk
TDM	xxxx10pt.sum	xxxxhnet.10t	xxxx???.Int
Winter	xxxx10pw.sum	xxxxhnet.10w	xxxx???.lnw

Note, xxxx is a four letter DRCOG model name, e.g., MB95, EA96, etc. and ??? is a 10-period assignment period name, e.g., am1, pm2, etc.

Sketch Planning Models

To keep DRCOG's sketch planning model synchronous to the comprehensive models, four sketch planning models (EB96simp, CB01simp, DB11simp and ~C20simp) have been developed and distributed to the local governments that have signed the sketch model release agreement with DRCOG. These four models' networks, demographic data sets, trip generation, distribution, K-Factors, and time-of-day stratification are identical to the standard model. The main difference is that the sketch model does not have a transit module. Instead, it uses a set of matrix conversion processes to convert person trip tables into vehicle trip tables. Also, the assignment procedure uses three periods rather than the 10 periods used in the comprehensive model.

Appendix A

Multi-User Assignment Setup Files

\$-----\$ PEAK TRUCK PCE AON ASSIGNMENT \$-----*PGM ASSIGN 20 *ID LA95 AM PEAK COM PCE ASSIGNMENT *UNIT 14=LA95AM.VEH FLAGVAR=USE SPECIFIES USE CODE AS THE FLAG VARIABLE MATI 401 TRUCK PCE'S SKIP HOV LINKS FLAGFAC 1,,P,P,P,P 1 ITERATION THET 0 adjivar=codcurva baseivar=codcurva Tc(1,2)=\$T0*(1.0+0.66*\$VC^7.2) $Tc(3,4,7) = T0*(1.0+0.76*VC^{5.9})$ $Tc(9) = T0*(1.0+0.73*VC^2.2)$ $Tc(5,6) = T0*(1.0+0.15*VC^4)$ PCTADT=57 AMPK PERIOD TRIPS PENALTY=1 PENF LA95.pen, FORM=FREE REPO -3 \$ SPED 01,395,245,275,265,250,280,305 SET DEFAULT SPEEDS TO AT 4 SPED 11,315,160,150,150,160,190,130 PEAK SPEEDS SPED 21,270,185,185,155,180,200,290 ITERATION 6A SPED 31,285,275,215,215,200,260,180 SPED 41,405,290,280,275,245,280,305 SPED 51,520,430,395,395,320,285,230 \$ LEVEL-OF-SERVICE E CAPACITIES CAPA 1-1,11,2000,1280,0800,0415,0400,1100,1280 CAPA 2-2,11,2000,1280,0800,0460,0415,0750,1280 CAPA 3-7,11,2000,1160,0750,0460,0415,0500,1160 CAPA 1-1,21,2000,1280,0935,0580,0500,1100,1280 CAPA 2-2,21,2000,1280,0935,0580,0500,0750,1280 CAPA 3-3,21,2000,1160,0840,0500,0500,0500,1160 CAPA 4-7,21,2000,1160,0800,0500,0500,0375,1160 CAPA 1-1,31,2000,1280,0955,0615,0550,1100,0955 CAPA 2-2,31,2000,1280,0955,0615,0550,0750,0955 CAPA 3-3,31,2000,1160,0875,0540,0550,0500,0875 CAPA 4-7,31,2000,1160,0835,0540,0550,0375,0835 CAPA 1-1,41,2000,1280,1000,0750,0600,1100,1000 CAPA 2-2,41,2000,1280,0960,0750,0600,0750,0960

CAPA 3-3,41,2000,1160,0875,0700,0600,0500,0875 CAPA 4-7,41,2000,1160,0835,0700,0600,0375,0835 CAPA 1-1,51,2000,1350,0955,0940,0880,1110,0955 CAPA 2-2,51,2000,1350,1135,1135,0880,0750,1135 CAPA 3-7,51,2000,1575,1135,1135,0880,0500,1135 \$-----\$ AM RUN1: PEAK MULTI-USER ASSIGNMENT ASSIGNS LOV, HOV2, HOV3+ \$ VEHICLE TABLES HIGHWAY FACILITY LINK VARIABLE: USE \$ \$ USE = 1, GENERAL PURPOSE LANE TOGGLE \$ USE = 2, CONT ACCESS LANES FOR HOV2 FACILITIES TOGGLE \$ USE = 3, BARR SEPERATE LANES FOR HOV2 FACILITIES TOGGLE \$ USE = 4, CONT ACCESS LANES FOR HOV3+ FACILITIES TOGGLE USE = 5, BARR SEPERATE LANES FOR HOV3+ FACILITIES TOGGLE Ś \$ INPUT TRUCK NET AS 21, OUTPUT NET=22 \$-----*PGM ASSIGN 21 *ID LA95 AM PEAK MULTI-USER ASSIGNMENT *UNIT 14=LA95AM.VEH ADDV VOL MATI 402,403,404 M2: SOV; M3: HOV2; M4: HOV3+ SPECIFIES USE CODE AS THE FLAG VARIABLE FLAGVAR=USE FLAGFAC 1,,P,P,P,P SOV SKIPS HOV LINKS FLAGFAC 2,,,P,,P SR2 SKIPS 3+ LINKS FLAGFAC 3,,,,, SR3+ SKIPS NO LINKS THET 15*0 15 ITERATIONS EQUI TOL=0.0001, DRIVE=C EQUILIBRIUM ASSIGNMENT adjivar=codcurva baseivar=codcurva $Tc(1,2) = $T0*(1.0+0.66*$VC^7.2)$ $Tc(3,4,7) = T0*(1.0+0.76*VC^{5.9})$ $Tc(9) = $T0*(1.0+0.73*$VC^2.2)$ $Tc(5,6) = T0*(1.0+0.15*SVC^4)$ PAR PCTADT=57 AMPK PERIOD TRIPS, PENALTY=1 PENF LA95.pen,FORM=FREE REPO -3 \$ FREE-FLOW SPEEDS SPED 1-7,01,580,450,450,400,300,390,310 SPED 1-7,11,550,400,270,250,200,390,410 SPED 1-7,21,550,400,350,300,250,390,410 SPED 1-7,31,580,450,370,350,250,390,310 SPED 1-7,41,580,450,450,400,300,390,360 SPED 1-7,51,630,490,480,440,350,390,480 \$ LEVEL-OF-SERVICE E CAPACITIES

```
CAPA 1-1,11,2000,1280,0800,0415,0400,1100,1280
CAPA 2-2,11,2000,1280,0800,0460,0415,0750,1280
CAPA 3-7,11,2000,1160,0750,0460,0415,0500,1160
CAPA 1-1,21,2000,1280,0935,0580,0500,1100,1280
CAPA 2-2,21,2000,1280,0935,0580,0500,0750,1280
CAPA 3-3,21,2000,1160,0840,0500,0500,0500,1160
CAPA 4-7,21,2000,1160,0800,0500,0500,0375,1160
CAPA 1-1,31,2000,1280,0955,0615,0550,1100,0955
CAPA 2-2,31,2000,1280,0955,0615,0550,0750,0955
CAPA 3-3,31,2000,1160,0875,0540,0550,0500,0875
CAPA 4-7,31,2000,1160,0835,0540,0550,0375,0835
CAPA 1-1,41,2000,1280,1000,0750,0600,1100,1000
CAPA 2-2,41,2000,1280,0960,0750,0600,0750,0960
CAPA 3-3,41,2000,1160,0875,0700,0600,0500,0875
CAPA 4-7,41,2000,1160,0835,0700,0600,0375,0835
CAPA 1-1,51,2000,1350,0955,0940,0880,1110,0955
CAPA 2-2,51,2000,1350,1135,1135,0880,0750,1135
CAPA 3-7,51,2000,1575,1135,1135,0880,0500,1135
$-----
$ COMPILE AM RUN1: PEAK ASSIGNMENT ON UNIT 31
$-----
*PGM NETMRG 24,21,22
*ID LA95 AM PEAK ASSNT COMPILATION
$ VOL RELATED VARIABLES IN UNIT 31 ARE IN ONE HOUR UNIT
COMP ACTVOL=VOL1(2)-0.5*VOL(1) CONVERT PCE VOL TO ACTUAL VOL
IF REV=3
   COMP TOTV=TOTV1(2)
   COMP BIVEH=TOTV-TOTV(1)*0.5
ENDIF
COMP VOL=VOL1(2)
COMP VC=VC1(2)
$ MINIMUM SPEED ROUTINE (SET MIN CSPD=1.0 MPH)
IF TSVA(2)=0.
   if CSPD1(2)=0-9
       COMP NIMP=DIST(2)*60.
       COMP CSPD=10
   ELSE
       COMP NIMP=DIST(2)*60*10/CSPD1(2)
       COMP CSPD=CSPD1(2)
   ENDIF
ENDIF
SKIP REV=2
IF TSVA(2)=0
   IF CSPD1(2)=0-9
       LIST A=1-4,B=6-9,VC1(2)=11-13,CSPD1(2)=15-18,CSPD=20-24
   ENDIF
ENDIF
```

SKIP REV=2
\$ VMT IN 1/10 UNIT
\$ VHT IN 1/10 HOUR UNIT
COMP AMVMT=DIST*ACTVOL/10
COMP AMVHT=ACTVOL*NIMP/600
TAB AMVMT,AT=1-5,FT=1-7
TAB AMVHT,AT=1-5,FT=1-7
DELE AMVMT,AMVHT

*

Appendix B

Output Speed Comparison

Three Periods Versus 10 Periods

3P	10P		3P	10P	
PKSPD	PKSPD	DIFF	OPSPD	OPSPD	DIFF
15.3	15.4	0.1	26.2	26.5	0.3
15.4	15.5	0.1	23.0	23.3	0.3
16.4	15.9	(0.5)	19.2	19.4	0.2
11.1	11.1	0.0	11.1	11.1	0.0
26.7	27.5	0.8	46.6	48.6	2.0
19.2	18.0	(1.2)	31.4	29.1	(2.3)
18.4	19.2	0.8	31.1	31.8	0.7
16.4	16.8	0.4	27.8	28.4	0.6
17.2	17.1	(0.1)	22.9	23.4	0.5
20.1	20.8	0.7	29.1	29.8	0.7
13.7	13.7	(0.0)	13.9	13.9	0.0
26.5	27.4	0.9	48.0	50.1	2.1
28.1	27.4	(0.7)	37.0	39.7	2.7
20.5	21.2	0.7	33.5	34.2	0.7
20.6	21.4	0.8	32.6	33.2	0.6
20.2	20.1	(0.1)	24.7	24.7	0.0
25.7	26.1	0.4	34.1	34.8	0.7
16.1	16.1	(0.0)	16.1	16.1	(0.0)
39.0	39.5	0.5	55.1	55.8	0.7
29.3	29.3	0.0	40.9	40.8	(0.1)
27.2	27.6	0.4	40.4	41.3	0.9
27.5	27.6	0.1	38.1	38.6	0.5
24.8	24.7	(0.1)	29.6	29.7	0.1
27.9	28.0	0.1	34.3	34.8	0.5
19.7	19.7	(0.0)	19.7	19.7	(0.0)
53.4	53.4	0.0	62.4	62.6	0.2
42.7	43.0	0.3	48.8	48.9	0.1
40.5	40.1	(0.4)	47.5	47.5	0.0
39.4	39.0	(0.4)	43.1	43.2	0.1
32.0	31.7	(0.3)	34.7	34.8	0.1
27.8	28.0	0.2	37.8	38.1	0.3
21.6	21.6	0.0	21.1	21.1	0.0
		0.1			0.4
		0.5			0.8

The following document is available under separate cover.

Abstract

Title:	1999-2004 Transportation Improvement Program Technical Appendices
Author:	Denver Regional Council of Governements
Subject:	Six-year multimodal transportation program
Date:	September 16, 1998
Sources of Copies:	Public Affairs Office DRCOG 2480 West 26 th Avenue Suite 200B Denver, Colorado 80211
Number of Pages:	140
Abstract:	These Technical Appendices are a support document to the 1999-2004 Transportation Improvement Program